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1. Introduction

The concept of "neutrosophic set" was first given by F. Smarandache [4,5].
[1] presented the concept of neutrosophic
Al-Hamido and R. Dhavaseelan [6]
topological spaces. In 2014, A. A. Salama
neutrosophic crisp topological space
neutrosophic crisp semi--closed sets
spaces. We also present neutrosophic
some of its properties. 

2. Preliminaries

Throughout this paper, (𝒰, 𝑇)
complement of a neutrosophic crisp open set
NC-CS) in (𝒰, 𝑇). For a neutrosophic
𝑁𝐶𝑖𝑛𝑡(𝒜) and 𝒜  denote the neutrosophic
trosophic crisp complement of 𝒜, respectively.

Definition 2.1: 
A neutrosophic crisp subset 𝒜 of a neutrosophic
(i) A neutrosophic crisp pre-open set (briefly
OS is called a neutrosophic crisp pre
CS) of 𝒰 is denoted by NCPO(𝒰) (resp.
(ii) A neutrosophic crisp semi-open set (briefly
NCS-OS is called a neutrosophic crisp
(resp. NCS-CS) of 𝒰 is denoted by NC
(iii) A neutrosophic crisp α-open set (briefly
of a NCα-OS is called a neutrosophic crisp
(resp. NCα-CS) of 𝒰 is denoted by N

Definition 2.2: 
(i) The neutrosophic crisp pre-interior of a
(𝒰, 𝑇) is the union of all NCP-OS contained in
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A. Salama, F. Smarandache and V. Kroumov [2] present

crisp topological space (briefly NCTS). The objective of this paper is to 
closed sets and study their fundamental properties in neutrosophic

neutrosophic crisp semi--closure and neutrosophic crisp semi

) (or simply 𝒰) always mean a neutrosophic crisp topological space.
crisp open set (briefly NC-OS) is called a neutrosophic crisp closed set (briefly

neutrosophic crisp set 𝒜 in a neutrosophic crisp topological space
neutrosophic crisp closure of 𝒜, the neutrosophic crisp interior of

respectively. 

neutrosophic crisp topological space (𝒰, 𝑇) is said to be:
open set (briefly NCP-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)). The complement of a

pre-closed set (briefly NCP-CS) in (𝒰, 𝑇). The family of all
) (resp. NCPC(𝒰)). 
open set (briefly NCS-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). The complement of a

crisp semi-closed set (briefly NCS-CS) in (𝒰, 𝑇). The family of all
NCSO(𝒰) (resp. NCSC(𝒰)). 

open set (briefly NCα-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜
neutrosophic crisp α-closed set (briefly NCα-CS) in (𝒰, 𝑇). The family of all

NCαO(𝒰) (resp. NCαC(𝒰)). 

interior of a neutrosophic crisp set 𝒜 of a neutrosophic 
contained in 𝒜 and is denoted by 𝑃𝑁𝐶𝑖𝑛𝑡(𝒜)[3]. 
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(ii) The neutrosophic crisp semi-interior of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the union of all NCS-OS contained in 𝒜 and is denoted by 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)[3]. 
(iii) The neutrosophic crisp α-interior of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the union of all NCα-OS contained in 𝒜 and is denoted by 𝛼𝑁𝐶𝑖𝑛𝑡(𝒜)[3]. 

Definition 2.3: 
(i) The neutrosophic crisp pre-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCP-CS that contain 𝒜 and is denoted by 𝑃𝑁𝐶𝑐𝑙(𝒜)[3]. 
(ii) The neutrosophic crisp semi-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCS-CS that contain 𝒜 and is denoted by 𝑆𝑁𝐶𝑐𝑙(𝒜)[3]. 
(iii) The neutrosophic crisp α-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCα-CS that contain 𝒜 and is denoted by 𝛼𝑁𝐶𝑐𝑙(𝒜)[3]. 

Proposition 2.4 [7]:  
In a neutrosophic crisp topological space (𝒰, 𝑇) , the following statements hold, and the equality of each 
statement are not true: 
(i) Every NC-CS (resp. NC-OS) is a NCα-CS (resp. NCα-OS). 
(ii) Every NCα-CS (resp. NCα-OS) is a NCS-CS (resp. NCS-OS). 
(iii) Every NCα-CS (resp. NCα-OS) is a NCP-CS (resp. NCP-OS). 

