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Tests based on the Classical Test Theory often use the standard error of measurement

(SEm) as an expression of (un)certainty in test results. Although by convention a

single SEm is calculated for all examinees, it is also possible to (1) estimate a

person-specific SEm for every examinee separately or (2) a conditional SEm for groups of

comparable examinees. The choice for either of these SEms depends on their underlying

assumptions and the trade-off between their unbiasedness and estimation variance.

These underlying assumptions are discussed in the present article, together with a

mathematical expression of the bias and estimation variance of each of the SEms. Using

a simulation study, we furthermore show how characteristics of the test situation (i.e.,

test length, number of items, number of parallel test parts, overall reliability, relationship

between “true” score and true (un)certainty in test results and rounding/truncation)

influence the SEm-estimates and impact our choice for one of the SEms. Following

the results of the simulation study, especially rounding appears to hugely affect the

person-specific and—to a lesser extent—the conditional SEm. Therefore, when a test

is small and an examinee is only tested once or a few times, it is safer to opt for a single

SEm. Overall, a conditional SEm based on coarse grouping appears to be a suitable

compromise between a stable, but strict estimate (like the single SEm) and a lenient, but

highly variable estimate (like the person-specific SEm). More practical recommendations

can be found at the end of the article.

Keywords: standard error of measurement, classical test theory, intra-individual variation, conditional standard

error of measurement, parallel test parts

INTRODUCTION

Within the Classical Test Theory (CTT), the Standard Error of measurement (SEm; [1]) is often
used as an expression of (un)certainty of test results in education, psychological assessment and
health related research. Tests based on CTT usually report the traditional “single” SEm, which
briefly works as follows. The test is administered once to a group of persons from the desired
population (i.e., the “norm population”) and one CTT-based SEm is estimated for all future
examinees, hence the term “single” [1–4]. Another possibility is the estimation of a person-specific
SEm, which is calculated—as the name implies—for every examinee separately. This person-specific
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SEm is usually seen as an intermediate step in the estimation
of the conditional SEm (see [5]), but as we show it can also be
used on its own. When the expected value is taken of the person-
specific SEm over all examinees with the same (expected) “true”
test score, it yields a SEm for every group of examinees separately
called the conditional SEm (see, for instance, [5]).

The choice for either of the three SEms depends on the
assumptions that each of these SEms make about measurement
(un)certainty. The single SEm, for instance, can only be used
when two strict assumptions are met [6]. First, all persons must
be measured with the same accuracy; i.e., the measurement
error variance must be constant. Second, the person’s intra-
individual variation in measurements must equal the inter-
individual variation in measurement of the norm-population
examinees; i.e., intra-individual variation and inter-individual
variation must be interchangeable [7]. Multiple authors have
questioned the reasonableness of these assumptions. Sijtsma [8],
for instance, writes: “. . . there is no reason whatsoever to assume
that the propensity distributions of different persons must be
identical to one another and to the between-person distribution
based on single-administration data” (p. 118). With “propensity
distribution” Sijtsma [8] refers to the hypothetical distribution
of repeated measurements of single examinees. When picturing
a class of—in many aspects—different examinees, it is hard to
imagine that the test result of each of these examinees is governed
by the same underlying propensity distribution. Furthermore,
it seems unlikely that these propensity distributions equal an
aggregated, between-person distribution calculated on the basis
of a single test take. Molenaar [6] concludes: “(CTT) gives
rise to serious questions regarding its applicability to individual
assessment” (p. 203, also see [7]).

The two assumptions are relaxed when we move from the
single to the conditional SEm. Instead of constant measurement
error variance, the conditional SEm is based on the more lenient
assumption of homogeneous measurement error variance (see
[9]). This assumption states that measurement error variance is
constant conditional on “true” test score. Thus, measurement
error variance is only assumed constant for examinees with
the same, underlying “true” test score. The same holds for
the second assumption; only within a group of examinees
with the same “true” test score, intra-individual variation
and inter-individual variation in measurement are assumed
interchangeable. Finally, a move from the conditional to the
person-specific SEm leads to a drop of both assumptions
altogether.

Based on the assumptions above, one might be inclined
to opt for a conditional SEm or even for a person-specific
one. However, there is no free lunch. The increasingly lenient
assumptions with respect to measurement (un)certainty are
accompanied by increasingly stricter assumptions with respect
to the structure of a test and its items (we illustrate this in the
next sections). Furthermore, there is a trade-off between the
unbiasedness of SEm-estimates and their estimation variability.
For instance, if examinees have their own unique measurement
(un)certainty, the person-specific SEm will provide us with an
unbiased estimate at the cost of being the most variable estimate
of SEm.

Conventionally, CTT test makers and test users have “blindly”
adopted the single SEm for individual inferences. We propose
to not base this decision on convention, but on a deliberate
consideration of characteristics of the test, its norm population
and assumptions one is willing to make and their influence
on the trade-off between unbiasedness and estimation variance.
To aid this deliberate consideration, this paper first discusses
the Classical Test Theory and how the single SEm, the person-
specific SEm and the conditional SEm fit in this framework.
In this discussion, differences in the estimation of the three
SEms are shown and underlying assumptions are highlighted.
Then, we zoom in on the trade-off between unbiasedness and
estimation variance of the three SEms, which is followed by a
simulation study. In this simulation study, we investigate how
characteristics of the test and its norm population (i.e., number of
repeated test takes, number of items, overall reliability, divisibility
in parallel test parts, anticipated relationship between true test
score and SEm andwhether the scores are continuous or rounded
and truncated) influence the trade-off between unbiasedness and
estimation variance. Based on this simulation study, we end with
a set of practical recommendations when to use each of the SEms.

CLASSICAL TEST THEORY

Throughout this paper, we built on the ideas and notation of
Classical Test Theory1 (CTT; [1–4]). CTT comprises a set of
assumptions and conceptualizations that make it possible to
model measurement error [4, 11]. In this section, we discuss
the fundamentals of CTT. In the next section, we discuss how
respectively the single Standard Error of measurement (SEm), the
person-specific SEm and the conditional SEm fit within this CTT
framework.

In essence, CTT assumes that every person has a “true” overall
test score. This “true” overall test score is assumed to be time
invariant. The difference between the fixed “true” score and
the score obtained on a measurement is considered random
measurement error:

egi = τi − xgi. (1)

In Equation 1, egi denotes person’s i measurement error on
measurement occasion g. τi refers to the person’s “true”, overall
test score and xgi to person’s i obtained score on measurement
occasion g. For this equation to hold, CTT assumes that person i
is part of a well-defined population of persons ℘ (i ∈ ℘) and that
the specific test, let’s call this test a, is part of a well-defined set of
possible testsR (a ∈ R).

Assume we can repeat the measurement of person i with test
a many times independently. In that case, the random variable
E∗i would contain all measurement errors egi of person i over
G repeated measurements and the random variable X∗i would
contain all observed scores xgi of person i over G repeated
measurements. Note the replacement of g with an asterisk to

1Note that over time, researchers have extended and revised the CTT-model for

different purposes (see [10]). Here, we only discuss the most basic and common

CTT-model.
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denote random measurements. τi in Equation 1 can then be
conceptualized as the expected value of X∗i:

τi = Ei[X∗i]. (2)

Since the expected value of xgi equals τi, the expected value of E∗i

is zero:

Ei[E∗i] = 0, (3)

where E∗i is expected to be normally distributed with finite
variance σ 2(E∗i):

2

E∗i ∼ N(0, σ 2(E∗i)), (4)

where σ 2(E∗i) here refers to intra-individual variation. Although
Equations 1–4 are useful for the conceptualization of the
conditional and the person-specific standard error of
measurement later, they are not generally the focus of CTT
[9]. Rather, CTT shifts the focus from the repeated measurement
of a single, specific examinee to the single measurement of
repeatedly, randomly selected examinees [1, 12]. Given that
Equation 1 holds for a specific examinee i, it also holds for any
randomly selected examinee. Therefore, if we denote the error
random variable over randomly selected examinees by Eg∗ , the
true score random variable by T∗ and the observed score random
variable by Xg∗ ,

Eg∗ = T∗ − Xg∗ (5)

in ℘ or any subpopulation of ℘ (note the substitution of i by ∗ to
denote randomly selected examinees). Again, Eg∗ is expected to
be normally distributed with finite variance σ 2(Eg∗ ):

Eg∗ ∼ N(0, σ 2(Eg∗ )), (6)

where σ 2(Eg∗ ) refers to inter-individual variation. As we explain
in the coming sections, σ 2(Eg∗ ) in Equation 6 forms the basis for
the single SEm while σ 2(E∗i) from Equation 4 is crucial to the
conditional and person-specific SEm.

SINGLE STANDARD ERROR OF
MEASUREMENT

Definition
The single standard error of measurement, abbreviated here

as single SEm, is defined as
√

σ 2(Eg∗ ); the square root of the

variance in measurement errors of randomly selected examinees
(see Equation 6). Because of the linear relationship in Equation
5 and zero correlation between Eg∗ and T∗ , the variance in
measurement errors of randomly selected examinees is simply
the difference between the total variation in observed scores and
true-score variance (for proof see [9]):

σ 2(Eg∗ ) = σ 2(Xg∗ )− σ 2(T∗ ). (7)

2Note that there are also CTT-models in which different distributions are

considered such as the binomial and beta-binomial (e.g., [13]).

