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Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, 
myofibroblasts represent a heterogeneous population of cells that are principally defined 
by acquired contractile function and high synthetic ability to produce extracellular matrix 
(ECM). Current literature sheds new light on the critical role of ECM signaling coupled with 
mechanotransduction in driving myofibroblastic activation. In particular, transforming growth 
factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be 
the primary ECM signaling mediators that form and also induce positive feedback loops. The 
outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors 
and integrins at the cell membrane, ultimately perpetuating the abundance and activities 
of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances 
in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic 
implications.

Introduction

Principally characterized by accumulation of disorganized extracellular matrix (ECM), 
fibrosis is the end-stage hallmark of a broad range of diseases. The central cellular mediators 
of fibrosis are myofibroblasts with a prominent contractile/synthetic phenotypes. While 
myofibroblasts are heterogeneous [1, 2], they commonly express smooth muscle proteins 
such as α smooth muscle actin (α-SMA) which forms contractile stress fibers. Moreover, 
myofibroblasts produce large amounts of ECM proteins, including collagen I, extra-domain 
A containing fibronectin (EDA-FN), and matrix metalloproteinases (MMPs). In recent 
lineage tracing studies, de novo expressed periostin was identified as a robust marker of 
myofibroblasts [3]. Many terms have been used for the process that generates myofibroblasts; 
e.g. myofibroblast (trans)differentiation or activation or transformation, fibroblast 
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activation, fibroblast-to-myofibroblast transition or conversion, etc. Current literature 
reveals that rather than terminally differentiated, myofibroblasts represent a range of highly 
plastic cell states. Thus, in this review we opt to use the term “myofibroblastic activation” 
[4-6] attempting to reconcile these differing terminologies with an updated understanding 
of myofibroblasts.

A classical view is that myofibroblasts derive from fibroblasts for wound repair, where 
they produce and contract granulation tissue to fill and close a lesion. Recent studies have 
revealed that myofibroblasts derive from a wide variety of cell types [7, 8], maybe triggered 
by signaling cues beyond injury [9]. Early-stage myofibroblastic activation is deemed 
protective. However, in fibrotic diseases it fails to terminate, resulting in progressive and 
chronic damage through continuous synthesis of fibrotic scar tissue [10]. The biological 
basis for the occurrence of fibrosis instead of resolution remains unclear. Myofibroblast-
mediated fibrotic tissue remodeling occurs in most organs, especially at the end stage of 
major diseases ranging from scleroderma, atherosclerosis, heart failure, liver cirrhosis, renal 
fibrosis, and many cancers [11]. As such, a better understanding of signaling mechanisms 
underlying myofibroblastic activation is imperative for producing knowledge that could be 
broadly applied in anti-fibrotic therapeutic developments.

Extensive research has been done to uncover many signaling pathways responsible 
for myofibroblastic activation and fibrosis, for which a large number of reviews have been 
published, mostly in specific disease contexts. With new investigative tools available, ECM 
remodeling and mechanotransduction have recently received refreshed enthusiasm [12, 
13], likely for their reciprocal actions that profoundly influence myofibroblastic activation 
[14, 15]. Of particular note, the duet of transforming growth factor β1 (TGF-β1) and the 
alternatively spliced EDA-FN constitute a potent myofibroblastic activator [16]. They 
form a positive feedback loop by coupling with TGF-β receptors and mechanotranducer 
integrins on the cell surface (see Fig. 1). This circuit transmits mechanical and biochemical 
signals from the ECM into the cell, triggering transcriptional reprograming (outside-in). 
Consequently, elevated production of α-SMA stress fibers and EDA-FN in turn mediates cell 
contraction and ECM alteration and further TGF-β activation (inside-out). To highlight this 
integrated concept, the current review focuses on TGF-β1/EDA-FN and associated integrin 
and intracellular signaling that orchestrate myofibroblastic activation.

Precursors of myofibroblasts

Origins of myofibroblasts, particularly in vivo, have been hotly debated [17]. Recent 
lineage tracing studies overall support the assertion that the main sources of myofibroblasts 
are resident mesenchymal cells such as fibroblasts and pericytes [18, 19]. It has been shown 
that periostin-expressing myofibroblasts in the heart are derived from resident fibroblasts 
of the TCF21 lineage, but not from endothelial, immune/myeloid or smooth muscle cells 
[3]. Fibroblasts are systemically ubiquitous ECM-producing cells that assume a spindle-
shaped morphology in cell culture [20-22]. Myofibroblasts are distinguished from fibroblasts 
by highly upregulated α-SMA stress fibers and contractility, de novo expression of periostin 
and EDA-FN, increase of smooth muscle myosin heavy chain, vimentin, focal adhesion 
proteins, and elevated collagen secretion [23]. Lineage tracing experiments also identified 
that resident pericytes in the kidney [24] and those in the liver (hepatic stellate cells, HSCs) 
[18, 25] account for the major sources of fibrogenic myofibroblasts. Moreover, a new report 
indicates that Gli1+ mesenchymal stem cell (MSC)-like cells, which reside in the perivascular 
niche of many organs, substantially contribute to myofibroblasts and injury-induced organ 
fibrosis [26]. Interestingly, a novel population of Lin−integrin-α7−Sca1+PDGFRα+ multipotent 
mesenchymal progenitor cells, termed fibro/ adipogenic progenitors (FAPs), were recently 
identified [27]. These are the main source of myofibroblasts in injured skeletal muscle [28, 
29], but are also found in multiple other tissues [30, 31].