Proposition 2.5 [7]:   
A neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇) is a NCα-CS (resp. NCα-OS) iff 
𝒜 is a NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS). 

Theorem 2.6 [7]: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), 𝒜 ∈ NCαO(𝒰) iff there 
exists a NC-OS ℋ such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)). 

Proposition 2.7 [7]: 
The union of any family of NCα-OS is a NCα-OS. 

Proposition 2.8: 
(i) If 𝒦 is a NC-OS, then 𝑆𝑁𝐶𝑐𝑙(𝒦) = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒦)). 
(ii) If 𝒜 is a neutrosophic crisp subset of a neutrosophic crisp topological space (𝒰, 𝑇), then 
𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))). 
Proof: This follows directly from the definition (2.1) and proposition (2.4). 

3. Neutrosophic Crisp Semi-𝛂-Closed Sets

In this section, we present and study the neutrosophic crisp semi-α-closed sets and some of its properties. 

Definition 3.1:  
A neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇) is called neutrosophic crisp semi-
α-closed set (briefly NCSα-CS) if there exists a NCα-CS ℋ in 𝒰 such that 𝑁𝐶𝑖𝑛𝑡(ℋ) ⊆ 𝒜 ⊆ ℋ or equivalently 
if 𝑁𝐶𝑖𝑛𝑡(𝛼𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝒜. The family of all NCSα-CS of 𝒰 is denoted by NCSαC(𝒰). 

Definition 3.2:  
A neutrosophic crisp set 𝒜 is called a neutrosophic crisp semi-α-open set (briefly NCSα-OS) if and only if its 
complement 𝒜  is a NCSα-CS or equivalently if there exists a NCα-OS ℋ in 𝒰 such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(ℋ). 
The family of all NCSα-OS of 𝒰 is denoted by NCSαO(𝒰). 

Proposition 3.3:  
It is evident by definitions that in a neutrosophic crisp topological space (𝒰, 𝑇), the following hold: 
(i) Every NC-CS (resp. NC-OS) is a NCSα-CS (resp. NCSα-OS). 
(ii) Every NCα-CS (resp. NCα-OS) is a NCSα-CS (resp. NCSα-OS). 
The converse of Proposition (3.3) need not be true as shown by the following example. 

Example 3.4:  
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜 = 〈{𝑝}, {𝑞, 𝑠}, {𝑟}〉, ℬ = 〈{𝑝}, {𝑞}, {𝑟}〉 .Then 𝑇 = {∅ , 𝒜, ℬ, 𝒰 }  is a neutrosophic crisp 
topology on 𝒰. 
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(i) Let  ℋ = 〈{𝑝}, {𝑞, 𝑟, 𝑠}, ∅〉, 𝒜 ⊆ ℋ ⊆ 𝑁𝐶𝑐𝑙(𝒜) = 𝒰 , the neutrosophic crisp set ℋ is a NCSα-OS but not 
NC-OS. It is clear that ℋ = 〈{𝑞, 𝑟, 𝑠}, {𝑝}, 𝒰〉 is a NCSα-CS but not NC-CS. 
(ii) Let 𝒦 = 〈∅, {𝑞, 𝑟, 𝑠}, {𝑟, 𝑠}〉 and so 𝒦 ⊈ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒦))), the neutrosophic crisp set 𝒦 is a NCSα-
OS but not NCα-OS. It is clear that 𝒦 = 〈𝒰, {𝑝}, {𝑝, 𝑞}〉 is a NCSα-CS but not NCα-CS. 

Remark 3.5:  
The concepts of NCSα-CS (resp. NCSα-OS) and NCP-CS (resp. NCP-OS) are independent, as the following 
examples show. 

Example 3.6:   
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜 = 〈{𝑝}, {𝑞}, {𝑟}〉, ℬ = 〈{𝑟}, {𝑞}, {𝑠}〉, 𝒞 = 〈{𝑝, 𝑟}, {𝑞}, ∅〉, 𝒟 = 〈∅, {𝑞}, {𝑟, 𝑠}〉.  
Then 𝑇 = {∅ , 𝒜, ℬ, 𝒞, 𝒟, 𝒰 } is a neutrosophic crisp topology on 𝒰 . Let ℋ = 〈{𝑟, 𝑠}, {𝑝, 𝑞}, {𝑠}〉, ℬ ⊆ ℋ ⊆
𝑁𝐶𝑐𝑙(ℬ) = 〈{𝑟, 𝑠}, {𝑞}, ∅〉, the neutrosophic crisp set ℋ is a NCSα-OS but not NCP-OS. It is clear that ℋ =
〈{𝑠}, {𝑝, 𝑞}, {𝑟, 𝑠}〉 is a NCSα-CS but not NCP-CS. 