Estimation
As mentioned in the introduction, the single SEm is estimated
based on a norm population. Since this norm population is
only tested once, the true-score variance σ 2(T∗ ) is unknown
and the single SEm cannot be estimated directly using Equation

7. In order to estimate σ 2(Eg∗ ), and eventually
√

σ 2(Eg∗ ), the

unobservable quantity σ 2(T∗ ) must be rewritten in a potentially
observable quantity. CTT does this by splitting the single
measurement of the norm population into two parallel parts.
“Parallel” means that the items and/or scores in the parts have
the same underlying true score variable T∗ and experimentally
independent errors with equal variance σ 2(Eg∗ ) in ℘ and every
subpopulation of ℘ (see definition 2.13.4, [1]). “Experimentally
independent” (definition 2.10.1; [1]) implies that the correlation
between errors of the parts equals zero. From a practical point
of view, parallel test parts can be constructed by matching
item content and item characteristics over parts. Examples of
such item characteristics are item difficulty—the proportion of
persons of the norm population answering the item correctly—
and the reliability index, which is the point-biserial correlation
between item and total score multiplied by the item standard
deviation. Thus, even though items in a test are likely to
differ in terms of difficulty and reliability, the idea is to group
them in such a way that the groups of items (the parallel test
parts) are comparable. An example of an algorithm capable of
grouping items in an optimal way can be found in Sanders
and Verschoor [14]. In the remainder of this article, we use
K to denote the number of parallel test parts and k to refer
to a specific parallel part. Multiple coefficients exist based on
the correlation between K parallel measurements, such as the
Spearman-Brown split half coefficient [15, 16]. These coefficients,
here denoted by ρXX′ , are meant to estimate the reliability of

the test, i.e., the ratio
σ 2(T∗ )
σ 2(Xg∗ )

(see [1]) adjusting for the change

in test length and hence the single SEm can be estimated
using:

σ 2(Eg∗ ) = σ 2(Xg∗ )− σ 2(T∗ ) = σ 2(Xg∗ )− σ 2(Xg∗ )
σ 2(T∗ )

σ 2(Xg∗ )

= σ 2(Xg∗ )(1− ρXX′ ). (8)

In the remainder, we will use the Spearman-Brown split
half coefficient (Equation 8). Note, however, that alternatives
exist for the estimation of reliability that are based on
more lenient assumptions of parallelism. Test halves can, for
instance, be tau-equivalent, meaning that the true scores in
both test parts are allowed to differ by a constant (equal
for all examinees) and that their error variances are allowed
to differ as well [17, 18] (also see [19] for an overview of
reliability coefficients and their assumptions of parallelism).
From a practical point of view, items in tau-equivalent
test parts do not have to be matched as strictly on item
characteristics such as item difficulty as is the case for parallel test
parts.
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PERSON-SPECIFIC STANDARD ERROR OF
MEASUREMENT

Definition
Whereas the single SEm is based on the variance in measurement
errors of randomly selected examinees σ 2(Eg∗ ), see Equation

6, the person-specific SEm can be expressed as
√

σ 2(E∗i); the
square root of the variance in person i’s measurement errors
over repeated measurements (see Equation 4). As shown by Lord
and Novick [1], the single SEm and the person-specific SEm are
related to one another:

σ 2(Eg∗ ) = E[σ 2(E∗i)], (9)

indicating that the between person variance on which the
single SEm is based, is equal to the expected value of the
within person error variance on which the person-specific error
variance is based ([1]; p. 35; for a graphical illustration see our

Figure 1). In other words, the single SEm
√

σ 2(Eg∗ ) is the mean

standard error of measurement in ℘ [1]. Estimating
√

σ 2(E∗i)
for every person separately thus leads to a correct estimate of
√

σ 2(Eg∗ ) on average while allowing the possibility that some

persons’ measurements are inherently more consistent than
others. Equation 9 shows that it is possible to aggregate σ 2(E∗i)
on the level of specific examinees to reach an estimate of σ 2(Eg∗ )
on a population level, but not the other way around. Thus,
if we want to use σ 2(Eg∗ ), on which the single SEm is based,
to make inferences on an individual level, we need to assume
that (1) every examinee has the same error variance σ 2(E∗i)
and that this error variance equals σ 2(Eg∗ ); the assumptions
of constant measurement error and interchangeability of
intra-individual and inter-individual variation discussed
previously.

Estimation
Just as with the single SEm, the estimation of the person-specific
SEm is based on splitting the test in parallel test parts. When a
test is administered multiple times, the person-specific SEm can
be estimated based on the variances within parallel test parts,

σ 2(X∗ki), operationalized as

G
∑

g=1

(

xgki−x̄∗ki
)2

G−1 where x̄∗ki denotes the
mean of the kth parallel test part. Since the overall test score xgi is
the sum over (let’s for simplicity assume unit-weighted) scores

FIGURE 1 | Illustration of the relationship between the single, conditional and person-specific standard error of measurement. The rows symbolize examinees N and

the columns parallel parts K. The different colors indicate different test scores for the K parallel parts. E[] refers to the expectation over the variances between the

brackets.
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for each of the parallel parts, the error variance of xgi can be
expressed as [1]:

σ 2 (E∗i) = σ 2 (X∗i) =
∑K

k=1
σ 2 (X∗ki)

+ 2
∑

k<p
σ 2(X∗ki, X∗pi) (10a)

σ 2 (E∗i) = σ 2 (X∗i) =
∑K

k=1
σ 2 (X∗ki) . (10b)

In other words, the variance of the composite test score xgi,
and thus σ 2(E∗i), is a function of the (unit-weighted) within
variances of the parallel parts and their covariance. Since the
parallel parts are experimentally independent, these covariances
equal zero (Equation 10b, see Hu et al. [20] for the estimation
of the person-specific SEm in the context of many repeated
measurements).

As stressed in Sijtsma [8], there generally is a “. . . practical
impossibility to administer the same test to the same individuals
repeatedly – even twice is nearly impossible” (p. 117). Therefore,
Equation 10 must be modified to accommodate a situation with
only one test take. This is done by replacing the within parallel
parts variances, σ 2 (X∗ki), with the variance between parallel
parts, σ 2

(

Xg∗i

)

:

σ 2 (E∗i) = σ 2 (X∗i) =
∑K

k=1
σ 2

(

Xg∗i

)

= K σ 2
(

Xg∗i

)

. (11)

This replacement is justified since, if we operationalize the

variance between parallel parts as

K
∑

k=1

(

xgki−x̄g∗i
)2

K−1 where x̄g∗i
denotes the mean of the gth measurement, the expected value
of this between variance equals the expected value of the parallel
parts’ within variance, calculated across repeated measures:

Ei
[

σ 2 (X∗ki)
]

= Ei
[

σ 2
(

Xg∗i

)]

(12)

The proof for this is straightforward:

Ei
[

Kσ 2(Xg∗i)
]

= KEi











K
∑

k=1

(

xgki − xg∗i
)2

K − 1











= K

G
∑

g=1

K
∑

k=1

(

xgki−xg∗i
)2

K−1

G− 1

and

Ei
[

Kσ 2(X∗ki)
]

= KEi











G
∑

g=1

(

xgki − x∗ki
)2

G− 1











= K

K
∑

k=1

G
∑

g=1

(

xgki−x∗ki
)2

G−1

K − 1

In other words, the expected variance between andwithin parallel
parts is the same�.

For normally distributed parallel measurements, the between
variance σ 2(Xg∗i) is known to follow a scaled chi-squared
distribution (see [21])3. Therefore, the between variance σ 2(X1∗i)
at a specific test take can also be perceived as a random sample of
the scaled chi-squared distribution of a fixed, unknown σ 2(E∗i)
of person i.

CONDITIONAL STANDARD ERROR OF
MEASUREMENT

Definition
Just as the person-specific SEm, the conditional SEm is based
on Equation 4. This conditional SEm can simply be expressed
as the expected value of the person-specific SEms of examinees
belonging to the same group j:

σi∈j(E∗i) =
√

Ei∈j [σ 2(E∗i)] . (13)

Ideally, every examinee in group j has the same “true” test
score. Since examinee’s “true” scores are unknown, they are
typically grouped according to their total test scores4. Building
on Equation 9, the relationship between the conditional and the
single SEm can be described as follows (for a graphical illustration
see Figure 1):

σ 2(Eg∗ ) = E [σ 2
i∈j(E∗i)], (14)

that is, when we take the expected value over all the error
variances in groups j, we find the between person variance
on which the single SEm is based. Estimating σ 2

i∈j(E∗i) for

every group separately thus leads to a correct mean estimate of
σ 2(Eg∗ ) while allowing the possibility that low-scoring, average-
scoring and/or high-scoring examinees have measurements that
are inherently more or less consistent. Equation 13 shows that
whereas the conditional SEm can be estimated by aggregating
the person-specific SEms, it does not work the other way around.
Thus, if we want to use σ 2

i∈j(E∗i), on which the conditional SEm

is based, to make inferences on an individual level, we need to
assume that every examinee within group j has the same error
variance; this is the homogeneous measurement error variance
assumption discussed previously.

