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The emergence of motion sensors as a tool that provides objective motor performance

data on individuals afflicted with Parkinson’s disease offers an opportunity to expand the

horizon of clinical care for this neurodegenerative condition. Subjective clinical scales

and patient based motor diaries have limited clinometric properties and produce a

glimpse rather than continuous real time perspective into motor disability. Furthermore,

the expansion of machine learn algorithms is yielding novel classification and probabilistic

clinical models that stand to change existing treatment paradigms, refine the application

of advance therapeutics, and may facilitate the development and testing of disease

modifying agents for this disease. We review the use of inertial sensors and machine

learning algorithms in Parkinson’s disease.
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INTRODUCTION

Parkinson’s disease (PD) is characterized by several cardinal motor symptoms, namely,
bradykinesia, rigidity, tremor, and postural instability. As the disease progresses and higher levels
of dopaminergic medications are required, the emergence of motor fluctuations and levodopa-
induced dyskinesia adversely impacts the quality of life of those afflicted. The measure of disease
severity dictates the management of pharmacological therapy and recommendation for advanced
surgical therapies (e.g., levodopa continuous intestinal gel, deep brain stimulation). Over the past
decades, numerous clinical scales have been developed to measure motor disability, usually as
a snapshot in time. Many of the PD assessment scales have not been subjected to clinometric
evaluation and show significant shortcomings in regards to inter-rater reliability and validity
(Ramaker et al., 2002). The Unified Parkinson’s disease Rating Scale (UPDRS), which has both an
impairment and disability section, measures motor and non-motor aspects of the disease. Relative
to other rating scales, the UPDRS and the revised version (MDS-UPDRS) have good clinometric
properties (Ramaker et al., 2002; Goetz et al., 2007). However, their primary limitation rests in the
subjective manner by which it is applied and the lack of continuous, real time assessment.
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Sensor-based technology offers an opportunity to objectively
measure motor performance in Parkinson’s disease (Maetzler
et al., 2016; Ossig et al., 2016). Such continuous measurements
across a wide spectrum of patients with phenotypic variability
stands to provide a more tailored approach to treating PD
patients and improve the selection of candidates for advanced
therapies such as Deep Brain Stimulation or the levodopa
intestinal gel.

INERTIAL SENSORS

Inertial sensors are constructed from accelerometers and/or
gyroscopes (Zijlstra et al., 2008). Accelerometers measure the
force of acceleration along a given axis but are unable to measure
rotation around a vertical plane. The inclination of the sensor can
be determined relative to gravity’s vertical direction enabling its
output to detect postural changes (e.g., sitting, standing, walking)
(Mathie et al., 2004). Accelerometers operate by two components:
Direct current (DC) and alternating current (AC). The DC
component senses the effect of gravity and uses it to determine
body position, while the AC component represents voluntary
movement. Accelerometers are unable to sense rotation and
therefore cannot recognize turns during walking. In addition,
their measurements are subjected to spurious gravitational
contributions from perturbations in the axis (Suzuki et al.,
2017), which introduce a certain degree of motion inaccuracies.
Gyroscopes on the other hand are able to detect the angular
velocity of a rotating body and are subject to less mechanical
noise. When combined with an accelerometer, turning is better
evaluated with less motion dynamic artifact. However, their
high-energy consumption places a significant constraint on the
long-term recording.

Inertial sensor battery life is contingent on the number of
sensors utilized, sampling frequency, and recording time, as well
as themachine learning algorithm that is used for data processing
and extraction of the signal (Habib et al., 2014). Bai et al. (2012)
showed that consumption rate of the battery per hour in a
triaxial accelerometer system for foreground and background
execution was 2.5 and 2.25%, respectively. While reduction in
the number of features and complexity of the algorithm can
save on energy, the trade off could compromise accuracy. Hence,
why smart phone sensors have lower resolution than external
wearable dedicated sensors whose internal microcontrollers lend
for more vigorous data sensing and analysis (Mehner et al., 2013).