Example 3.7: 
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜 = 〈{𝑝}, {𝑞}, {𝑟}〉, 𝒜 = 〈{𝑝}, {𝑞, 𝑠}, {𝑟}〉 . Then 𝑇 = {∅ , 𝒜 , 𝒜 , 𝒰 }  is a neutrosophic 
crisp topology on 𝒰. If 𝒜 = 〈{𝑝, 𝑞}, {𝑟}, {𝑠}〉, then 𝒜  is a NCP-OS but not NCSα-OS. It is clear that 𝒜 =
〈{𝑠}, {𝑟}, {𝑝, 𝑞}〉 is a NCP-CS but not NCSα-CS. 

Remark 3.8: 
(i) If every NC-OS is a NC-CS and every nowhere neutrosophic crisp dense set is NC-CS in any neutrosophic crisp 
topological space (𝒰, 𝑇), then every NCSα-CS (resp. NCSα-OS) is a NC-CS (resp. NC-OS).  
(ii) If every NC - OS  is a NC - CS  in any neutrosophic crisp topological space (𝒰, 𝑇) , then every NCSα -CS 
(resp. NCSα-OS) is a NCα-CS (resp. NCα-OS). 

Remark 3.9:  
(i) It is clear that every NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS) of any neutrosophic crisp 
topological space (𝒰, 𝑇) is a NCSα-CS (resp. NCSα-OS) (by Proposition (2.5) and Proposition (3.3) (ii)). 
(ii) A NCSα-CS (resp. NCSα-OS) in any neutrosophic crisp topological space (𝒰, 𝑇) is a NCP-CS (resp. NCP-OS) 
if every NC-OS of 𝒰 is a NC-CS (from Proposition (2.4) (iii) and Remark (3.8) (ii)). 

Theorem 3.10: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇). The following properties 
are equivalent: 
(i) 𝒜 ∈ NCSαO(𝒰). 
(ii) There exists a NC-OS, say ℋ, such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). 
(iii) 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let 𝒜 ∈ NCSαO(𝒰). Then, there exists 𝒦 ∈ NCαO(𝒰), such that 𝒦 ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝒦). Hence there 
exists ℋ NC-OS such that ℋ ⊆ 𝒦 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))(by Theorem (2.6)). Therefore, 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝒦) ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), implies that 𝑁𝐶𝑐𝑙(𝒦) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))).  
Then ℋ ⊆ 𝒦 ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝒦) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). Hence, ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for 
some ℋ NC-OS. 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose that there exists a NC-OS ℋ such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). We know that 
𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. On the other hand, ℋ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) (since 𝑁𝐶𝑖𝑛𝑡(𝒜) is the largest NC-OS contained in 𝒜). 
Hence 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)), then 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))),  
therefore 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). But 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) 
(by hypothesis). Hence 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))),  
then 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
(𝑖𝑖𝑖) ⟹ (𝑖)  Let 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) . To prove 𝒜 ∈ NCSαO(𝒰) , let 𝒦 = 𝑁𝐶𝑖𝑛𝑡(𝒜) ; we 
know that 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. To prove 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)).  
Since 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). 
Hence, 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)).  
But 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) (by hypothesis). Hence, 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) 
⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⟹ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). Hence, there exists an NC-OS  say 𝒦 , such that 𝒦 ⊆ 𝒜 ⊆
𝑁𝐶𝑐𝑙(𝒜). On the other hand, 𝒦 is a NCα-OS (since 𝒦 is a NC-OS). Hence 𝒜 ∈ NCSαO(𝒰). 
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Corollary 3.11: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
are equivalent: 
(i)  𝒜 ∈ NCSαC(𝒰). 
(ii) There exists a NC-CS ℱ such that 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⊆ ℱ. 
(iii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜. 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let  𝒜 ∈ NCSαC(𝒰), then 𝒜 ∈ NCSαO(𝒰). Hence there is ℋ NC-OS such that ℋ ⊆ 𝒜 ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) (by Theorem (3.10)). Hence (𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)))) ⊆ 𝒜 ⊆ ℋ ,  
i.e., 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℋ ))) ⊆ 𝒜 ⊆ ℋ . Let ℋ = ℱ, where ℱ is a NC-CS in 𝒰.
Then 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⊆ ℱ, for some ℱ NC-CS. 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose that there exists ℱ NC-CS such that 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙 𝑁𝐶𝑖𝑛𝑡(ℱ) ⊆ 𝒜 ⊆ ℱ, but 𝑁𝐶𝑐𝑙(𝒜) is 
the smallest NC-CS containing 𝒜. Then 𝑁𝐶𝑐𝑙(𝒜) ⊆ ℱ, and therefore: 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(ℱ)  
⟹ 𝑁𝐶𝑐𝑙 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙 𝑁𝐶𝑖𝑛𝑡(ℱ) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆
𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜. 
(𝑖𝑖𝑖) ⟹ (𝑖)  Let 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜 . To prove  𝒜 ∈ NCSαC(𝒰) , i.e., to prove 𝒜 ∈
NCSαO(𝒰) . Then 𝒜 ⊆ (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜 )))) , but 
(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜 )))).  
Hence 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜 )))), and therefore 𝒜 ∈ NCSαO(𝒰), i.e.,  𝒜 ∈ NCSαC(𝒰). 