Other cell types have also been proposed as precursors of myofibroblasts. Earlier 
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reports suggested that epithelial cells undergoing epithelial-to-mesenchymal transition 
(EMT) [21] or endothelial cells following EndoMT [32, 33] generate major populations of 
myofibroblasts. However, recent lineage tracing analyses refuted those assessments [1, 34]. 
While the origin of myofibroblasts from vascular SMCs has not been extensively studied, this 
paradigm has been suggested as an explanation for the pathogenesis of artery stiffness [35]. 
Fibrocytes, the circulating blood-borne cells similar to fibroblasts but expressing α-SMA and 
CD45, were reported to give rise to myofibroblasts [36]. However, using Collagen1a1-GFP as 
a robust cardiac fibroblast marker, a new report demonstrated that the majority of infarct 
fibroblasts are of epicardial origin but not derived from lineages of bone marrow, EndoMT, 
or blood [37].

Despite many publications, the relative contributions of different cell sources to 
myofibroblasts and fibrosis have yet to be clearly defined in various organs or tissues 
[2]. Application of unambiguous lineage tracing technologies to distinguish the origins of 
myofibroblasts is an active direction of current research, and may successfully address this 
question [8, 38]. The answers will likely be contextually dependent on tissue and pathology 
[25], and precisely targeting a defined cell population for effective anti-fibrotic therapy may 
motivate extensive studies to delineate myofibroblastic mechanisms.

Fig. 1. Outside-in and inside-out signal 
transduction in myofibroblastic activation. 
Outside-in: Activated TGF-β1 (freed from 
LAP) binds to the TGF-βR complex stimulating 
intracellular signaling that promotes 
α-SMA production. In parallel, ECM-to-cell 
mechanical transduction through the integrin/
focal adhesion (FA) pathway activates RhoA, 
leading to assembly of α-SMA stress fibers. 
Inside-out: TGF-β1-activated EDA-FN splicing 
increases the EDA-FN protein in the ECM; cell 
contraction executed by α-SMA stress fibers 
alters the LAP (gray) conformation via the 
integrin/LAP interaction releasing TGF-β1 
(blue) from LAP. Positive feedback loops: 1. 
TGF-β1 stimulates the production of EDA-FN 
which in turn facilitates the ECM incorporation 
and activation of TGF-β1 via the LTBP-1/EDA-
FN/integrin interaction network. 2. ECM-
integrin mechano-transduction activates RhoA 
which enhances the assembly of α-SMA stress 
fibers that execute cell contraction and integrin 
mechano-transduction, further augmenting 
RhoA activation. 3. TGF-β1-stimulated stress 
fiber production ultimately enhances TGF-β1 
release from the ECM via mechano-activation 
through the integrin/LAP interaction. 4. The assembly of G-actin (monomer α-SMA) into F-actin (stress 
fiber) allows for the escape of MRTF from G-actin sequestration in the cytosol and its nuclear translocation 
and SRF activation, which in turn propagates α-SMA and stress fiber production. Notes: 1. Latent TGF-β 
forms SLC with the LAP “straitjacket”, where it is trapped; SLC and LTBP form LLC. 2. Green arrows indicate 
TGF-βR and integrin/FA mutual modulations. 3. Activated RhoA promotes MRTF nuclear translocation by 
enhancing F-actin assembly while reducing G-actin in the cytosol.

http://dx.doi.org/10.1159%2F000493217


Cell Physiol Biochem 2018;49:848-868
DOI: 10.1159/000493217
Published online: 5 September, 2018 851

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Zent et al.: Myofibroblastic activation

Myofibroblast-activating ECM signaling

Defining the signal transduction that leads to myofibroblastic activation is inherently 
difficult due to the involvement of nearly all the major signaling pathways. Recent literature 
highlights a previously under-appreciated role of ECM signaling as a primary mediator of 
myofibroblastic activation. While many signaling molecules are involved as myofibroblast 
activators, e.g. platelet derived growth factor and connective tissue growth factor [39, 40], 
TGF-β1 has been identified as mediating predominant impacts in most of the studies [41-43]. 
Therefore, we will focus on the TGF-β1 interactions with the ECM and its critical influence on 
myofibroblastic activation. Immune-mediated myofibroblastic activation involving TGF-β1 
has been extensively investigated [44] but will not be included in the scope of this review.

Latent TGF-β1 “caged” in the ECM
Before maturation and activation, TGF-β is stored as a latent protein in the ECM, where 