In the following sections, we review the application of
motion sensors in assessing PD motor symptoms and offer
insights into various machine-learning algorithms that are
the underpinnings for analyzing and potentially integrating
sensor data in to clinically relevant practice paradigms. We
highlight several ambulatory wearable devices—several of which
(Dynaport, Physiolog, APDM, Stepwatch, Tritrac, Axivity, and
Kinesia) were labeled as “recommended” from a review by
Gondinho and colleagues (Godinho et al., 2016) based on their
validity, reliability and sensitivity to changes in clinometric
testing. A discussion of smart-phone based detection systems is
beyond the scope of this review.

PARKINSON’S MOTOR SYMPTOMS

Gait
A parkinsonian gait is described as shuffling, reduced arm
swing, and multistep turning. The balance impairment and
freezing that can develop increases the risk of falling and has
an unpredictable response to treatment. Common assessments of
gait include the Timed Up and Go test (Zampieri et al., 2010),
Berg Balance Scale (Kerr et al., 2010), and the gait subscores
of the UPDRS. Wearable sensors have been applied widely
in analyzing gait because of its stereotyped movements and
ability to be measured by single sensor positioning with three-
dimensional analysis (Maetzler et al., 2016). Among PD patients,
studies suggest that jerk (first derivative of acceleration) and
RMS (root mean square of acceleration) measures taken from
the trunk are useful and sensitive in detecting changes in balance
and standing (Hubble et al., 2015) Trunk sway measurements
in PD patients have also demonstrated significant deviation
in angular velocity in the anterior-posterior and medial-lateral
planes during stance tasks(Adkin et al., 2005). Harmonic ratio, a
measure of walking stability or stride to stride variability, is based
on calculations from three axes of motion. It has emerged as a
sensitive parameter for differentiating PD patients from controls
(Lowry et al., 2009), as well as detecting those with freezing
(Weiss et al., 2015).

Device(s)

DynaPort MiniMod Hybrid(McRoberts, The Hague,
Netherlands) contains both a triaxial accelerometer and
gyroscope that is worn on the lower back. It is registered as a
Class I Medical Device by the Food and Drug Administration
and is utilized predominantly in an ambulatory setting. The
algorithm used in this system can detect missteps during
activities of daily living and has been validated to assess fall risks
in PD patients (Weiss et al., 2014) based on parameters such as
gait variability, consistency of gait patterns, and smoothness of
gait.

Physilog (BioAGM, La Tourde-Peilz, Switzerland) attaches
inertial sensors (gyroscopes and accelerometers) on various body
parts (e.g., forearms, shanks, thighs, and sternum) to assess
spatio-temporal parameters of gait: Stride length, stride velocity,
stance double support and gait cycle (Salarian et al., 2013). In
a study with PD patients with STN-DBS, significant differences
were found among the gait parameters measured by this system
when compared to controls, and showed high sensitivity and
specificity for detecting changes in body posture (e.g., sitting,
standing, walking, lying). Furthermore, a significant correlation
between stride length and UPDRS gait subscore was found in this
cohort (Salarian et al., 2004).

Mobility Lab System (APDM, Portland, OR) includes
both ambulatory PD monitoring as well as expansive
analytical software that measures outcomes from a watch
size device containing six sensors that acquire 3-D linear
acceleration, angular velocity and magnetic field information
for directional orientation from accelerometers, gyroscopes,
and magnetometers, respectively (Washabaugh et al., 2017).
iSway and iTUG are two of the modules within the software
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system. iTUG’s gait calculations, including stride length, velocity,
cadence, trunk movements, turning, and turn to sit, were
deemed to be most reliable and correlated well to the UPDRS
III (Zampieri et al., 2010). iSWAY has also been validated to
measure dynamics of postural control (Mancini et al., 2012).