Theorem 3.12: 
The union of any family of NCSα-OS is a NCSα-OS. 
Proof: Let {𝒜 } ∈  be a family of NCSα-OS. To prove ⋃ 𝒜∈  is a NCSα-OS. Since 𝒜 ∈ NCSαO(𝒰). Then 
there is a NCα-OS ℬ  such that ℬ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(ℬ ), ∀𝜆 ∈ Λ. Hence ⋃ ℬ∈ ⊆ ⋃ 𝒜∈ ⊆ ⋃ 𝑁𝐶𝑐𝑙(ℬ )∈ ⊆
𝑁𝐶𝑐𝑙(⋃ ℬ∈ ). But ⋃ ℬ∈ ∈ NCαO(𝒰) (by Proposition (2.7)). Hence ⋃ 𝒜∈ ∈ NCSαO(𝒰). 

Corollary 3.13: 
The intersection of any family of NCSα-CS is a NCSα-CS. 
Proof: This follows directly from Theorem (3.12). 

Remark 3.14: 
The following diagram shows the relations among the different types of weakly neutrosophic crisp closed sets 
that were studied in this section: 

NC-CS NCα-CS 

NCP-CS 

NCS-CS 

+ 

NCSα-CS 

+ 

+ 

Diagram (3.1) 

every nowhere NC-dense 
set is a NC-CS 

every NC-OS is a NC-CS 
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4. Neutrosophic Crisp Semi--Closure and Neutrosophic Crisp Semi--Interior

We present neutrosophic crisp semi--closure and neutrosophic crisp semi--interior and obtain some of 
their properties in this section. 

Definition 4.1:  
The intersection of all NCS - CS  in a neutrosophic crisp topological space (𝒰, 𝑇)  containing 𝒜  is called 
neutrosophic crisp semi--closure of 𝒜  and is denoted by 𝑆𝑁𝐶𝑐𝑙(𝒜) , 𝑆𝑁𝐶𝑐𝑙(𝒜) = ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a 
NCS-CS}. 

Definition 4.2:  
The union of all NCS-OS in a neutrosophic crisp topological space (𝒰, 𝑇) contained in 𝒜 is called neutrosophic 
crisp semi--interior of 𝒜 and is denoted by 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜), 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = ⋃{ℬ: ℬ ⊆ 𝒜, ℬ is a NCS-OS}. 

Proposition 4.3:  
Let 𝒜 be any neutrosophic crisp set in a neutrosophic crisp topological space (𝒰, 𝑇), the following properties are 
true: 
(i) 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝒜 iff 𝒜 is a NCS-CS. 
(ii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜 iff 𝒜 is a NCS-OS. 
(iii) 𝑆𝑁𝐶𝑐𝑙(𝒜) is the smallest NCS-CS containing 𝒜. 
(iv) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) is the largest NCS-OS contained in 𝒜. 
Proof: (i), (ii), (iii) and (iv) are obvious. 