it is bound to a latency associated peptide (LAP) that is conjugated to a latent TGF-β binding 
protein (LTBP) [45]. TGF-β1 and its pro-peptide LAP-1 are translated from the same transcript. 
This pro-TGF-β1 dimerizes via disulfide bonding [46]. Subsequently, the linkage between 
LAP-1 and TGF-β1 is cleaved by a furin-like convertase and the LAP-1 dimer folds into a 
“straitjacket” that sterically trap the TGF-β1 dimer (Fig. 1), resulting in the heterotetrameric 
small latent complex (SLC) [46]. The SLC is typically disulfide bonded with LTBP-1 at both 
LAP-1 monomers, forming the large latent complex (LLC), which is secreted and incorporated 
into the ECM. Four LTBPs exist in various tissues but with consensus high expression in 
elastic tissues such as heart, lung, and skeletal muscle [47]. They have different affinities to 
each of the three TGF-β proteins, and LTBP-1 is thought to sequester the most TGF-β1 in the 
ECM [48]. LTBP-2 is not known to conjugate to the TGF-β1 SLC; LTBP-3 and LTBP-4 have not 
been extensively studied for this function [49]. Aside from tethering the SLC to the ECM to 
mechanically secure TGF-β1’s latency [50], LTBP-1 may also serve a chaperone-like function 
to assist the folding and secretion of pro-TGF-β1 [51]. The LLC is conjugated to the ECM at 
LTBP-1 by transglutaminase [52]. The N-terminus of LTBP-1 is known to bind to FN [47, 
49]. A recent study suggests that Fibrillin-1 binds to the C-terminal LTBP-1 at a site adjacent 
to the LAP-binding motif [53]. The Fibrillin-1 assembly into the ECM is FN dependent [48, 
54]. The functional significance of TGF-β1 sequestration in the ECM is still not clear [45]. 
Studies provide interesting clues from Marfan syndrome, where Fibrillin-1 mutation leads to 
excessive TGF-β1 activation. This can be explained by insufficient Fibrillin-1 to keep TGF-β1 
latent in the LLC, but the mechanisms may be far more complex [55].

Activation of TGF-β1
Compelling evidence indicates that the activation or “uncaging” of TGF-β1 from the 

ECM is a critical early step in driving myofibroblastic activation [42]. The release of mature 
TGF-β1 from the SLC can be triggered by a plethora of biological, physical, and physico-
chemical factors (e.g. pH) [56], with integrins and proteases being well-established 
mediators [45]. The LAP protein contains an Arg-Gly-Asp (RGD) sequence which binds a 
number of integrins. All αv integrins are known to bind RGD, with αvβ6 and αvβ8 as the best 
studied TGF-β1 activators [45]. A recent report demonstrates αvβ1 as another important 
TGF-β1 activator that binds LAP-1 [57]. The critical role of αv in myofibroblastic activation 
has been confirmed in several mouse models of organ fibrosis [57-59]. The literature to date 
on TGF-β1 activation involving αvβ6 is mostly focused on a traction-based mechanism [60]. 
As LAP-1 is anchored to the ECM via LTBP-1 and also bound to the cell surface through the 
binding of its RGD motif to αvβ6, a traction force between ECM and cells can deform the 
LAP-1 “straitjacket” thus liberating TGF-β1 [61] (Fig. 1). Atomic structural information for 
this model has lately been updated [62]. This mechanism is also extrapolated to the “pulling” 
force generated by myofibroblast stress fiber contraction [63], or from ECM alone in a cell-
free system [50]. There is evidence for an in vivo scenario where mechanical straining of the 
ECM primes the SLC (or LAP) for TGF-β1 activation triggered by cell contraction [64]. How 

http://dx.doi.org/10.1159%2F000493217


Cell Physiol Biochem 2018;49:848-868
DOI: 10.1159/000493217
Published online: 5 September, 2018 852

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Zent et al.: Myofibroblastic activation

αvβ8 activates ECM-caged TGF-β1 is less understood. Unlike αvβ6, the mechanism seems to 
involve recruitment of MMPs and protease activities independent of traction [65, 66].

Several proteinases are known to activate TGF-β1 without necessarily involving 
traction. MMP14 (aka: MT1-MMP) has been shown to degrade LAP-1 but is dependent on 
simultaneous cell-surface binding of the αvβ8 integrin to the RGD motif of LAP [67]. MMP-
2 has been shown to directly cleave LAP-1 and LTBP-1 [68-70]. The role of MMP-9 is more 
complex, because it cleaves the soluble form but not the ECM-bound form of LTBP-1 [71]. 
BMP1 has been shown to cleave LTBP-1 at two specific sites, liberating the LLC from ECM 
and resulting in activation of TGFβ1 after cleavage of LAP by non–BMP proteinases [69]. 
Serine proteinases, specifically plasmin, thrombin, elastase, chymase, trypsin, and kallikrein 
have been known for decades to cleave LTBP-1 and stimulate TGF-β1 activation [68, 72, 73]. 
However, the TGF-β1-activating mechanisms of these proteases are still not well understood 
in vivo in the context of myofibroblastic fibrosis. Thrombospondin-1, a non-protease protein, 
is well-documented in vitro and in vivo for its critical role in activating TGF-β1 and promoting 
fibrosis [74]. Its action likely involves an interaction with the N-terminal region of LAP-1 
that alters the SLC conformation [75]. The other factors that turn TGF-β1 from latency to an 
active form have been updated by informative reviews [23, 45, 60].

The EDA-containing FN splice variant (EDA-FN)
Based on studies using different precursor cells, three basic conditions are considered 

necessary for myofibroblastic activation [16], including strained ECM [76] and activated 
TGF-β1 [42, 77] as discussed above, and EDA-FN. Cellular but not plasma FN contains 
splice variants A (EDA or EIIIA) and B (EDB or EIIIB). EDA-FN is not expressed under 
normal conditions but is highly upregulated in myofibroblasts. While EDA-FN is recognized 
as necessary for myofibroblastic activation in various different precursors and fibrotic 
conditions in vitro and in vivo [78-82], EDB-FN is known as a hallmark of tumor angiogenesis 
[83]. It is worth noting that EDA-FN is reported to be dispensable for transformation of 
hepatic stellate cells and portal fibroblasts into myofibroblasts in culture and in mouse 
models of liver fibrosis [84], suggesting that the role of EDA could be compensated for by 
other factors.