The following three devices effectively measure physical
activity through activity of daily living in order to determine
overall gait pattern changes. Stepwatch 3 is an ankle
accelerometer placed on the leg that counts strides. Its
monitoring activity has been shown to be valid and reliable
in detecting changes in ambulatory activity (Cavanaugh et al.,
2012). Tritract RT3 (Hale et al., 2008) is a triaxial accelerometer
that is worn on the lower back and tracks physical activity
in 1-min epochs for up to 21 days. The sensor was found to
reliably distinguish PD patients with different levels of mobility
when compared to a recall questionnaire. Along the same line,
the Axivity (AX3) triaxial accelerometer, which can record
movement for up to 21 consecutive days, was shown to assess fall
risk among PD patients based on changes in walking patterns
(Godinho et al., 2016).

Tremor
Tremor analysis delineates a tremor by frequency and amplitude.
Tremor amplitude has been demonstrated to produce the
greatest degree of disability and its displacement along a linear
or angular axis can be differentiated with accelerometers or
gyroscopes (Hess and Pullman, 2012). The addition of EMG to
the analysis can further elaborate on the muscle groups recruited
or synchronized during tremor generation providing a useful,
quantifiable method for distinguishing various tremor subtypes.
In general, wearable sensors usually employ an accelerometer
encased in a miniaturized device such as a smart watch or
phone app to capture the presence of tremor, but do not provide
diagnostically relevant information on the nature of the tremor.
Tremor algorithms tend to rely on power spectral analysis across
a frequency range, (Giuffrida et al., 2009) usually in the 3-8Hz
domain.

Device(s)

The Kinesia (Great Lake Neurotechnologies, Cleveland, OH)
sensor incorporates both accelerometers and gyroscopes in a
small compact sensor device worn on a finger. The data captured
on PD patients assess rest, postural and kinetic tremor. The
quantitative kinematic data was highly correlated with the
UPDRS scores for all aspects of tremor (Giuffrida et al., 2009).

Physilog (BioAGM, La Tourde-Peilz, Switzerland) sensor
achieved large sensitivity and specificity (99.5 and 94.2%,
respectively) for detecting tremor. There was also a high
correlation between the estimated tremor amplitude and the
UPDRS rest and action tremor subscores (Salarian et al., 2007b).

Bradykinesia
Bradykinesia, or the slow execution of movement (Marsden,
1989) manifests as a decrementation in the amplitude of
repetitive movement. Assessment of bradykinesia has relied
on the UPDRS, which is capable of demonstrating clinical
changes, but may not be sensitive enough to parcellate the

kinematic changes underlying the reduction in movement.
Motion sensors offer objective measures of bradykinesia based
on calculating the mean acceleration of movement from either
a uniaxial or bi-axial accelerometer. A 1 to 3.5Hz signal range
(Dunnewold et al., 1997) is used in these measurements as this
is the bandwidth where voluntary movements usually occur.
Coexistent tremor does not affect the measurement of these
movements.

Device(s)

The kinesia sensor (Great Lake Neurotechnologies, Cleveland,
OH) was shown (Mera et al., 2012) to quantify the changes in
speed, amplitude and rhythm of distal motor impairment in PD
patients. Compared to UPDRS III bradykinesia scale, the sensor
was more precise in evaluating the differences in amplitude
and speed, which underscores fatigability or decrementation of
movement.

The Physilog (BioAGM, La Tourde-Peilz, Switzerland)
system demonstrated a high correlation between UPDRS hand
subscores (e.g., finger tapping, hand movements and rapid
alternating movements of the hand) and estimated bradykinesia
measurement. This correlation persisted even with an assessment
window size as short as 5-min (Salarian et al., 2007b).

Motor Fluctuations and Dyskinesia
With long-term exposure of levodopa, patients can develop
disabling motor fluctuations as the benefit of their levodopa
wears off from one dose to another (Nutt, 1995). A subset of
patients can have diphasic dyskinesia with dystonia or predictable
stereotypies emerging at the beginning and end of their levodopa
dose (Fox and Lang, 2008). The nature of motor fluctuations
is garnered from paper-based diaries such as the Hauser diary
(Hauser et al., 2006). These patient direct self-reporting systems
are often subject to recall bias and noncompliance.