Proposition 4.4:  
Let 𝒜 be any neutrosophic crisp set in a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
hold:  
(i) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰 − 𝒜) = 𝒰 − (𝑆𝑁𝐶𝑐𝑙(𝒜)), 
(ii) 𝑆𝑁𝐶𝑐𝑙(𝒰 − 𝒜) = 𝒰 − (𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)). 
Proof: (i) By definition (2.3), 𝑆𝑁𝐶𝑐𝑙(𝒜) = ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 
𝒰 − ( 𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝒰 − ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 

 = ⋃{𝒰 − ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 
 = ⋃{ℋ: ℋ ⊆ 𝒰 − 𝒜, ℋ is a NCS-OS} 
 = 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰 − 𝒜). 

(ii) The proof is similar to (i). 

Theorem 4.5:  
Let 𝒜 and ℬ be two neutrosophic crisp sets in a neutrosophic crisp topological space (𝒰, 𝑇). The following 
properties hold: 
(i) 𝑆𝑁𝐶𝑐𝑙(∅ ) = ∅ , 𝑆𝑁𝐶𝑐𝑙(𝒰 ) = 𝒰 . 
(ii) 𝒜 ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜). 
(iii) 𝒜 ⊆ ℬ ⟹ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). 
(iv) 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)⋂𝑆𝑁𝐶𝑐𝑙(ℬ). 
(v) 𝑆𝑁𝐶𝑐𝑙(𝒜)⋃𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). 
(vi) 𝑆𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝑆𝑁𝐶𝑐𝑙(𝒜). 
Proof: (i) and (ii) are evident. 
(iii) By (ii), ℬ ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Since 𝒜 ⊆ ℬ, we have 𝒜 ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). But 𝑆𝑁𝐶𝑐𝑙(ℬ) is a NCS-CS. Thus 
𝑆𝑁𝐶𝑐𝑙(ℬ) is a NCS-CS containing 𝒜.  
Since 𝑆𝑁𝐶𝑐𝑙(𝒜) is the smallest NCS-CS containing 𝒜 , we have 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Hence, 𝒜 ⊆
ℬ ⟹ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). 
(iv) We know that 𝒜⋂ℬ ⊆ 𝒜  and 𝒜⋂ℬ ⊆ ℬ . Therefore, by (iii), 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)  and 
𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Hence 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)⋂𝑆𝑁𝐶𝑐𝑙(ℬ). 
(v) Since 𝒜 ⊆ 𝒜⋃ℬ and ℬ ⊆ 𝒜⋃ℬ, it follows from part (iii) that 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ)  
and 𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). Hence 𝑆𝑁𝐶𝑐𝑙(𝒜)⋃𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). 
(vi) Since 𝑆𝑁𝐶𝑐𝑙(𝒜) is a NCS-CS, we have by Proposition (4.3)(i), 𝑆𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝑆𝑁𝐶𝑐𝑙(𝒜). 

Theorem 4.6:  
Let 𝒜 and ℬ be two neutrosophic crisp sets in a neutrosophic crisp topological space (𝒰, 𝑇). The following 
properties hold: 
(i) 𝑆𝑁𝐶𝑖𝑛𝑡(∅ ) = ∅ , 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰 ) = 𝒰 . 
(ii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. 
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(iii) 𝒜 ⊆ ℬ ⟹ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(ℬ). 
(iv) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)⋂𝑆𝑁𝐶𝑖𝑛𝑡(ℬ). 
(v) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)⋃𝑆𝑁𝐶𝑖𝑛𝑡(ℬ) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜⋃ℬ). 
(vi) 𝑆𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)) = 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜). 
Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious. 