It has been suggested that the insertion of EDA-FN into bulk fibronectin ECM may at a 
micro-level change overall material stress-strain properties [85]. The EDGIHEL motif at the 
EDA C’-C region binds to fibroblast-expressed integrins α4β1 and α9β1 [80, 86, 87]; the α4 
and α9 subunits are considered the essential EDA-binding components [80, 88]. Another 
EDA-binding integrin, α4β7, has been found to be important in mouse lung myofibroblastic 
activation [89, 90], but the α4β7-binding EDA sequence has yet to be identified [89]. Of note, 
a recent report demonstrates that EDA-FN forms a signaling axis with Toll like receptor 4 
(TLR4) driving fibrosis in scleroderma [81].

In addition to EDA and EDB, FN type III domains also contain RGD and PHSRN motifs. 
They have been shown to bind the canonical FN-recognition integrin α5β1 [91], as well as 
αIIbβ3 and αvβ3 [92]. Interestingly, while the binding of LAP-1’s RGD with integrins facilitates 
TGF-β1 release from latency, as discussed above, the binding of FN’s RGD and its synergy site 
(the PHSRN motif) with integrins is thought to activate the integrin signaling that promotes 
FN filament assembly [92, 93]. However, whether this synergistic integrin-binding property 
of the RGD and PHSRN motifs plays an important role in TGF-β1 activation is not clear.

The TGF-β1/EDA-FN positive feedback
Activated TGF-β1 and EDA-FN positively affect and are affected by the cellular-mediated 

changes they induce in the ECM, essentially linking their functionality together in an ECM-
cell feedback loop. It has been suggested that EDA-FN plays a positive role in activating 
TGF-β1 signaling, possibly in multiple ways. First, there is direct evidence indicating that 
EDA plays a supporting role for the interaction of LTBP-1 with FN and its incorporation into 
the ECM [16, 64, 94]; blocking the EDA-FN/LTBP-1 interaction impairs TGF-β1 activation 
[16, 95]. The detailed molecular mechanism has yet to be revealed. Second, the EDA/integrin 
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interaction has been reported to enhance the interaction of the LAP-1 RGD with integrins 
[96], implicating a role in facilitating the release of TGF-β1 from the ECM. In addition, in view 
of a network formed by protein-protein interactions in the LAP-1/LTBP-1/EDA-FN/integrin 
complex, it is intriguing to question as to whether perturbation of ECM may modify the LAP-
1 conformation and hence the TGF-β1 activation status via the EDA-FN/integrin binding. 
Given the complexity of this ECM network and technical challenges, it will take careful future 
studies to delineate this potential mechanism. Moreover, further studies are also required to 
elucidate whether the EDA-FN binding with integrins assists with the incorporation of latent 
TGF-β1 into the ECM.

Interestingly, it has been shown that TGF-β1 directly regulates EDA-FN expression 
during myofibroblastic activation. For example, TGF-β1 has been identified as a modulating 
factor in EDA-FN splicing. Exposure of lung fibroblasts to TGF-β1 modulates serine-arginine–
rich splicing factors (SRps), which influence the splicing of the cellular EDA-FN transcript. 
One study showed that active SRp40, SRp55, and SRp75 increased threefold and SRp20 
increased eightfold after 24-hour TGF-β1 exposure. Additionally, several U5 proteins and 
helicases were modified. These changes modified EDA inclusion into the FN transcript [97]. 
This effect was further explored in a recent publication, where it was shown that TGF-β1 
stimulates SRp40 via the PI3K-Akt pathway, which will be discussed later in this review. 
Akt was shown to directly bind SRp40, which bound the EDA-FN exon splicing enhancer 
on pre-mRNA and significantly increased the proportion of total cellular FN containing an 
EDA domain [98]. The observation in both of these studies that TGF-β1 mediates cellular 
redistribution of SRp proteins is intriguing and potentially worth further study, along with 
the signaling pathways governing this TGF-β1 guided induction of EDA-FN.

Due to the extracellular availability and high expression in fibrosis, EDA-FN has been used 
clinically as an indicator of fibrotic disease and tissue remodeling in humans [99]. Moreover, 
EDA function-blocking antibodies and competitive peptides inhibit activation of TGF-β1 
and myofibroblasts [16, 100]. As such, the relationship of TGF-β1 and EDA-FN signaling 
pathways will continue to attract research interest directed toward the identification of new 
mechanisms for therapeutic targeting.

Signal transmission and integration at the cell membrane

At the plasma membrane, the TGF-β receptor complex is activated by TGF-β1 that is 
released from the ECM; Integrins interact with EDA-FN and the ECM in a mechanoreceptive 
manner. These two major events integrate to transmit ECM signals into the cell resulting 
in RhoA-stimulated stress fiber formation and transcriptional/ posttranscriptional 
reprograming that orchestrate myofibroblastic activation.