The use of wearable sensors to better assess motor fluctuations
continues to grow and be refined. Motion sensors largely
utilizing accelerometers have shown an accuracy of 70-90% to
measuring fluctuations (Hoff et al., 2004; Keijsers et al., 2006;
Griffiths et al., 2012; Pulliam et al., 2017), Dyskinetic movements
are represented in low-frequency range often <3Hz (Keijsers
et al., 2003; Pulliam et al., 2014) and can be assessed by both
accelerometers and gyroscopes with studies reporting accuracies
close to 90% (Tsipouras et al., 2010, 2011). However, the quality
of the dyskinesia (e.g., location, phenotypic variability including
dystonic components) is not differentiated by these sensors.

Device(s)

The Parkinson’s Kinetigraph (PKG, Global Kinetics Corporation,
Melbourne, Australia) is a wrist-worn logger that utilizes an
accelerometer to measure the spectral power profile of low
frequencies related to bradykinesia. Using a fuzzy logic based
algorithm, the sensor captures bradykinesia and dyskinesia
scores in 2-min epochs over 10 days. Both the bradykinesia
and dyskinesia scores are highly correlated with the UPDRS
III and AIMS (Griffiths et al., 2012). Motor fluctuations
were distinguished by summing the interquartile range of
bradykinesia and dyskinesia scores into an objective fluctuator
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score (Horne et al., 2015). This score was able to distinguish
fluctuators from non fluctuators with a sensitivity of 97% and a
specificity of 88%.

The KinetiSense motion system (Great Lake
Neurotechnologies) consists of sensors with triaxial gyroscopes
and accelerometers worn on three body parts. The device’s
dyskinesia measurements demonstrated a high correlation with
the AIMS scale as well as 80% predictive value for the algorithm
(Pulliam et al., 2017).

MACHINE LEARNING ALGORITHMS

Machine learning (ML) algorithms, such as decision trees (DTs),
random forest (RF), support vector machines (SVM), logistic
regression (LR), naïve Bayes, hidden Markov models (HMMs),
neural networks (NNs), clustering algorithms, etc. have been
successfully applied in prediction and classification in medicine
(Tripoliti et al., 2013; Holzinger, 2016). In the recent years,
researchers have started exploring the possibility of using these
algorithms to improve upon the assessment and management
of PD patients (Eskofier et al., 2013; Tripoliti et al., 2013;
Miljkovic et al., 2016). The use of ML algorithms in sensor based
PD motor assessment is particularly important and promising
due to its ability to expand traditional statistical methods into
high dimensionality and nonlinear space for the volume data
generated (Kubota et al., 2016)

Machine learning algorithms can generally be categorized into
two classes, namely, supervised and unsupervised algorithms.
Supervised learning algorithms require ground truth (e.g., direct
measurements or observations) for the data used in training and
testing. That is, given a set of input features and labeled response
variables, the algorithms can “learn” the hidden patterns that
associate the set of inputs to the responses and generalize these
learning’s to new observations. In ML, this refers to making
a “prediction” for the new observation. Unsupervised learning
algorithms, however, do not require ground truth. Instead, they
are typically used to group the data into clusters with respect to
their similarities.

In this section, we introduce some of the more popular
machine learning algorithms. These algorithms are in general
versatile and can be used to improve care and guide treatment
planning with respect of an array of PD patient symptoms. Here,
we highlight some of their recent applications in assessing PD
motor symptoms.