Estimation
Many procedures have been proposed in the literature to estimate
the conditional SEm, including but not restricted to the binomial
procedure [23], the compound binomial procedure [23] the
Feldt-Qualls procedure ([25]; for a comparison of this procedure
and the procedures previously mentioned see [26]), the item

3The rationale is as follows. Since parallel measurements have experimentally

independent errors, the joint distribution function over all (parallel) parts factors

into the score distributions for each of the parallel parts separately ([1]; definition

2.10.1). Sampling scores one by one from their K respective distributions is thus

stochastically the same as sampling from the joint distribution at once. For normal

distributions such as this joint distribution, it is known by Cochran’s theorem that

the variance σ 2(Xg∗ i) follows a scaled chi-squared distribution.
4Grouping by total score instead of “true” score introduces some bias, depending

on the reliability of test. See [22].
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response theory procedure by Wang et al. [27] and the bootstrap
procedure advocated by Colton et al. [28]. In the present
article, we focus on the Feldt and Qualls [5] procedure, since
this procedure is very similar to the procedure for estimating
the person-specific SEm discussed previously. The Feldt and
Qualls [5] procedure extends the original method proposed by
Thorndike [29], where a test is split in two parallel halves.
Thorndike [29] showed that the difference between two half-
test scores equals the difference between their two errors (up
to a constant, when the half tests are essentially tau-equivalent
instead of classically parallel). With the assumption that the two
errors are independent, the variance of the difference between the
two half-test scores equals the error variance we are interested
in. Feldt and Qualls [5] generalize this finding of Thorndike
[29] to a situation with more than two parallel (or essentially
tau-equivalent) parts:

σ 2 (E∗i) = K

[

∑K
k=1

(

xgki − xg∗i
)2

K − 1

]

, (15)

where K in Equation 15 corrects for test length. That is, since the
division of tests in parallel parts shortens the test by a factor K,
we multiply by K to obtain an estimate for tests with the original
test length [5]. Note that Equation 15 is equal to Equation 11
discussed earlier. To obtain the conditional SEm, the expected
value needs to be taken over the result in Equation 15 for all
examinees in a certain group j. The person-specific SEm can thus
also be perceived as a special case of the conditional SEm when
nj = 1:

σ 2
i∈j(E∗i) = Ei∈j

〈

K

[

∑K
k=1

(

xgki − xg∗i
)2

K − 1

]〉

. (16)

When the parts are (essentially) tau-equivalent instead of
classically parallel, Equation 15 can be replaced with:

σ 2 (E∗i) = K

[

∑K
k=1

([

xgki − xg∗i
]

−
[

xg∗i − xg∗∗
])2

K − 1

]

(17)

where the part
[

xg∗i − xg∗∗
]

accounts for differences in means of
the parallel parts (xg∗∗ denotes the “grand” mean over all parallel
test parts) for the person-specific SEm with nj = 1 and Equation
16 can be replaced with:

σ 2
i∈j(E∗i) = Ei∈j

〈

K

[

∑K
k=1

([

Xgki − Xg∗i

]

−
[

Xg∗i − Xg∗∗
])2

K − 1

]〉

(18)
for the conditional SEm with nj > 1.

BIAS-VARIANCE TRADE-OFF

Ultimately, we want the estimate of SEm to be as reflective of
the examinee’s error variation as possible. Keeping in mind that
the examinee is tested once, there are two factors that influence
the adequacy of the estimated SEm for the examinee: (1) the
(un)biasedness of the estimate and (2) its estimation variance.

Variance
Looking at the variance first, the following (in)equalities are at
play:

Rule1. variancesingle ≤ varianceconditional ≤ varianceperson−specific

The justification for this rule is as follows. As discussed before,
the variance between parallel parts of a person follows a scaled
chi-squared distribution. The variance of this distribution equals:

σ 2
(

σ 2
(

Xg∗i

))

=
2
(

Ei
[

σ 2
(

Xg∗i

)])2

K − 1
. (19)

Since the estimate of the person-specific error variance σ 2 (E∗i)

simply follows by multiplying σ 2(Xg∗i) by K (see Equation 11),
the estimation variance of σ 2 (E∗i) is:

σ 2
(

σ 2 (E∗i)
)

= K2σ 2
(

σ 2
(

Xg∗i

))

(20)

(see Feldt and Qualls [5]). By rules of error propagation, we
know that the variance of nj independent examinees equals
∑

i σ
2(σ 2(E∗ i))
nj2

and thus the variance of the conditional SEm can

be expressed as:

σ 2
(

σ 2
i∈j(E∗i)

)

=

∑

i K
2σ 2

(

σ 2
(

Xg∗i

))

nj2
. (21)

The variance of the conditional SEm thus also depends on
the size of groups the J groups. Finally, since the single error
variance σ 2

(

Eg∗
)

= E [σ 2(E∗i)] is usually computed for all future
examinees, it is a constant and therefore its variance equals zero:

σ 2
(

σ 2
(

Eg∗
))

= 0. (22)

Comparing Equations 21 and 22, we see that Equation 21 can only
equal Equation 22 when the numerator of Equation 21 results
in zero. Since K2 cannot equal zero (K has to be at least 2),
the expression σ 2

(

σ 2
(

Xg∗i

))

has to become zero, which means
that there is no variation in the between variances σ 2

(

Xg∗i

)

.
When this is true, also Equation 20 results in zero, explaining
why the conditional and person-specific estimation variances are
larger or equal to the estimation variance of the single SEm. On
top of the situation in which σ 2

(

σ 2
(

Xg∗i

))

= 0, Equation 20
and 21 result in the same value when nj = 1 (in this case,
Equation 21 simplifies into Equation 20). In other instances, the
person-specific SEm always exceeds the estimation variance of
the conditional SEm.

Figure 2 illustrates Rule 1 graphically (see the R file
“Figure 2.R” on the OSF page https://osf.io/6km3z/ for detailed
information about this plot). The flat, mint colored surface shows
the estimation variance of the single SEm and the tilted vertical
surface illustrates the estimation variance of the person-specific
SEm. The darkest colored surface belongs to the estimation
variance of the conditional SEm. All three surfaces touch when
there is no variation in test score variance over test takes (left
side x-axis). The surface of the person-specific SEm and the
conditional SEm also touch when nj equals one (right side of
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FIGURE 2 | Relationship between the estimation variance of the person-specific -, conditional,- and single error variance, for a fictional examinee i.

the y-axis). Other than at these two touching points, the dark-
colored surface lies above the mint-colored surface, implying
that the estimation variance of the conditional SEm exceeds the
estimation variance of the single SEm, whereas the surface of
the person-specific SEm consistently lies above the surface of the
conditional SEm.

Bias
Turning to the (un)biasedness, the following rule holds:

Rule2. biassingle , biasconditional ≥ biasperson−specific

The rationale for this rule is as follows. Using Equations 11 and
12, it is easy to show that the expected value of the estimator

σ̂ 2 (E∗i) equals σ 2 (E∗i):

Ei
̂

[

σ 2 (E∗i)
]

= K Ei
[

σ 2
(

Xg∗i

)]

= K Ei
[

σ 2 (X∗ki)
]

= σ 2 (E∗i) .
(23)

Thus, in the long run the error variance of examinee i is correctly

estimated. Other estimators are either as unbiased as σ̂ 2 (E∗i) or
more biased. Using Equation 8, we see that the expected value

of the estimator ̂σ 2
(

Eg∗
)

equals σ 2
(

Eg∗
)

. As Equation 9 shows,

̂σ 2
(

Eg∗
)

is only an unbiased estimator for σ 2 (E∗i) when the
σ 2 (E∗i) of examinee i equals E

[

σ 2 (E∗i)
]

over all examinees in

℘. This is either the case when all examinees have the same
error variance or when examinee i happens to have an error
variance that equals the mean error variance of the population.
Finally, based on Equation 16, the expected value of the estimator
̂σ 2
i∈j (E∗i) equals σ 2

i∈j (E∗i) when the grouping is based on true

scores5. ̂σ 2
i∈j (E∗i) is thus only an unbiased estimator for σ 2 (E∗i)

when the σ 2 (E∗i) of examinee i equals Ei∈j
[

σ 2 (E∗i)
]

over
all examinees in group j. Again, this occurs when either all
examinees in group j have the same error variance or when the
error variance of examinee i equals the mean error variance of
the group. It is impossible to know whether σ 2 (E∗i) of examinee

i happens to be closer to the population mean ̂σ 2
(

Eg∗
)

or the

group mean ̂σ 2
i∈j (E∗i) and therefore the bias for the single- and

conditional SEm are separated by a comma in Rule 2. Figure 3
illustrates Rule 2 graphically (for more detailed information on
how Figure 3 was constructed, see the R file “Figure 3.R” on
OSF page https://osf.io/6km3z/). The x-axes vary the true error
variance of fictional examinee i and the y-axes the variation in
true error variances within group j (nj = 100) where examinee
i belongs to. Figure 3A illustrates the bias (estimate of error
variance–true error variance) of the single-, conditional-, and

5Some bias will be introduced in the conditional SEm resulting from basing the

groups j on observed rather than true test scores (see [22]).
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FIGURE 3 | Relationship between the bias of the person-specific -, conditional-, and single SEm variance, for a fictional examinee i. When the error variance of

examinee i equals the average error variance in group j (A), both the person-specific SEm and the conditional SEm provide an unbiased estimate. When this is not the

case (B,C), the bias of the conditional SEm increases rapidly, with increasing variance over the error variances within group j (y-axis). The single SEm (tilted vertical

surface) is only unbiased when the error variance of the examinee (x-axis) coincides with the average population error variance (visible in A–C). To aid interpretation,

different rotations of the A–C figure are included at the right side.
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person-specific SEm over 10,000 fictional test takes when σ 2 (E∗i)

of examinee i equals the group mean Ei∈j
[

σ 2 (E∗i)
]

, Figure 3B
the bias when σ 2 (E∗i) is one standard deviation removed from
Ei∈j

[

σ 2 (E∗i)
]

and Figure 3C the bias when σ 2 (E∗i) is two
standard deviations removed from Ei∈j

[

σ 2 (E∗i)
]

. The (almost)
flat surface for the person-specific SEm in all three plots illustrates
that the person-specific SEm is unbiased regardless of the true
error variance and variation of true error variances in group j.
The tilted vertical surface for the single SEm shows that this

SEm is only unbiased when σ 2 (E∗i) collides with the ̂σ 2
(

Eg∗
)

.
As the first plot shows, when σ 2 (E∗i) equals Ei∈j

[

σ 2 (E∗i)
]

, both
the conditional and person-specific SEm are unbiased (although
the surface of the conditional SEm is “bumpier” due to the
introduction of variation over the 100 group members). When
that is not the case (second and third plot), bias quickly rises
when the variance in personal error variances within group j
increases.