TGF-β1 signaling via TGF-β receptors
In the canonical pathway, TGF-β1 activates the TGF-β receptor complex which in 

turn phosphorylates Smad2 and Smad3. These two signaling proteins then complex with 
Smad4 and translocate to the nucleus to initiate transcription of many genes [46, 101].  The 
Smad2/3 signaling is known to elevate the expression of ECM-remodeling proteins such as 
collagen I and tissue inhibitor of metalloproteinases 2 (TIMP2)– an important regulator of 
MMP activity [102]. However, the role of this canonical TGF-β pathway in myofibroblastic 
activation was not confirmed in vivo until last year [103]. This study demonstrated that 
cardiac fibroblast-specific Smad2/3 deletion in mice inhibits the fibrogenic gene program 
and ECM remodeling [103]. Myofibroblastic transcription can also be activated through non-
Smad pathways such as ERK and p38 [104, 105]. Revealing a crosstalk between canonical 
and non-canonical TGF-β pathways, a most recent report showed that TGF-β1 induced 
human lung fibroblast activation through the Raf1/ERK/Smad pathway [106]. Given the 
intricate TGF-β1 downstream signaling networks, the pathway(s) that mediates TGF-β1-
induced myofibroblastic activation is likely tissue/signaling context dependent [107].
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Since TGF-β1 activates intracellular signaling via TGF-β receptors, regulation of these 
receptors has profound influence on myofibroblastic activation [4].  TGF-βR endocytosis 
and degradation via clatherin-dependent or caveolin-1 dependent processes have been well 
established [108]. A relatively new thread of knowledge is that the TGF-βRI and TGF-βRII 
activities are regulated by their dissociation and association. In a recent report, whereas 
TGF-βRI was found to be selectively enriched at focal adhesions, TGF-βRII was selectively 
excluded [109]. Reduction in Rho/ROCK signaling, as mediated by decrease in cellular 
tension, diminished this segregation and allows the formation of complete TGF-βRI/TGF-βRII 
complexes. Further, the αv integrin subunit was shown to form a tension-mediated complex 
with TGF-βRI, TGF-βRII, and cofilin, although the significance of this regulation remains 
elusive. Taken together, these results suggest that the TGF-βR complex is modulated in part 
by mechanotransduction and that specific integrins, such αv – that are known to activate 
ECM-tethered TGF-β – may have multifaceted roles in the activation of TGF-β1 signaling.

Integrin signaling through focal adhesions
The ability for diverse isoforms of integrins to cluster and to mechanotransduce ECM 

mechanical, topographical, or motif-directed cues is primarily mediated by the formation 
of focal adhesions (FAs) [13, 110]. These structures were previously described as maturing 
by gaining increasing mechanical strength and α-SMA incorporation throughout the 
morphological development of myofibroblasts. Focal adhesions are dynamic structures 
known to consist of over 150 proteins including focal adhesion kinase (FAK) and Src, another 
tyrosine kinase. FAK activation is essential for mechanotransduction of integrin signaling 
during myofibroblastic activation. Activated integrins allow for autophosphorylation of 
FAK and its binding with Src, which results in mutual activation of the kinase domains of 
both molecules [111, 112]. They link clusters of integrins at the plasma membrane to the 
cytoskeleton and mechanoreceptive cytosolic signaling factors.

Focal adhesion biology is extremely complex. Focal adhesion mechanotransduction of 
myofibroblast pathways has been extensively investigated yet the inner workings of their 
subcomponents are not well understood [113]. The canonical integrin-FAK-Src signaling 
and downstream RhoA-activating pathways have been frequently reviewed [114-116]. 
Therefore, we will only highlight Hic-5, a paxillin family member that has recently garnered 
new attention as an essential component of myofibroblastic activation [117, 118]. Otherwise 
known as TGF-β1-induced transcript 1 (TGFB1I1) [119], Hic-5 is induced by TGF-β1 and 
also induces TGF-β1 transcription [120] and regulates the coupling between focal adhesion 
activities and ECM degradation [121]. The Hic-5 protein shuttles between focal adhesions and 
the nucleus [122] in a process at least partially dependent on cellular mechanical stress [123, 
124]. While knockdown of Hic-5 inhibits myofibroblastic activation, its precise regulatory 
role is only beginning to be unveiled. Recent studies show that Hic-5 transcription is directly 
regulated by and enhances myocardin-related transcription factor A (MRTF-A) nuclear 
accumulation [125], a downstream factor induced by non-canonical TGF-β1 signaling and 
mechanical stress (to be discussed later). Further, it appears that both MRTF-A and Hic-5 are 
required for the induction of α-SMA and formation of super-mature focal adhesions. MRTF-
dependent Hic-5 expression is also regulated in a Smad3-dependent manner, although 
the exact mechanism is still unclear [117]. Signaling pathways connecting Hic-5 to α-SMA 
expression have yet to be elucidated, but are likely dominated by Hic-5 synergizing with 
extracellular stress to promote RhoA activation.  Hic-5 may also affect myofibroblastic 
activation indirectly through modulating steroid receptor transcription [122, 126].