DECISION TREES AND RANDOM FOREST

ALGORITHMS

The DT algorithm is a machine learning technique that can be
applied both for classification and regression analyses (Gordon
et al., 1984). During the training stage, a collection of training
data samples guides the construction of the tree-like structure.
At the beginning, all the data is assigned to the root node. At
each node of the tree, the algorithm generates a decision rule
that splits the data samples into a number of subgroups, and one
child node is created for each subgroup. Typically, the decision

rule uses a single feature for the split –if the gait score is above
a certain threshold, assign the DBS patient to low-frequency
stimulation group, otherwise assign the DBS patient to high-
frequency stimulation group. The choice of the splitting feature
and the decision rule is based on some statistical criterion, such as
the information gain, or gini impurity (Mitchell, 1997). If used for
classification, the leaf nodes are labeled using the majority label of
the data that they contain. When classifying a new data point, the
algorithm passes the data point through the decision tree until
it reaches the leaf node, and the label of the final leaf node is
used as the prediction. Due to similarity with human decision
making, the algorithm is easy to understand for practitioners
(Goldman et al., 1982) DT algorithms have been effectively
applied for the general classification and evaluation of movement
activities collected from wearable sensors (Preece et al., 2009),
which can provide an assessment of treatments for PD patients.
An automatic UPDRS scoring system that uses wearable wrist-
watch-type sensor measurements was developed (Jeon et al.,
2017), in which the authors compared a few ML algorithms. The
raw sensor data were parsed using standard signal processing
techniques (Oppenheim and Schafer, 1989) to generate input
features (e.g., mean amplitude, mean frequency, signal power,
etc.) In this study, DT outperformed other algorithms in
automatic scoring of Parkinson’s tremor severity and achieved an
accuracy of 85.5% compared to the tremor severity UPDRS scores
provided by the professional neurologists.

Although simple to use and interpret, the DT algorithm is
sensitive to the idiosyncrasies of the training data. To improve
the robustness, the RF algorithm (Breiman, 2001) constructs a
collection of trees by randomizing a choice of splitting features
in addition to using different subsets of the training data for
each tree. To generate a new prediction, the ensemble of decision
trees combines the predictions of the individual trees (using the
majority rule). The RFmodel typically improves the quality of the
predictions over the single decision tree, but the results are not as
easy to interpret.

RF models have been successfully applied in PD. For instance,
these models have been used to predict the optimal stimulation
frequency after the DBS implantation surgery based on the
Unified Parkinson’s disease Rating Scale (UPDRS III) scores
collected at or before surgery (Khojandi et al., 2017) These
models have also shown promise when used on the data
collected from wearable sensors. Kuhner et al. (2017) captured
3D inertial measurements from a motion capture suit consisting
ofmagnetometers, accelerometers, and gyroscopes in PD patients
with DBS switched-off or -on, as well as healthy controls.
Utilizing an RF model with probability distribution on data
derived from various clinical tasks, they demonstrated the ability
to detect PD patients off DBS from healthy subjects with high
sensitivity and specificity. Tripoliti et al. (2013) used DT and RF
models to predict the freezing of gait events in patients suffering
from PD based on the information from the wearable sensors.
The raw data were preprocessed to extract the entropy in the
signals corresponding to the freezing of gate episodes alongside
with the data from the symptom-free episodes. The authors
reported 96% prediction accuracy when detecting the freezing of
gate events. The decision trees were also effectively applied for
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the general classification and evaluation of movement activities
(Preece et al., 2009) as well as resting tremor (Rigas et al., 2009).
The built-in smartphone sensors were used (Arora et al., 2015) to
provide a phone application for monitoring the symptoms of the
PD using voice, posture, gait, finger tapping, and response times.
The classification model based on RF provided 96% accuracy in
predicting the motor scores of the UPDRS. (Mazilu et al., 2012)
developed an RF prediction model for the freezing of gait by
utilizing signals from a smartphone and wearable accelerometers
with a reported accuracy of 98%.