Although Rules 1 and 2 and Figures 2, 3 provide insight
into the estimation variance and (un)biasedness of the three
estimators, it is hard to choose one of the three looking at these
two figures separately. Ideally, we would want to choose between
the person-specific-, conditional–and single SEm based on the
(un)biasedness and variance simultaneously. A measure which
naturally fits the need to balance bias and estimation variance is
the mean squared error (MSE), which can be expressed as the
sum of the bias squared and the estimation variance. In the next
sections, we show how to use the MSE to choose between the
single, conditional and person-specific SEm in different testing
situations.

SIMULATION

Simulation Design
To compare the single, conditional and person-specific SEm,
we simulated item and test scores for 1,000 examinees and
10,000 repeated test takes (see the annotated R file on the OSF
page https://osf.io/6km3z/). Six characteristics of the test and
the norm population were varied: (1) whether the parallel test
scores are continuous and unrestricted or rounded to integers
and truncated, (2) the number of repeated test takes, (3) the
number of items of the test, (4) the number of parallel test parts
K, (5) the relationship between the 1,000 “true” examinee scores
and their error variances and (6) the overall reliability of the
test. Figure 4 summarizes these six characteristics. Each of these
characteristics is also briefly discussed below.

(1) Continuous vs. rounded and truncated scores. As can be seen
in Figure 4, all of the other five characteristics are varied for
a scenario with continuous item-, parallel-, and total scores
and a scenario with rounded and truncated scores. In the
“rounded and truncated” scenario (see lower part Figure 4),
each item can be answered correctly (item score = 1) or
incorrectly (item score = 0), leading to a total score with a
possible range between 0 (every item answered incorrectly)
and the maximum number of items considered (every item
answered correctly). In the “continuous” scenario (see upper
part Figure 4), the item- and total scores are on a similar

scale as the “rounded and truncated” ones, but these scores
are not restricted or rounded. Note that the Classical Test
Theory and the formulas for the person-specific SEm, the
conditional SEm and the single SEm discussed previously
are all based on this continuous scenario. The “rounded
and truncated” scenario, however, provides a more realistic
reflection of test practice.

(2) Number of repeated test takes. In this simulation study, we
simulate 10,000 repeated test takes for each of the examinees.
This large number makes it possible to estimate the long run
bias, estimation variance and MSE. In practice, however, we
do not have 10,000 test takes per examinees and therefore
we will also look at fewer test takes (e.g., 1, 2, 3, 4, 5, 10, 25,
50, and 500) to see how accurate SEms estimates are in the
short run.

(3) Number of items. Respectively 12, 24, and 48 items are used
in this simulation study. Based on previous studies (see,
for instance, [5]) 12 items can be perceived as a small test,
whereas between 24 and 48 items can be seen as a realistic
test size. To keep the simulation results comparable over the
varying number of items, for the “rounded and truncated”
scenario the relative proportion of items correct of the 1,000
examinees for a certain test take were kept equal (i.e., if
person i has 6 items correct on a 12-item test at test take j, he
has 12 items correct on a 24-item test at the same test take,
et cetera). For the “continuous” scenario, the average item
score was kept the same for the varying number of items.

(4) Number of parallel test parts. To compare the effectiveness of
various partitions, the 12, 24, and 48 items were respectively
divided in parallel parts of K = 2, K = 4, K = 6, and K =

12. For the tests with items > 12, we additionally added
K = 24 (24- and 48-item test) and K = 48 (48-item test).
By keeping K fixed over the different number of items, the
number of items per parallel test part varies. For K = 2, for
instance, there are respectively 6, 12, and 24 items in each of
the 2 parallel test parts, depending on the number of items
in the test. The simulation of the parallel test parts is based
on the premise that division of the test in parallel test parts
is possible (something that should be checked by the test
maker or user in a realistic test situation). On the item level,
we thus implicitly assume that the mean item difficulty of
the items in every parallel test part is the same. Note that
this assumption is harder to fulfill when there are few items
in a parallel test part.

(5) Relationship true score and error variance. The choice for
either the single-, conditional-, or person-specific SEm
also depends on the anticipated relationship between
examinees’ true scores and their error variance. Users of
the conditional SEm, for instance, assume that there is a
relationship between true score and error variance whereas
such an assumption is not (necessarily) considered when
opting for the single SEm or the person-specific SEm. In
this simulation study we investigate the influence of four
different relationships between true score and error variance,
which are all depicted in Figure 5.

The relationships in Figure 5 are all based on the
“continuous” scenario. Thus, these relationships show what
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FIGURE 4 | Schematic overview of the simulation design. The characteristics number of repeated test takes (2), number of items (3), number of parallel test parts K

(4), relationship between “true” test score and error variance (5), and overall test reliability (6) are varied for both the scenario with continuous test scores (1; upper part

of the figure) and rounded and truncated test scores (lower part of the figure). Each slide within “continuous” and “rounded and truncated” belongs to a specific

number of parallel test parts K. Within each slide ≤ K = 12, 3 (number of items) × 4 (relationships) × 3 (reliabilities) = 36 conditions are being simulated. The slides K

= 24 and K = 48 add another 24 (K = 24) and 12 (K = 48) conditions.

error variances we might expect for different true scores
if there were no test restrictions (i.e., no minimum or
maximum scores and no rounding). It is important to stress
that the error variances (y-axis) in the “continuous” scenario
might differ somewhat from the error variances when test
restrictions such as truncation and rounding are taken into

account. Due to rounding and truncation, examinees at the
extremes, for instance, might have a lower error variance
over test takes than in the scenario with continuous scores.
On the scale of the test, the results of these examinees are thus
relatively consistent and even though the test might make an
error theoretically (i.e., the “true” score of an examinee is−15
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FIGURE 5 | Visualization of the four simulated relationships between “true” total test score (x-axis) and error variance (y-axis). Each dot represents one of the 1,000

fictional examinees. To ease comparison, the error variance and the true score are divided by the number of items in the plots. Note that the y-axis scale depends on

the chosen level of reliability. (A) Quadratic relationship between true score and error variance, with lower error variances for examinees with extreme true scores.

(B) Quadratic relationship between true score and error variance, with higher error variances for examinees with extreme true scores. (C) Absence of a relationship

between true score and error variance. (D) Linearly decreasing relationship between true score and error variance.

while he/she keeps getting the minimum score 0 at the test),
the test makes this error consistently over test takes, lowering
the error variance σ 2(E∗i) over test takes. In the results
section, the continuous “true” error variances (Figure 5) are
used to assess bias and the MSE in the “continuous” scenario
whereas the bias and MSE in the “rounded and truncated”
scenario are assessed with error variances that are adjusted
to take this rounding and truncation into account.

(6) Overall reliability of the test. To test the influence of (overall)
reliability, we created data for an overall reliability of 0.7,
0.8, and 0.9. According to often used rules-of-thumb, 0.7 is
the minimum acceptable level of reliability, 0.8 is preferred
and 0.9 is desirable for high stakes assessment (see [30]).
As discussed previously, the reliability of a test for a certain

norm population can be expressed as:
σ 2(T∗ )
σ 2(Xg∗ )

; the ratio

of the “true” score variance to the total variance in Xg∗

where σ 2
(

Xg∗
)

= σ 2 (T∗) + σ
2
(Eg∗ ) (see Equation 7). In

our simulation study, we simulate “true” scores for the
1,000 examinees once for all scenario’s (see “Simulated
dataset(s)” and the x-axis in Figure 5). Therefore, the
variance term σ 2(T∗ ) in the divisor of the ratio is a constant.
To increase the reliability, we manipulated the overall
variance (denominator) by lowering the error variance
σ 2(Eg∗ ). Since σ 2(Eg∗ ) = E [σ 2(E∗i)] (see Equation 9), we
divided every of the 1,000 simulated error variances σ 2(E∗i)
by a certain number d to reach the required reliability level.
Note that this division results in a higher overall reliability
but does not alter the relationship between true scores and
error variances as depicted in Figure 5 (see section above).

Simulated Dataset(s)
True Scores τi
Following the simulation design described above, data was
simulated in a top-down way, starting with the simulation of
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the distribution of true test scores τi over all 1,000 examinees
in ℘. To accommodate different number of items (see Figure 4)
we simulated true scores using a standardized metric6 and
consequently transformed these scores to the scales of 12, 24, and
48 items. Note that the distribution of true scores is fixed over all
other scenarios depicted in Figure 4.

Error Variances σ 2 (E∗i)

Next, the error variances σ 2 (E∗i) were simulated. Just as with
the true scores τi, the error variances were rescaled for the
different number of items. Other than in the case of the true
scores, however, the error variances were not fixed over all other
scenarios in Figure 4. Rather, the error variance of all examinees
varied depending on the anticipated relationship between true
score and error variance (see Figure 5) and the overall reliability
of the test (which simply shifts the values in Figure 5 down by a
factor d). In total, four (relationships true score-error variance)
× three (reliabilities) = 12 error variances σ 2 (E∗i) were thus
simulated for each of the 1,000 examinees.