Crosstalk between focal adhesions and TGF-β signaling
The activities of integrins/focal adhesions have been shown to engage in crosstalk 

with TGF-β1 signaling. It is known that FAK-activated Src facilitates the activation 
of phosphoinositide 3-kinase (PI3K), a lipid inositol-modifying heterodimer that 
phosphorylates PIP2 into PIP3 [127] [128]. This further activates the downstream Akt1/
mTOR pathway [129-131]. The phosphatase PTEN abolishes PI3K signaling by catalyzing 
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the PIP3 conversion back to PIP2. TGF-β1-dependent alternative splicing of EDA-FN has 
been shown as dependent on the PI3K activation of Akt, which binds to the EDA-FN-inducing 
enzyme SRp40 [98]. As activated Akt1 potently induces EDA-FN production in addition to 
total FN [132], it appears possible that EDA-FN induces its own expression via FAK-PI3K-Akt 
activation mediated by the EDA/integrin interaction, thus resulting in a matrix-mediated 
positive feedback loop. While TGF-β1 modulates the PI3K-Akt pathway via FAK activation 
[133], its inhibition of PTEN has also been shown as necessary for both TGF-β1-induced 
α-SMA expression and EDA-FN production [134]. However, this interaction itself inhibits 
Smad-based TGF-β1 signaling, as decreased PTEN results in increased Smad7 which 
promotes TGF-βR degradation [22, 135].

The FAK/Src axis has also been linked to TGF-β1 signaling in stress fiber formation of 
myofibroblasts via TGF-βRs. Sequestering of Src by FAK decreases the activation of dynamin, 
a protein essential for endocytosis [136], and may hence reduce TGF-βR degradation [137]. 
Additionally, it has been shown that TGF-β1 signaling results in TGF-βR/Src-dependent 
association of RhoA and calveolin-1, activating RhoA, a necessary signaling step for TGF-
β1-induced fibronectin synthesis [138]. Another recent study has shown that Src activation 
is an essential component for facilitating the profibrotic effects of TGF-β1, including the 
expression of α-SMA and the formation of stress fibers [139].

Interestingly, TGF-β1 stimulation can robustly upregulate Pyk2 expression leading to 
EMT [140]. Since Pyk2 is an FAK homolog that enhances RhoA activation [141], it is possible 
that TGF-β1 signaling may activate RhoA in an FAK-independent manner. Independent and 
compensatory regulations of downstream RhoA effectors by TGF-β1 and FAK signaling may 
provide an explanation for the ability of either TGF-β1 or EDA-FN to fully and independently 
induce myofibroblastic activation in vivo.

Intracellular signaling

A cascade of signaling events downstream of integrin/FAK/Src involving ERK and 
MAPK pathways are known to induce myofibroblastic activation [142, 143]. Moreover, FAK 
and Src facilitate the RhoA GTPase activation by regulating guanine nucleotide exchange 
factors (GEFs) and GTPases-activating proteins (GAPs) in response to mechano-stimulation 
[144]. Updates on these pathways related to myofibroblasts have been covered by excellent 
recent reviews [143, 145, 146]. Therefore, we will focus on activated RhoA and downstream 
pathways responsible for α-SMA stress fiber production and associated nuclear regulations.

RhoA signaling in actin stress fiber formation
Rho GTPases have been shown to control the assembly of F-actin in all eukaryotic species 

examined to date. The best-characterized Rho-like proteins are RhoA, Rac1, and Cdc42. We 
will focus on RhoA because its activation is primarily mediated by mechanotransduction 
factors and is a specific requirement in the induction of α-SMA stress fiber formation in 
myofibroblastic activation [147]. RhoA activates the signaling molecules ROCK and mDia. 
ROCK phosphorylates and inactivates the myosin light chain phosphatase (MLCP) and can 
directly phosphorylate and activate the myosin light chain. Both of these ROCK actions 
facilitate the activation of non-muscle myosin II at focal adhesions [148, 149]. Additionally, 
ROCK further activates LIM kinases, which phosphorylate and inhibit the actin-cleaving 
enzyme cofilin, thereby decreasing actin degradation while increasing the torsional rigidity 
of existing actin filaments [150]. While ROCK induces stability and myosin accumulation, 
mDia acts in a VASP-dependent manner to polymerize actin and allows the formation of 
lengthy filaments [151, 152].  These molecules balance the activity of one another as mDia 
induces a Src-dependent Cas/Crk/DOCK180 cascade resulting in decreased ROCK activity 
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[153, 154]. Together, ROCK and mDia pathways interact to induce the formation of stress 
fibers via actin polymerization.

Several reports have shown that TGF-βRI phosphorylates and activates Par6. 
Subsequently, Par6 can dimerize with Smurf1, and the resulting complex can target 
RhoA at tight junctions for its ubiquitination and degradation. This process facilitates the 
dissolution of tight junctions and has been determined to be necessary for TGF-β1 induced 
EMT [155, 156]. As this process contradicts the necessity for RhoA-induced α-SMA stress 
fiber formation, the regulations of RhoA in EMT and in myofibroblastic activation are likely 
spatially and/or temporally separate processes.

MRTF-directed nuclear signaling
It has been well documented that the activation of serum response factor (SRF), a 

transcription factor, is essential for the transcription program that drives myofibroblastic 
activation [157]. RhoA activation facilitates the nuclear translocation of SRF co-activators, 
with MRTFs (A and B) being prominently important for instigating myofibroblastic 
phenotypes [158].