SUPPORT VECTOR MACHINE

ALGORITHM

SVM is another popular machine learning technique that is
among the most successful tools for classification (Cortes and
Vapnik, 1995). The SVM learning algorithm maps predictor
variables to high-dimensional spaces, where the data is separated
by finding a hyperplane that maximizes the “gap” between
different data classes. In case of binary classification tasks, a
new data point ends up either on one side of the separating
hyperplane or another, generating the corresponding predictions.
In (Eskofier et al., 2013) the authors collected the sensor data on
the gait features of subjects walking on a treadmill. The SVM
model provided a classification of the elderly vs. young walkers
with 95% accuracy. The SVM algorithm was employed to classify
Hoehn and Yahr stages and motor impairment levels (UPDRS-
III) based on inputs from the wearable sensors (Klucken et al.,
2013). Abnormalities of gait in Parkinson’s patients were also
detected using the SVM model with inputs from the wireless
inertial sensors (Tien et al., 2010).

LOGISTIC REGRESSION

Logistic regression can be viewed as an extension of the
linear regression to the data with categorical response variables
(Agresti, 1990). The logistic regression function maps data
records to the interval [0,1], so the response variables represent
the likelihood of belonging to each of the target classes. Logistic
regression was employed to classify movements (e.g., walking,
standing, sitting) of the PD patients with the goal of providing
objective information about the clinical outcomes (Albert et al.,
2012). The subjects performed predefined set of activities to
generate input signals and labels, while the raw accelerometer
signals were split into 10-s segments labeled by the corresponding
activity. A classification tool based on an LR model was designed
by Salarian et al. (2007a) to classify the daily activities (posture
transitions) of PD patients with DBS implants (e.g., walking,
standing, sitting, and lying). The feature extraction and noise
removal from the raw gyroscope signals was performed using
the digital filter algorithms. Yokoe et al. (2009) used an LR
model to develop an automatic finger tapping test system for PD
patients to provide objective classification instead of relying on
the possibly subjective visual evaluations by neurologists. The
input data was obtained by observing finger tapping activities
performed by PD patients and recording different measures of
their durations and rhythm.

BAYESIAN NETWORK CLASSIFIERS

Bayesian networks (Koller and Friedman, 2009), or multivariate
Gaussian classifiers, are a type of probabilistic graphical models
that represent probability distributions. Naïve Bayes classifiers, a
special case of Bayesian networks, are a family of probabilistic
classifiers that rely on Bayes’ theorem and independence
assumption to stratify inputs into output classes. Specifically,
they make a relatively strong assumption that input features are
conditionally independent given the output’s class. Despite this
assumption, Naïve Bayes classifiers have shown great potential
in classification tasks in various domains such as medicine
and engineering, particularly when the features are weakly
relevant (Hand and Yu, 2001). In PD domain, Tripoliti et al.
(2013) apply Naïve Bayes to the data collected from wearable
accelerometers and gyroscopes sensors, after preprocessing and
feature extraction, to detect freezing of gait events. For each
sensor, the authors extract entropy from each of the three
axes using sliding windows. In this study, the Naïve Bayes
algorithm can detect freezing of gate events with approximately
92% accuracy Other examples of Bayesian networks used in
classification/prediction tasks are HMMs, which assume that
the evolution of the process is Markovian where the states
are unobserved (or hidden) (Koller and Friedman, 2009).
For instance, (Rigas et al., 2009) use HMMs on the data
collected from wearable sensors, after preprocessing and feature
extraction, to accurately classify tremor severity and their type,
if present, as resting vs. postural. The authors use a band-
pass finite-impulse-response (FIR) filter and a low-pass FIR
filter to extract the signal corresponding to tremor-induced and
non-tremor-induced movements, respectively, allowing for the
differentiation of tremor from other PD symptoms. Next, they
use sliding windows on the processed signals and extract features
such as mechanical energy of the motion, entropy, dominant
frequency, and energy on dominant frequency, etc. for tremor
recognition and features such as average acceleration energy of
the low-frequency signal, the angles between pairs of sensors, and
the angles between each sensor and the three reference axes for
action/posture recognition. The developed models can quantify
tremor severity with 87% accuracy and are able to discriminate
resting tremor from postural tremor, and tremor from other PD
motor symptoms during daily activities.