Total-, Item-, and Parallel Test Scores
For each of the 1,000 examinees and their 12 error variances
σ 2 (E∗i) (see above), a vector of 10,000 error scores E∗i was
simulated. Since the three types of SEm are all estimated on the
level of parallel test scores, we simulated these error scores on the
level of the parallel test parts, E∗ik, first. For this, we made use of
the fact that σ 2(E∗i) is a sum over the parallel test error variances:
E∗ik ∼ N(0, σ 2(E∗i)/K). E∗i simply resulted from adding the
parallel errors for a certain test take g. To create parallel test scores
for each of the 10,000 test takes, the parallel error score was added
to the examinee’s “true” parallel test score τi/K (scaled to the
number of items in the test). For the “rounded and truncated”
scenario, these parallel test scores were rounded to the nearest
integer. When the combination of true score and error resulted
in a rounded parallel test score lower than 0 or higher than the
number of items/K, the parallel test score was truncated to be zero
or equal to the number of items/K, respectively.

Estimation of the SEms, Their Bias and
Estimation Variance
After creating the data (see above), the single SEm, conditional
SEm and the person-specific SEm were estimated for each of
the 1,000 examinees and each of the 10,000 test takes. This
process was repeated for all conditions and the “continuous”
and “rounded and truncated” scenario separately (see Figure 4).
The person-specific SEm was estimated using Equation 11.
We subsequently calculated the conditional SEm with Equation
16, using the total score as grouping factor. Since literature
on the conditional SEm (see for instance [5]) mentions the
additional possibility of grouping examinees in narrow intervals
of total scores, we also used Equation 16 for groupings
including examinees with different—but adjacent—total scores.
Specifically, we used groupings in which the total score ± 1 was

6We simulated the “true” scores based on a Gaussian distribution. This choice

is rather arbitrary; Classical Test Theory does not assume τi to be normally

distributed in the norm population. Note that the resulting estimates of σ 2(E∗ i)

are not influenced by this choice.

used as grouping factor (in the remainder denoted by “con.+1”),
total score ± 2 (“con. +2”) and total score ± 3 (“con. +3”).
When it was impossible to add or subtract a number from the
examinee’s total score without crossing the threshold 0 or the
maximum score, the largest number was taken which could still
be added and subtracted. Thus, “con. +2” means that grouping
of examinees is based on total score ± 2 for all total scores
≥ 2 and ≤ the maximum number of items-2, total score ± 1
for total scores 1 and the maximum number of items-1 and
just the total score for scores 0 and the maximum number of
items, for instance. The single SEm was estimated last based
on the Spearman-Brown prophecy formula (see [15]) between
the parallel test parts over all examinees within every repeated
measurement; ρXX′ (see Equation 8). Note that this estimation
of the single SEm was based on K = 2, whereas the estimation
of the person-specific and the conditional SEms was based on

varying K. Finally, the bias squared (
[

σ̂ 2(E∗i) − σ 2 (E∗i)

]2
) was

estimated for all 1,000 examinees and all conditions (σ̂ 2(E∗i) is
the average estimate of σ 2 (E∗i) over the 10,000 test takes). This

bias squared was added to the estimation variance (σ 2
(

σ̂ 2(E∗i)
)

)

over the 10,000 test takes to calculate the MSE.

RESULTS

In the simulation design, six characteristics of the test and the
norm population were varied: (1) whether the parallel test scores
are continuous and unrestricted or rounded to integers and
truncated, (2) the number of repeated test takes, (3) the number
of items of the test, (4) the number of parallel test parts K, (5)
the relationship between the 1,000 “true” examinee scores and
their error variances and (6) the overall reliability of the test.
Below, the influences of each of these characteristics on the bias,
estimation variance and MSE of the three kinds of SEm are
discussed.

Continuous vs. Rounded and Truncated
When parallel test scores were rounded and truncated, we
saw an alteration of the simulation results. This alteration
had two general causes: (1) the error variances as depicted in
Figure 5 were altered and (2) rounding and truncation limited
the between variance over parallel test parts. Each of these two
causes is discussed below. Because of the influence of rounding
and truncation, in the other sections results are discussed
separately for the “continuous” and the “rounded and truncated”
case.

Alteration of the Error Variances
The error variances σ 2 (E∗i) as displayed in Figure 5 are based
on continuous parallel test scores. Rounding and truncating these
parallel test scores alters the total test scores—the sum over the
parallel test scores—and thus the error variances. In a sense,
rounding and truncation thus “push” the error variances in a
certain direction that takes into account the limitations of the
scale of the test. In Figure 6, an example of the possible extreme
influence of rounding and truncation on the error variances
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FIGURE 6 | Influence of rounding and truncation on error variances for a test with 12 items, a .8 reliability and K = 2, 4, 6, and 12 respectively. Note the difference in

scale of (A) and (B) vs. (C) and (D).

σ 2 (E∗i) is showed. This example is based on the relationship
in Figure 5A and 12 items; comparable plots for the other
relationships of Figure 5 and 24 and 48 items can be found in
the Supplementary Material, Part I.

Based on Figure 6 and Supplementary Material, Part I, a few
observations can be made. First, since rounding and truncation
take place on the level of parallel test scores, the choice for K
influences the error variances. Figures 7, 8 illustrate why this is
the case. These two figures are based on two example examinees
for a test with 12 items and K = 4. The first examinee has a “true”
test score of 4; the second a “true” test score of 6. Before rounding
and truncation, these two examinees have the exact same error
variance of 0.20; after that an error variance of respectively
0.10 and 1.00. Looking at the distribution of parallel test scores
(Figure 7) for the examinee with true score 4 (Figure 7A) and the
examinee with true score 6 (Figure 7B) we see that there is indeed
very little variation in the parallel test scores for the first examinee
while there is a relatively large variation in the second examinee’s
case, due to an (almost) equal amount of parallel scores 1 and 2.
Looking at the underlying continuous error distributions for one
of the parallel test parts (Figure 8), we see that there is (almost)
no difference between the two examinees. What is different is the

effect of the error on the rounded parallel test score. Since the
score 4 is divisible by K = 4, the continuous “true” parallel test
score is 1. Only when the parallel test error is larger or equal
to 0.5 or smaller or equal to −0.5, the parallel test score will be
rounded one score up and down, respectively. Since the score
6 is not divisible by K = 4, the continuous “true” parallel test
score is 1.5. Any negative error larger than −0.000· · ·1 leads to
a rounding down to 1 whereas any positive error smaller than
0.999· · ·9 has no influence on the rounded score. Thus, although
the original errors of examinee 1 and 2 are similar due to their
similar (continuous) error variance, the effect of these errors on
the rounded parallel test scores is different. Would we change
K to another number, say 3, then the effect of the error on the
rounded parallel test score would change accordingly.

A second observation is that the truncated and rounded
error variances reassemble the continuous error variances
more closely when the number of items is larger (see
Supplementary Material, Part I). Generally, when there are
more than 3 items within each parallel test part, the distribution
of truncated and rounded error variances is very similar to that
of the continuous one. Last, in the extreme case of having only
one item within each parallel test part, the relationship between
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FIGURE 7 | Parallel and total test scores for two example examinees with true score 4 (A) and true score 6 (B), both having a true error variance of 0.2 on a 12 item

test with K = 4.

FIGURE 8 | Error score distribution for the first parallel test and the effect on the parallel test score for the two examinees of Figure 7.

“true” score and error variance becomes more or less parabolic
regardless of the “original” relationship as depicted in Figure 5.
In that case, the error variances approximate those of a binomial
distribution (see [23]); they become a compromise between the
simulated relationship and a binomial one. In Figure 9, the
relationship between “true” scores and error variances is shown
for 12 items and K = 12 together with the binomial error for
comparison.

In the section “Bias-Variance Trade-Off,” it was explained
that the person-specific SEm provides an unbiased estimate

of σ 2 (E∗i) . As visualized in Figure 10, this holds when
parallel test scores are continuous (Figure 10A) and
when parallel test scores are rounded and truncated
(Figure 10B). Equation 11 thus holds when we use it
based on continuous parallel test scores to estimate the
continuous σ 2 (E∗i) as depicted in Figure 5. Likewise, when
we use the person-specific SEm based on rounded and
truncated parallel test scores we obtain an unbiased estimate
of the rounded and truncated σ 2 (E∗i) counterpart (see
Supplementary Material, Part I). The person-specific SEm
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FIGURE 9 | When the parallel test scores are truncated and rounded, the relationships between “true” scores and error variances as depicted in Figure 5 change. In

the extreme case, when there are only 12 items and K = 12, the relationship between “true” scores and error variances of an originally quadratic increase (A),

quadratic decrease (B), flat relationship (C) and linear decrease (D) all more or less reassemble that of the red parabola, which corresponds to the binomial error of a

12-item, dichotomously scored test.

FIGURE 10 | Visualization of unbiasedness of the person-specific SEm over 10,000 repeated test takes. The left figure (A) is based on continuous parallel test scores;

the right figure (B) on rounded and truncated test scores. The two figures are examples of a test with 12-items, K = 2, a reliability of 0.8 and a relationship between

“true” score and error variance as shown in Figure 5B.

based on rounded and truncated parallel scores only gives
an unbiased estimate of the continuous σ 2 (E∗i) in so far
as the continuous and rounded and truncated σ 2 (E∗i) are
similar.