Factors known to directly interact with SRF include Myocardin (MyoCD), MRTFs, Elk1, 
β-catenin, YAP (Yes-activating protein)/TAZ (transcriptional co-activator with PDZ binding 
motif), and Smad3. MyoCD is an SMC and cardiac muscle specific SRF cofactor required 
for significant activation of SRF-directed transcription and is constitutively localized to the 
nucleus. Acting in a similar fashion as MyoCD, tissue ubiquitous MRTF is a cofactor for SRF 
activation. However, unlike MyoCD, MRTF is typically localized in the cytoplasm and bound 
to G-actin in an inactive state. RhoA stimulates the assembly of actin stress fibers thereby 
reducing the G-actin/F-actin ratio.  Consequently, MRTF is freed from G-actin sequestration 
and is allowed to translocate to the nucleus, where it activates SRF-mediated transcription 
of myofibroblastic factors such as α-SMA (Fig. 1). Elk1 acts as an inhibitor of MRTF, through 
direct antagonistic SRF binding or through operator binding adjacent to the SRF-binding 
CArG motif.

Recent research reveals an interplay between canonical TGF-β1 signaling and MRTF 
in mechanotransduction [147], e.g. nuclear Smad3 recruits GSK-3β to phosphorylate MRTF 
leading to subsequent ubiquitination and degradation of MRTF [159]. Regulations of MRTF 
stability also link the Wnt/β-catenin and YAP/TAZ pathways to TGF-β1 signaling in the 
nucleus, as discussed below.

MRTF-regulating nuclear factors
Wnt cytokines act canonically through the Frizzled receptor complex and activate 

the scaffolding protein Disheveled, which degrades Axin thereby inhibiting constitutive 
destruction of β-catenin, which can then translocate to the nucleus [160]. Nuclear 
translocation of β-catenin has been linked to increased expression of TGF-β1 in addition to 
α-SMA [157, 161-164].

The YAP/TAZ pathway has been recognized as sensitive to mechanotransduction. 
Inhibition of YAP/TAZ signaling blocked fibroblast-to-myofibroblast transformation and 
renal fibrosis in mice [165]. Similar to β-catenin, inhibited YAP/TAZ degradation promotes 
their translocation to the nucleus where they complex with the transcription factor TEAD to 
co-activate transcription [166-168]. There is evidence that cellular tension increases YAP/
TAZ nuclear concentrations [5]. Interestingly, while RhoA and the actin cytoskeleton are 
thought to be necessary to maintain YAP/TAZ activation, this complex does not seem to be 
directly regulated by G-actin/F-actin levels, implicating either upstream RhoA interaction or 
stress fiber interaction with an unknown mediator [169, 170].

Another pathway recently implicated in myofibroblastic activation involves zinc 
finger E-box-binding homeobox 2 (ZEB2) protein [171], which is a transcription factor 
and constitutive repressor of Meox1/2.  Reduced expression of Meox1/2 is associated with 
increased expression of EDA-FN and α-SMA during myofibroblastic activation [172].

Studies suggest that these major nuclear factors may all crosstalk with the TGF-β1/
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Smad3 pathway at the resolution of nuclear MRTF stability, which is highly regulated. While 
nuclear Smad3 has been shown to promote MRTF-A degradation via GSK-3β-mediated 
phosphorylation followed by ubiquitination, this action is inhibited by nuclear β-catenin 
[159, 160, 173]. Moreover, nuclear-localized YAP/TAZ binds MRTF-A to enhance its activity 
while down-regulating Smad3 [163, 174]. The mechanisms by which these functions occur 
have yet to be clearly addressed. Despite Smad3 nuclear inhibition of MRTF, TGF-β1 has been 
shown to increase nuclear MRTF concentration as mentioned above. Whether this TGF-β1 
action is executed via Smad or non-Smad pathways is unclear. The context-dependent role of 
TGF-β1 signaling in MRTF regulation warrants further investigation. In addition, the TGF-β1/
Smad pathway inhibitor, Ski, has been found to repress ZEB2 thereby de-repressing Meox2 
and attenuating myofibroblastic activation [175]. However, the role of Ski in connecting 
Smad and ZEB2 activity remains largely unexplored.

Epigenetic regulation
Beyond aforementioned classical pathways, interest in epigenetic regulators, including 

DNA and histone modifiers and readers of the modifications [176, 177], microRNAs [178], 
and long noncoding RNAs [179], is rapidly growing. These chromatin-associated factors exert 
profound influence on transcriptomic dynamics and cell state transition without involving 
DNA sequence changes [14]. It has been demonstrated that both genetic and pharmacological 
inhibition of DNMT (DNA methyltransferase) mitigates mouse renal myofibroblasts and 
fibrosis [180, 181]. Inhibitors of HDACs have shown anti-fibrotic effects in several mouse 
models [182]. Whereas miR29a mitigates [183], miR21 aggravates [184] TGF-β1-induced 
myofibroblastic programs, both expected as potential interventional targets [182, 185]. 
Interestingly, there is also evidence suggesting that miR29a is a possible mediator of the EDA-
FN-driven fibrosis in scleroderma [81]. More recently, the bromo and extraterminal domain 
(BET) family of epigenetic readers (binding to acetyl marks on histones) have attracted 
significant attention due to their potentially crucial role in regulating myofibroblastic 
activation [186-188]. It has been observed that pharmacological blockage of the BET family 
effectively inhibits fibrosis in the liver, kidney, and heart [187, 189-191].