NEURAL NETWORKS

NNs (Hassoun, 1995) are powerful computational models
comprised of interconnected information processing units,
typically referred to as neurons. NNs can be used to relate a
set of input parameter to outputs through a highly nonlinear
relationship. Deep learning (DL) (LeCun et al., 2015), which
generally refers to the use of many layers of neurons, have
recently gained widespread attention, mainly due to their
superior performance in pattern and image recognition tasks.
In the recent years, NN and DL have been used in various
detection tasks in PD. For instance, (Das, 2010) uses NN
to analyze the voice of healthy subjects and PD patients to
accurately identify PD patients. The authors use a dataset of a
range of biomedical voice measurements from the subjects and

Frontiers in Computational Neuroscience | www.frontiersin.org 5 September 2018 | Volume 12 | Article 72

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ramdhani et al. Optimizing Clinical Assessments in PD

patients and achieve a classification accuracy of approximately
93%. In another study, DL, particularly, a convolutional NN
(CNN), is used to detect bradykinesia based on the data
collected from wearable sensors (Eskofier et al., 2013). As the
input, the authors use three one-dimensional vectors based
on the data collected from three axes of the accelerometer
sensor. The network architecture includes two convolutional
layers and two fully connected layers. The results show
that out of the total of 960 tasks (60% of which marked
“bradykinesia present”), approximately 91% were classified
correctly.

ML algorithms require a set of features as the input to
predict/classify an outcome. Dependent on the type of input and
the choice of algorithm, different techniques may be used to
represent the input parameters. When the input data is derived
from wearable sensors, typically signal processing approaches,
possibly combined with sliding windows, are used to extract
features (Dinesh et al., 2016). Recent studies have started
exploring the use of raw data in CNN to allow the algorithm
find the best way of extracting features from the input (Eskofier
et al., 2013). Sometimes, the use of all features may result in
noise or inaccuracies in the model. In these cases, techniques
such as Principal Component Analysis (PCA) may be used to
construct linearly uncorrelated variables from the feature set.
For instance, Muniz et al. (2010) use PCA to extract features
from walking trials data of DBS patients with and without PD.
Specifically, they collect ground reaction force (GRF) using force
platforms from 43 subjects for 10-s, resulting in 202 GRF samples
per subject for both right and left limbs. After preprocessing,
they apply PCA to the covariance matrices of sizes 202 × 202
then use the broken stick criterion (Jolliffe, 2002) to determine
the number of principal components to retain in the model.
Finally, the authors use the resulting extracted features in various
ML algorithms including probabilistic neural network, LR and
SVM to stratify PD and non-PD patients. These models achieved
average accuracies of approximately 93, 92, and 95%, respectively.

UNSUPERVISED LEARNING

As discussed, apart from the aforementioned machine
learning algorithms, which generally fall or are typically
used for supervised learning (learning when there is a ground
truth/information from direct observations), there are some
algorithms that are mostly developed for unsupervised learning
or clustering. These algorithms are generally used for exploratory
data analysis. For instance, K-means algorithm aims to cluster
the observations into K pre-defined number of groups based
on their similarities. Palmerini et al. (2013) applied K-means
to identify clinical subtypes of PD based on the data from a
postural test. They assess the clustering results using Silhouette
value (Rousseeuw, 1987), which is a measure of the dissimilarity
of each subject with other subjects within the cluster and
across other clusters. They results indicate that their clustering
structure obtains an average silhouette value of 0.7, suggesting a
reasonable-to-strong structure captured in the data. In another
study (Hssayeni et al., 2016) a semi-supervised classification

algorithm based on K-means was developed to automatically
assess the ON and OFF medication states of PD patients based
on the motor fluctuations recorded by the sensors worn on
the trunk as well as the leg on the side that is more affected by
PD motor impairment. In this semi-supervised algorithm, first
clustering is performed to group data based on similarities and
then two approaches are used to assign ON and OFF medication
states labels to the clusters. The authors use the data collected
from triaxial gyroscope sensors for 12 PD patients engaging in
a set of activities, such as drinking from a cup, walking, and
cutting food, and derive features such as the rate of change in the
angular velocity, signal power, entropy, correlation coefficient,
among others. The results indicate an average accuracy of 76%
for all patients, ranging from approximately 43 to 100% across
individual patients.