Limits on Between Variance
When the number of items in a parallel test part is small and/or
the size of K is small, truncation and rounding lead to another
problem: the number of possible between variances becomes
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FIGURE 11 | All options of the between variance multiplied by K (red vertical lines; see Equation 11) for K = 2 (A), K = 4 (B), K = 6 (C) and K = 12 (D) compared to

the “true” truncated and rounded error variances of the 1,000 examinees (blue dots). Note the difference in x-axis scale.

limited. Since the person-specific and the conditional SEm are
based on the between variance over parallel test parts, this also
means that the possible estimates for σ 2 (E∗i) are limited.With 12
items and K = 12, for instance, only 13 unique combinations can
be made of 0 and 1 scores (note that Equation 24 is an adjustment
of the formula for combinations with replacement):

(ns + K − 1)!

K! (ns − 1)!
=

(2+ 12− 1)!

12! (2− 1)!
= 13 (24)

where ns denotes the number of possible scores (in this case, 2;
0 and 1). With these 13 combinations, only 7 unique between
variances can be obtained. Thus, using Equation 11, there are
only 7 possible estimates of the person-specific SEm at every test
take. When there are such few options, there is a high chance that
none of the possible SEm estimates are close to the true σ 2 (E∗i)

of the examinee. In the long run this is not problematic, since
we average over the σ 2 (E∗i)-estimates and thus are still able to
obtain an unbiased overall estimate. But when we only have one
test take (as we usually do) this is troublesome.

Figure 11 shows the options for the between variance when
there are respectively 12 items with K = 2, 4, 6, and 12.
In the Supplementary Material, Part II, the same figure is
available but then for tests with respectively 24 and 48 items.

Looking at Figure 11, there are the fewest options for the
σ 2 (E∗i)-estimate when either the size K is small (i.e., K =

2) or when there are few items within each K (i.e., K =

12). An important distinction between having a small K vs.
having few items within each K is, however, that most of
the options are within the range of the actual error variances
with K = 12 whereas most of these options are outside
this range when K = 2. A reasonable number of items (see
Supplementary Material, Part II) and a balance between not
having too few parallel test parts but also not too few items within
each K seems essential.

The conditional SEm also suffers from having few estimation
options when K and the number of items within K are
small. However, since the conditional SEm consists of taking
an average over similar examinees, the number of estimation
options accumulates the more examinees are taken together.
With only one extra examinee, for instance, there are 72

possible combinations of between variances for the example of
12 items and K = 12 of which 27 lead to a unique between
variance estimate when averaged. This more than doubling
notwithstanding, in practice the problem of having few options
can still occur. Especially when there is a notable relationship
between “true” score and error variance, it is likely that we average
over just one or a few between variance options.
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Number of Repeated Test Takes
In the section “Bias-Variance Trade-Off” we discussed the long
run properties of the three different SEm estimators. However,
favorable long run properties do not guarantee that the SEm
estimator is appropriate to use in the short run, when only having
one or just a few test takes. Below, we discuss the short run
properties of the person-specific and the conditional SEm (not
the single SEm, since this SEm does not change with more or less
test takes) and reasons why the person-specific and conditional
SEm might not be as appropriate to use in the short run as in the
long run.

Short Run Performance of SEm
To see how well the conditional and person-specific SEm
perform in the short run, we plotted these SEm estimates after
only 1, 2, 3, 4, 5, 10, 25, and 50 test takes, together with
the true error variances we are trying to estimate7, for both
the scenario with continuous parallel test scores and rounded
and truncated parallel test scores. The result can be seen in
the Supplementary Material, Part V. The Pearson correlation
between the true error variance and the estimates are shown
at the right side of the plots. Additionally, a table is presented
with the within variance at true error variance 0.6 and the
between variance over all examinees. When there is only one test
take, the correlation between the truth and the SEm estimates
is very low for the person-specific SEm (only 0.09 in both the
continuous and rounded and truncated case). The conditional
SEm is only slightly better (0.20 in the continuous case and
0.12 in the rounded and truncated case). The SEm estimates for
different true error variances appear to overlap to a large extent,
although variation in the SEm estimate increases along the x-axis
and higher estimates are observed occasionally for higher true
error variances. After 50 test takes, the correlation has increased
notably but the variance in estimated SEm for examinees with 0.6
as their “true” error variance is still about the same as the overall
between variance. As Figure 12 shows, about 100 (conditional
SEm, Figure 12B) to 200 (person-specific SEm, Figure 12A)
test takes are needed to reach high levels of correlation. When
parallel test scores are rounded and truncated (second part
Supplementary Material, Part V), we generally need more test
takes (see Supplementary Material, Part VI, which contains the
equivalent to Figure 12 for rounded and truncated parallel test
scores). The correlations are therefore generally lower than in the
continuous case.

Reasons for Bad Short Run Performance
We found two general reasons for the suboptimal short run
performance as observed in Supplementary Material, Part V

and Figure 12. One of these reasons was already discussed in
the previous section and visualized in Figure 11: because of few
possible between variances, the SEm for a single test can only
take on few different values. This influence is clearly visible

7The plots in the Supplementary Material, Part V are all based on a 12-item

test, with an overall reliability of 0.8 and K = 2 and the relationship depicted

in Figure 5A. Plots for any other combination of number of items, K, overall

reliability and relationship between “true” score and error variance can be

requested from the first author.

FIGURE 12 | Correlation between the true error variance and the

SEm-estimate for different number of test takes (x-axis) and a test with

respectively 12, 24, and 48 items. (A) Shows the correlations for the

person-specific SEm; (B) A comparable figure for the conditional SEm. Both

are based on continuous parallel test scores, an overall reliability of 0.8 and a

relationship between “true” score and error variance as depicted in Figure 5A.

in the first plot of the “rounded and truncated” scenario in
Supplementary Material, Part V. There is also another reason
why the person-specific (and to a certain degree the conditional
SEm) might not be suitable estimators of the error variance
after one or just a few test takes, even when parallel test scores
are continuous. As visualized in Figure 13, the distribution
of possible between variances for different underlying error
variances overlap to a high extent, especially in the small between
variances range. Therefore, if we would randomly observe
one between variance it can be the result of very different
underlying error variances. As Figure 13 shows, a problematic
feature of the distributions of between variances is that the
variance of this distribution directly depends on the size of the
underlying error variance (see Equations 19 and 20 and the sd
in Figure 13). Therefore, the accuracy of any estimate based
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FIGURE 13 | Overlap in the distributions of possible between variances for 5 examinees with underlying error variances 0.75 (examinee 1), 0.60 (examinee 2), 0.44

(examinee 3), 0.28 (examinee 4), and 0.12 (examinee 5).

on the between variances directly depends on that what we are
trying to estimate; the error variance. Since the error variance is
unknown, we do not know exactly how accurate we can expect
one estimate to be. Other problematic features of the distribution
of between variances are that zero is always the most probable
between variance, no matter how large the underlying error
variance (see again Figure 13 and the overabundance of zeroes
in Supplementary Material, Part V) and that the distribution
has a large tail. Regarding the former, we might be tempted

to conclude that there is little error variation when we observe
a between variance of zero but the underlying error variance
might actually be relatively large. With regard to the latter,
for comparison purposes Figure 13 only shows the histogram
values until 0.75, but as the blue arrow and the “max = ..”
shows, the distributions are stretched out over a far wider range.
The large between variances are rare, but they are necessary to
reach an accurate estimate on average. Due to the relationship
between error variance and variation in the possible between
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FIGURE 14 | Percentage bias (see Equation 25) for different number of items, for the relationship depicted in Figure 5A and with continuous parallel test scores.

variances, observing a low between variance does not contain
as much information about the underlying error variance as
does observing a high between variance. Whereas a low between
variance can be the result of small, medium or even large error
variances, a large between variance is very unlikely to be the result
of a small or evenmedium error variance. Finally, the distribution
of between variances does not become less spread out when we
include more items or increase K.

Number of Items
By incrementing the number of items, the scale of the parallel test
scores and hence the size of the true error variances (see Figure 5,
Supplementary Material, Part I) increased. Consequently,
comparing the absolute bias, estimation variance and MSE is
not very insightful, as it simply reflects this change in scale.
To compare the bias and estimation variance for the different
number of items, we therefore decided to use a relative version.
Specifically, we express bias as a percentage of the true error
variances:

%bias =





∑

i

(

σ̂ 2 (E∗i)−σ 2 (E∗i)

)

∑

i σ
2 (E∗i)



 100 (25)

and we use the coefficient of variation (see [24]) as a relative
measure of estimation variance, which is simply the estimation

standard deviation expressed as a percentage of the mean:

CV =





∑

i

√

σ 2
(

σ 2 (E∗i)
)

∑

i σ
2 (E∗i)



 100 (26)

Below, we discuss the percentage bias and coefficient of variation
when compared over tests with different lengths (i.e., with 12, 24,
and 48 items). We also discuss whether and how having a larger
test is beneficial for the SEm-estimates.