How the epigenetic regulators cooperate with the aforementioned nuclear factors 
in fibrogenic pathways is an intriguing question that is soliciting growing research. As 
opposed to traditional perception that epigenetic factors regulate transcription globally, 
accumulating evidence suggests significant specificity of those regulations depending on 
cell type, extracellular cue and signaling context [192]. This feature may open a way for 
future epigenetic interventions to mitigate fibrotic progression with careful assessments of 
possible side effects [182, 190].

Other myofibroblastic regulators

Aside from SMA and EDA-FN, many other products resulting from myofibroblastic nuclear 
reprogramming in turn modulate the ECM architecture and signaling. They participate in the 
inside-out signal transmission that further accentuate myofibroblastic activation. Given a 
large number of those products, we will only highlight a few that have recently re-energized 
myofibroblast research.

Hyaluronic acid
Evidence suggests that the ECM glycosaminoglycan hyaluronic acid (HA) and its receptor 

CD-44 are involved in myofibroblastic activation [193]. It has been shown that high molecular 
weight HA inhibits fibrotic pathways but low molecular weight HA appears to induce them 
[194]. Interestingly, naked mole rats express unique HA molecules that are five times the 
length of those in humans or mice, and they have seven-fold longer domestic lifespan than 
mice [195]. While the large HA confers cancer resistance in naked mole rats, the relationship 
between unique HA molecules and lifespan is not clear [196]. High molecular weight HA has 
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been shown to induce CD-44-assisted translocation of activated TGF-βR to caveolin-1 lipid 
rafts, facilitating the previously discussed Smurf1/Smad7-mediated TGF-βR degradation 
[197]. However, inhibition of HA synthase (HAS) also antagonizes TGF-β1-induced 
expression of α-SMA [198]. Moreover, TGF-β1-mediated HAS2 activation results in some 
aspects of myofibroblastic activation [193]. These results seem to contradict the previously 
observed inhibition of myofibroblasts by the HA-CD-44 signaling [197]. Alternatively, as a 
viscous molecule, HA may also regulate myofibroblastic activation through its interactions 
with the ECM [199].

Matricellular proteins
Matricellular proteins reside in the ECM but do not serve a primary structural role 

[200].  They modulate the activities of proteases, cytokines/growth factors, and cell-surface 
receptors [201]. Regarded as a new myofibroblast marker in lineage-tracing studies [3], 
periostin prevents ventricular rupture but also contributes to myofibroblast activation 
and cardiac fibrosis [202, 203].  Secreted modular calcium-binding protein 2 (SMOC2) is a 
member of the secreted protein acidic and rich in cysteine (SPARC) family, and was recently 
found to promote myofibroblast-mediated fibrosis in the mouse retina [204].  Syndecans 
comprise a family of transmembrane proteins, their extracellular domains interacting with 
the ECM. Whereas beneficial effects of over-expressing Syndecan-4 have been found in 
preventing mouse lung [205] and cardiac [206] fibroblast-to-myofibroblast transition and 
subsequent fibrosis, opposite effects in mouse renal fibrosis have also been reported [207], 
likely involving its ectodomain shedding [208]. While more detailed mechanistic studies 
are required, these and other new findings exhibit an attractive potential of matricellular 
proteins as new interventional targets in the battle against fibrosis.

Conclusion

TGF-β1 signaling is generally regarded as the most important activator of myofibroblasts 
[6, 42, 43]. Latent TGF-β1 is stored in the ECM, and its release and binding to TGF-βRs 
transmit ECM signaling cues into the cell. This incites transcriptional and posttranscriptional 
reprograming (e.g. EDA-FN splicing) and cytosolic remodeling (e.g. RhoA activation and stress 
fiber assembly). These orchestrated events in turn lead to increased ECM accumulation and 
mechano-responsive activities, and ultimately, further TGF-β1 activation via the integrin/
ECM interaction network. Therefore, TGF-β1-activated pathways in conjunction with 
mechanotransduction constitute outside-in and inside-out signaling loops that potently 
propagate myofibroblastic activation. As myofibroblasts mediate fibrosis in a broad range of 
pathologies, methods to break these vicious cycles may result in viable therapeutic options. 
We have therefore reviewed recent literature on myofibroblastic signaling mechanisms with 
a primary focus on TGF-β1 and associated pathways in the context of ECM/cell signaling 
integration. While studies have revealed several ECM-cell-ECM and intracellular positive 
feedback loops, antagonizing mechanisms have also been noted.  In the myofibroblastic 
intracellular signaling network, RhoA is a cytosolic hub protein that perpetuates α-SMA 
stress fibers. This RhoA effect is converted into transcriptional reprogramming via nuclear 
translocation of MRTF-A, another hub protein that integrates the modulations from other 
nuclear factors including Smad3, β-catenin, and YAP/TAZ. Encouraging therapeutic progress 
has recently been achieved in preclinical models by targeting the major myofibroblast 
pathways to ameliorate fibrosis [10, 13, 17, 41, 57, 209]. More in-depth investigations into the 
myofibroblastogenic mechanisms in vitro and in vivo are required. New knowledge should 
help create effective anti-fibrotic therapies by precisely targeting the signaling vicious cycles 
that are propagated by defined myofibroblast or precursor populations.
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