CHALLENGES IN MACHINE LEARNING

PLATFORM APPLICATIONS

Machine learning algorithms vary from many aspects such as the
inherent rationale, effort needed for training, and the number of
hyperparameters to tune with respect to the noise level of the data
collected, etc. Overfitting or underfitting can occur in statistical
learning (Friedman et al., 2001). Overfitting occurs when the
model excessively adapts itself to the training data to the extent
that it no longer generalizes well to additional/future data. On
the other hand, underfitting occurs when the model is missing
important parameters or terms, hence it cannot sufficiently
capture the relationship between observations and response
variables, resulting in poor performance and generalization.

In general, unless the model is underfitted, given an
appropriate hypothesis, a large dataset results in better
performance from algorithms. Certain algorithms, such as DT
and RF, generally have few hyperparameters and hence, can
perform well using relatively small datasets. However, some
algorithms, i.e., NNs, typically require large amounts of data
and high efforts for training to perform reasonably well, mainly
because of the generally high number of hyperparameters
that need to be tuned. Because of the high number of
hyperparameters, NNs are generally prone to overfitting. Hence,
it is important to use an array of techniques (e.g., regularization,
cross-validation, etc.) (Friedman et al., 2001), to avoid such
issues.

When the properties of the data sets change over time
(non-stationary data), the drifting latent dependencies create
a serious challenge in traditional ML. ML algorithms are
generally trained on curated data sets collected under specific
conditions. In the PD population, the dynamic non-stationary
nature of their symptoms will likely lead to a discrepancy
between the trained and observed data.While simpler algorithms
may allay some of the data drift issues, its predictive value is
low due to underfitted models (Kubota et al., 2016). Hence,
harnessing large training data from a diverse set of patients over
various sensor deployments would be preferred mechanism of
implementation for this study population. However, robustness
for feedback application may be limited as a result (Kubota
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et al., 2016). In addition, online machine learning methods have
been successfully used to deal with non-stationarity (Bifet, 2010;
Calandra et al., 2012).

Since machine learning algorithms are not modular, it is
imperative that the input data be in the same form as the trained
data (Sculley et al., 2015). This must be taken into account when
considering the type of inertial sensor and ML systems to use
in a study design. Furthermore the interpretability of the data
from PD cohorts have been fraught with misleading information
including actions that mimic tremor or lack of environmental
changes to analyzing gait in a real world environment (Michael,
2016).

Therefore, while correlating ML models with clinometric
scales such as the UPDRS may have research relevance, there
may be limited translational use for this approach due to the
continuous and multidimensional data that is acquired from
wearable sensors.

CONCLUSION

The rapid growth of wearable motion sensors in assessing
PD symptoms offers new clinical insights into the nature and

characteristics of motor disability. There remain considerable
variability and lack of standardization in the technology
platforms, type of clinometric data acquired, and remote
monitoring resolution as it relates to sensor location(s).
Nevertheless, the objective, non-biased data provided by
wearables not only stands to augment clinical care, but also
engenders an opportunity to deliver a more individualized
treatment approach to a disease that has phenotypic and
genotypic heterogeneity. With closed-loop DBS and new drug
delivery pump systems on the horizon for PD, one can envision
sensor data acting as a feed-forward mechanism to refine
and modulate the degree of therapeutic gain. Such real-time
measurements can also serve as the foundation for developing
predictive models and stratification of patients into various
treatment modes enabling more efficient management of their
motor disability.
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