Percentage Bias
In Figure 14, the percentage bias is visualized for different
number of items, for the relationship depicted in Figure 5A and
with continuous parallel test scores (for the other relationships,
see Supplementary Material, Part IV). According to this figure,
bias is not dependent on the number of items in the test (all
bars are of equal height for the person-specific, conditional
and single SEm). Note that the percentage bias for the person-
specific and conditional SEm is very close to zero, but not
exactly null. The small deviation from zero stems from the
fact that we have a limited norm population size (1,000) and
a limited number of repeated test takes (10,000) over which
we determine the bias. The covariance between the parallel test
parts (see Equation 10a) over the 10,000 test takes are, for
instance, very close to zero, but not exactly zero (as Equation
10b assumes). The “2

∑

k<p σ 2(X∗ki, X∗pi)” part in Equation 10a

for the first five examinees for a test with 12 items, 2 parallel
test parts, an overall reliability of 0.8 and a relationship as in
Figure 5A, are for instance −0.00056, −0.001686, −0.004748,
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FIGURE 15 | Coefficient of variation (see Equation 26) for different number of items, for the relationship depicted in Figure 5A and with continuous parallel test scores.

−0.000355, and −0.014109. Therefore, the between variance
(see Equation 12) on which the person-specific and conditional
SEm are based is not exactly equal to the within variance of
Equation 10a, leading to a small bias over the limited set of test
takes. As Equation 12 postulates, this bias is expected to disappear
with an infinite number of tests.

When parallel test scores are rounded and truncated, the
percentage bias as observed in the continuous case changes
(see Supplementary Material, Part IV). Due to truncation and
rounding, the percentage bias is not exactly the same anymore
for different test lengths. The percentage bias now depends on the
changed relationship between “true” test score and error variance
(see Supplementary Material, Part I) and the between variances
that can be estimated with a certain number of items and K (see
Supplementary Material, Part II). Additionally, the percentage
bias decreases in the case of the “con.+1,” “con.+2,” and “con.+3”
when moving from a 12-item to respectively a 24-item and 48-
item test. This has to do with the fact that “+1” is a larger step
in a 12-item test (1/12th) than in a 24-item test (1/24th) or a
48-item test (1/48th). Hence, we introduce relatively more bias
when we include examinees with +1 scores when the scale of
the test is smaller (and similarly for examinees with +2 and +3
scores).

Coefficient of Variation
Figure 15 shows the coefficient of variation for different number
of items for the relationship depicted in Figure 5A with
continuous parallel test scores (for the other relationships,
again see Supplementary Material, Part IV). Not surprisingly,

the coefficient of variation is exactly the same over different
numbers of items for the person-specific SEm and the single
SEm. As expressed earlier in Equation 19 and Equation 20, the
estimation variance of the person-specific SEm does not depend
on the number of items. The single SEm has a small random
variation from test take to test take (since the scores of the norm
population change randomly over test takes), but this random
variation also does not depend on the number of items. For the
conditional SEm, there is a small increase in the CVwhenmoving
from a 12- to a 24- and 48-item test. Inspection of Equation 21
shows that the estimation variance for the conditional SEm not
only depends onK (as the variance for the personal SEm) but also
on nj; the number of examinees within one group j. Since we kept
the overall number of examinees (1,000) equal over the different
test lengths, the number of examinees with the same total score
decreased when doubling the number of items from 12 to 24 and
from 24 to 48; leading to the slight increase in CV.

When parallel test scores are rounded and truncated, the CV
changes (see Supplementary Material, Part IV). For the person-
specific SEm, the CV is not exactly the same anymore over the
different test sizes. Additionally, the CV becomes smaller when
moving from a conditional to a conditional “+1,” “+2,” and
“+3” for a fixed test size. This again has to do with the nj in
Equation 21. Because of the +1, +2, and +3, more examinees
are included in a group j leading to a smaller estimation variance.
This decrease in CV is largest for the 12-item test since—as
discussed previously—the +1, +2 and +3 are relatively larger
intervals in a smaller test. Including examinees with+1 therefore
increases nj faster for a smaller test.
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Benefits of Having a Larger Test
Looking at Figures 14, 15 and Supplementary

Material, Part IV, in the long run there is no advantage in
having a larger test when estimating the SEm. The relative
bias and estimation variance do not change when increasing
the number of items, as bias and estimation variance do not
depend on test length (see section “Bias-Variance Trade-Off”).
When using rounded and truncated parallel test parts, however,
there is an advantage in having a larger test as discussed in the
previous sections. With a larger test size, the estimable error
variance depends less on K and the between variance can take
on more different values. Additionally, in the short run the
SEm estimates are more accurate when based on a larger test.
As Figure 12 showed, with a larger test, initial correlations
between true error variance and the SEm estimates are higher
and there are fewer repeated test takes needed to reach a high
correlation.

Number of Parallel Test Parts
Figure 15 (previous section) shows why it is beneficial for the
person-specific and conditional SEm to choose K as high as
possible when parallel scores are continuous: the estimation
variance goes down with increasing K. This relationship between
the estimation variance and K was also discussed in the
section “Bias-Variance Trade-Off.” A more puzzling result of
the previous section (see Figure 14) is that the relative bias
observed after 10,000 test takes also seems to depend on K
to some extent. In Figure 14, the relative bias of K = 12 is,
for instance, structurally lower than the relative bias of K = 4
(also see Supplementary Material, Part IV). It is unclear why
this difference in bias for different values K occurs, especially
since it is not linearly related to K. Since we are using a
limited number of repeated measures (10,000) and a limited
sized norm-population (1,000 examinees) and R has a limited
precision in its calculations, the differences observed may be
a reflection of these limitations instead of real differences over
K. Inspection of the average SEm-estimates with different sizes
for K at least shows that the absolute differences are neglectable
in any practical situation. All in all, the comment that it
is “advantageous to use as many [parallel] parts as possible”
([5] p. 154) seems to hold in the case of continuous parallel test
scores.

When parallel test scores are rounded and truncated, the
choice for K becomes more delicate. As was already discussed
in the section “Continuous versus rounded and truncated,”
the observable error variance depends on characteristics of
the test, including the size of K. When every parallel part
contains few items, the resulting error variance estimate
highly depends on K and therefore the estimate of the error
variance cannot be generalized to a similar test with larger
or smaller K. Furthermore, the choice for K influences the
between variances that can be observed (see again Figure 11).
Instead of opting for the largest K possible, it therefore
seems advisable in case of rounded and truncated scores to
balance K and the number of items within each parallel test
part.

Relationship True Score and Error Variance
In this simulation, we varied the relationship between “true”
score and error variance according to Figure 5. The question
is whether the preference for one of the different SEms
depends on these underlying relationships. Figure 16 shows
a grid with all possible combinations of K, the number
of items and the overall reliability for the relationships
depicted in Figure 5A (Figure 16A), Figure 5B (Figure 16B),
Figure 5C (Figure 16C), and Figure 5D (Figure 16D). The
colors within this grid show which of the three SEms
had the lowest absolute MSE and thus would be favored
in which situation. Figure 17 shows similar figures but for
the case with rounded and truncated parallel test parts. In
these figures, also the conditional “+1”, “+2,” and “+3” are
included.

Turning first to Figure 16, we see a comparable pattern for
all relationships exact for the “flat” or “no relationship” case
(Figures 5C, 16C). When no relationship between “true” score
and error variance is anticipated, the single SEm is generally the
best choice unless the number of items and K are large. When
we do anticipate a relationship between “true” score and error
variance, the conditional SEm is generally favored, unless K is
small relative to the number of items (favoring the single SEm)
or when both the number of items and K are large (favoring the
person-specific SEm).

Looking at Figure 17, we see again some comparability over
all relationships except for Figure 17C. For the “flat” or “no
relationship” case (Figure 17C), the single SEm is again favored
most, together with the conditional SEm with a large interval
width. Opposed to the single SEm, the “con.+3” can adjust its
estimate such that the error variances for “extreme” true scores
are correctly estimated. Since variation at these extremes of
the scale (see Figure 5C) is less than in the middle, having a
SEm-estimate close to the real error variances at these extremes
lowers the overall discrepancy between the estimated SEm and
the true error variances. In the other three figures, the “con.+3”
option is also a popular choice. To a lesser extent, also the
“con.+1” and “con.+2” options are favored over the person-
specific and the “regular” conditional SEm. The popularity of
the conditional SEms with a larger interval makes sense, because
they are stable (like the single SEm) but also flexible enough
to capture the anticipated relationship between “true” score and
error variance. They also lead to the largest possible group size
nj, which directly lowers the estimation variance (see section
“Bias-Variance Trade-Off”). Other than in the case of continuous
parallel test scores, the single SEm is not chosen when K is
small relative to the number of items. For rounded and truncated
scores, the single SEm is for instance favored when the number
of items is small (i.e., 12) and K relatively large. In the section on
rounding and truncation, we saw that the relationship between
true score and error variance was highly altered when the number
of items was small relative to K (see Figure 6). For a 12-item
test, this influence was already present with a K larger than
2. When such an alteration occurs, it is better to stick with
the single SEm (which is always based on K = 2, see section
“Simulated Dataset(s)”) than to opt for a conditional SEm with
a larger K.
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FIGURE 16 | Preference for the person-specific SEm (green), the conditional SEm (pink) or the single SEm (purple) based on the MSE for different K’s, number of

items and overall reliability. Plot (A) corresponds to the relationship between “true” scores and error variances as depicted in Figure 5A, (B) to the relationship of

Figure 5B, (C) to the relationship in Figure 5C and (D) to the relationship in Figure 5D. All four plots are based on continuous parallel test scores.

Overall Reliability
As explained under “simulation design,” the overall reliability
of the test was manipulated by dividing every examinee’s error
variance by d. Since this lowers the size and therefore the
scale of the error variances, we expect the bias2, estimation
variance and MSE to go down when moving from a 0.7 to
a 0.8 and 0.9 overall reliability. Figure 18 shows that this is
indeed the case for a test with 24 items, with K running
from 2 to 6 and error variances as in Figure 5A (similar
figures for other number of items, K and error variances
can be requested from the first author). In this figure, the
reliability is varied on the x-axis and every type of SEm
is shown separately (note the difference in y-axis for the
person-specific SEm compared to the other SEms). Despite
the decrease in bias2 in absolute sense, there is no clear
downward trend in the percentage bias (see Table 1, Equation

25). Additionally, the relative differences in MSE, bias2 and
estimation variance between the single, person-specific, and
conditional SEms are comparable regardless of whether there
is an overall reliability of 0.7, 0.8 or 0.9 (see Figure 18).
Figure 18 furthermore shows that the proportion of the MSE
“caused” by bias is not notably different for the different overall
reliability except for the conditional SEm (see percentages on
top of the bars in Figure 18). This bias inflation for relatively
low reliabilities is caused by using the total score instead
of the true score of examinees as grouping factor in the
calculation of the conditional SEm (see [22]). The higher the
overall reliability, the smaller the difference between the total
and true scores and thus the less bias is introduced in the
grouping.

The results shown so far are all based upon rounded and
truncated parallel test scores. Supplementary Material, Part III
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FIGURE 17 | Preference for the person-specific SEm (green), the conditional SEm (pink), the conditional SEm “+1” (light pink), the conditional SEm “+2” (yellow), the

conditional SEm “+3” (orange) or the single SEm (purple) based on the MSE for different K’s, number of items and overall reliability. Plot (A) corresponds to the

relationship between “true” scores and error variances as depicted in Figure 5A, (B) to the relationship of Figure 5B, (C) to the relationship in Figure 5C and (D) to

the relationship in Figure 5D. All four plots are based on rounded and truncated parallel test scores.

contains similar plots as in Figure 18, but then for continuous
parallel test scores. Generally, the results with continuous and
rounded and truncated parallel test scores are very similar.
The MSE, bias2 and estimation variance are, however, overall
somewhat lower when no rounding and truncation have taken
place. Also, rounding and truncation apparently increase the
bias2 notably when opting for a conditional SEm; in the
continuous case (see Supplementary Material, Part III) the
MSE of the conditional SEm is almost completely caused by
estimation variance.

DISCUSSION

By convention, the single standard error of measurement (SEm)
is used to express measurement (un)certainty of examinees (see

Equation 8). By using this single SEm, two strict assumptions are
made regarding measurement (un)certainty. First, it is assumed
that all persons are measured with the same accuracy; i.e.,
measurement error variance is assumed constant. Second, the
person’s intra-individual variation in measurements is assumed
equal to the inter-individual variation in measurement of the
norm-population examinees; i.e., intra-individual variation and
inter-individual variation are interchangeable [6]. To circumvent
these assumptions, one can also opt for the conditional
SEm. The conditional SEm relaxes the two assumptions in
that only examinees with the same (expected) true scores
are assumed to have constant measurement error variance
and interchangeability of inter- and intra-individual variation.
Instead of basing the estimate of SEm on all examinees in
the normpopulation, like the single SEm, the conditional SEm
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FIGURE 18 | Bias2, variance and MSE for a test with 24-items and K = 2 (A), K = 4 (B), and K = 6 (C) parallel test parts. The overall reliability of the test is varied on

the x-axis. The numbers on top of the bars show the percentage of the MSE “caused” by the bias2, which is also reflected in the size of the stacked pink bar. Note

that these plots are based on the relationship in Figure 5A; similar plots for the other relationships can be requested from the first author.
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TABLE 1 | Percentage bias* accompanying Figures 18A–C.

K = 2 K = 4 K = 6

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

PS −0.01 0.01 0.00 0.00 −0.04 −0.08 0.01 −0.02 −0.01

Con. −0.01 0.01 0.00 0.00 −0.04 −0.08 0.01 −0.02 −0.01

Con.+1 0.33 0.40 0.49 0.38 0.32 0.24 0.41 0.29 −0.22

Con.+2 0.82 0.96 1.02 0.95 0.87 1.05 1.01 0.79 0.72

Con.+3 1.24 1.44 1.55 1.46 1.34 1.41 1.55 1.27 1.98

Single 3.29 3.46 2.10 .. .. .. .. .. ..

*see Equation 25.

takes the expected value of the person-specific measure of SEm
over all examinees with the same obtained total score (see
Equation 16). In the conditional SEm literature, this person-
specific measure of SEm is treated as an intermediate step
but—as this paper showed—can also be used as a result on
its own. Using this person-specific SEm has the advantage that
no assumptions are made regarding measurement (un)certainty
(see Equation 11). Every relaxation of the two assumptions of
the single SEm—however—comes with a price: in practice, the
estimation variance of the conditional SEm and person-specific
SEm always exceed the estimation variance of the single SEm8.
In this paper, we have illustrated how the mean squared error
(MSE)—a measure that is based on both estimation variance and
bias—can be used to make a choice for either the single, the
person-specific or the conditional SEm in realistic test situations.
This “optimal” SEm guarantees that the estimated SEm is as
close as possible to the true error variance of examinees. We also
showed, using a simulation study, how the person-specific SEm,
the conditional SEm and the single SEm are influenced by six
characteristics of the test situation: (1) whether the parallel test
scores are continuous and unrestricted or rounded to integers
and truncated, (2) the number of repeated test takes, (3) the
number of items of the test, (4) the number of parallel test parts
K, (5) the relationship between the 1,000 “true” examinee scores
and their error variances and (6) the overall reliability of the
test. Refraining from repeating all findings for each of these six
characteristics here, we like to highlight three important overall
conclusions from the simulation study. First, it is important to
realize that the three different SEms are developed for a situation
with continuous test scores. When scores are rounded and
truncated—as they typically are in practice—we face a number
of challenges in the estimation of the person-specific and the
conditional SEm that we should keep in mind. Second, it is
important to stress that even though the MSE helps to balance
long run unbiasedness and estimation variance, it does not
guarantee that the estimates for a single test take make sense.
Rounding and truncation can for instance lead to sparseness in
the possible SEm-estimates (see Figure 11), such that no single

8Only in the unrealistic case that examinees have the same between variance

at every test take (see Figure 2), the estimation variances of the conditional,

person-specific and single SEm coincide.

estimate can be close to the real error variance after one test take.
One single estimate also relatively often equals zero, since zero is
the between variance that most often occurs for any underlying
error variance (see Supplementary Material, Part V). It would
be dangerous to conclude that this examinee is thus measured
very accurately, since the underlying error variance can still be
large. Third, it is advisable to think about the purpose of the
SEm-estimation, and to choose accordingly. The conditional
SEm, for instance, can be suitable in certain test situations to get
an idea of how variable we expect the test scores to be. It might
not be so suitable, however, to construct a confidence interval
and to see whether this confidence interval overlaps with or is
smaller/larger than the confidence interval of another examinee.
Since both the total score and the SEm on which the confidence
intervals are based vary, we don’t want to draw conclusions that
might be based on random error in one or all total scores and
one or all error variances. It might be fairer to use the single SEm
in that case. As a last example: the person-specific SEm might
not be suitable in a certain situation as a direct measure of error
variance but it could be suitable to select examinees for which
the estimate is relatively large. Since large between variances are
rare (or non-existent) for small and medium error variances (see
Figure 13), a large between variance points to a large underlying
error variance. This can be a reason to be careful with using the
single SEm for this specific examinee. In order to help making a
choice between the single, conditional and person-specific SEm,
we end with a set of practical recommendations.

PRACTICAL RECOMMENDATIONS

This paper shows that there is not one type of SEm (i.e., single,
conditional with different sizes of intervals or person-specific)
that is superior in every test situation. Therefore, in order to
choose one must first come to a realistic estimation of the “truth”
(i.e., how strong is the anticipated relationship between true
score and error variance? How “unique” do we expect the error
variances of different examinees to be?) and a realistic idea of
the limits and possibilities of the test (i.e., how reliable is the
test for the examinees that you have/had in mind? How many
parallel or tau-equivalent parts K are feasible, taking for instance
the item difficulties and item content into account?). Preferably,
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this endeavor is followed by a small simulation to find the
optimal balance between bias and variance in the error variance
estimate(s). Alternatively, one could use the following rules of
thumb, based on the results of our simulation:

• When a test is based on a limited set of items and/or can
only be divided in a limited set of parallel (or tau-equivalent)
test parts K, the gain in (less) bias does not make up for
the loss (increase in) estimation variance. In such a situation,
either use the single SEm or a conditional SEm in which you
make coarse intervals. When you do not expect a relationship
between “true” score and error variance (Figure 5C), selecting
the single SEm is most appropriate in this situation.

• When the overall reliability of the test for a group of examinees
is low, be cautious in the interpretation of the conditional
SEm. The single SEm is preferred in this case, except when you
expect a strong relationship between true score and true error
variance.

• Opting for a person-specific SEm is only encouraged when you
either have continuous parallel test scores plus a large number
of items and a large K (see Figure 16) or when it is possible to
test an examinee multiple times (see [20]).

• Be sure to have at least three items in every parallel test
part if your test consists of rounded and truncated scores, to
minimize the influence of truncation and rounding. Where
possible, check the limitations that rounding and truncation

put on the possible between variances (see Figure 11) and see
whether taking an average over similar examinees (conditional
SEm) solves these limitations.

• When in doubt, choose a conditional SEm with coarse
intervals (i.e., “con.+3”). Especially when you anticipate a
relationship between “true” score and error variance, the
conditional SEm with coarse intervals is able to capture the
main trend whilst being a fairly stable estimate.
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