Proposition 4.7:  
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), then: 
(i) 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝒜). 
(ii) 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iii) 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iv) 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙(𝒜). 
(v) 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙(𝒜). 
(vi) 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝒜⋃𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))). 
(vii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
(viii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑐𝑙(𝒜) . 
Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii). 
(ii) To prove 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜), we know that 𝑁𝐶𝑖𝑛𝑡(𝒜) is a NC-
OS. It follows that 𝑁𝐶𝑖𝑛𝑡(𝒜) is a NCS-OS. Hence 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜)  (by Proposition (4.3)).  
Therefore: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) …...….................................................................(1) 
Since 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) . Also, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Hence: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) …………………...................................................(2) 
Therefore by (1) and (2), we get 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iii) Now we prove 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Since 𝑁𝐶𝑖𝑛𝑡(𝒜) is NC-OS, therefore 𝑁𝐶𝑖𝑛𝑡(𝒜) is NCS-OS. Therefore by Proposition (4.3): 
𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) ………............................................................................(1) 
Now, to prove 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) , we have 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹  
𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) . 
Also, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Hence: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ………………............................................(2) 
Therefore by (1) and (2), we get 𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iv) To prove 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙(𝒜). We know that 𝑁𝐶𝑐𝑙(𝒜) is a NC-CS, so it 
is NCS-CS. Hence by proposition (4.3), we have: 𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) ….......(1) 
To prove 𝑵𝑪𝒄𝒍(𝓐) = 𝑵𝑪𝒄𝒍 𝑺𝑵𝑪𝒄𝒍(𝓐) , we have  𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍(𝓐) (by part (i)). 
Then 𝑵𝑪𝒄𝒍 𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍 𝑵𝑪𝒄𝒍(𝓐) = 𝑵𝑪𝒄𝒍(𝓐) ⟹ 𝑵𝑪𝒄𝒍 𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍(𝓐). 
Since 𝓐 ⊆ 𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍 𝑺𝑵𝑪𝒄𝒍(𝓐) , then  𝓐 ⊆ 𝑵𝑪𝒄𝒍 𝑺𝑵𝑪𝒄𝒍(𝓐) .  
Hence, 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) ⟹ 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜)  
and therefore: 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) ……...........................................................(2) 
Now, by (1) and (2), we get that 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) . Hence 𝑁𝐶𝑐𝑙 𝑆𝑁𝐶𝑐𝑙(𝒜) =
𝑆𝑁𝐶𝑐𝑙 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙(𝒜). 
(vii) To prove 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))), since 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ∈ NCSO(𝒰) ⟹
𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙 𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  
(by part (ii)). Hence, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))), also 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. Then: 
𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))......................................................(1) 
To prove 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is a NCS-OS contained in 𝒜.  
It is clear that 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) and also it is clear 
that 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⟹ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))  ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) . We get 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). Hence 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is a NCS-OS (by Proposition 
(4.3)). Also, 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is contained in 𝒜.  
Then 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)  (since 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)  is the largest NCS - OS 
contained in 𝒜). Hence: 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)...............(2) 
By (1) and (2), we get that 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))).    
(viii) To prove that 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑐𝑙(𝒜) , we know that 𝑆𝑁𝐶𝑐𝑙(𝒜) is a NCS-CS, 
therefore 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜) ))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) (by Corollary (3.11)). Hence 
𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) (by part (iv)). Therefore, 
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𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡 𝑆𝑁𝐶𝑐𝑙(𝒜) ⟹ 𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑐𝑙(𝒜)) (by 
(ii)).    

Theorem 4.8:  
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇). The following properties 
are equivalent: 
(i) 𝒜 ∈ NCSO(𝒰). 
(ii) ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for some NC-OS ℋ. 
(iii) ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)), for some NC-OS ℋ. 
(iv) 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let  𝒜 ∈ NCSO(𝒰), then 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. Hence 
ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), where ℋ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for some NC-OS ℋ. But 𝑆𝑁𝐶𝑖𝑛𝑡 𝑁𝐶𝑐𝑙(ℋ) =
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)))  (by Proposition (2.8)). Then ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) , for some NC-OS ℋ. 
(𝑖𝑖𝑖) ⟹ (𝑖𝑣) Suppose that ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)), for some NC-OS ℋ. Since ℋ is a NC-OS contained in 
𝒜. Then ℋ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) 
⟹ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). But 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) (by hypothesis), then 
𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). 
(𝑖𝑣) ⟹ (𝑖) Let 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))).  
But 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  (by Proposition (2.8)). 
Hence, 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⟹  𝒜 ∈ NCSO(𝒰).     

Corollary 4.9:  
For any neutrosophic crisp subset ℬ of a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
are equivalent: 
(i) ℬ ∈ NCSC(𝒰). 
(ii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(iii) 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(iv) 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ. 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let ℬ ∈ NCSC(𝒰) ⟹  𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ (by Corollary(3.11))  
and ℬ ⊆ 𝑁𝐶𝑐𝑙(ℬ). Hence we obtain 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ ⊆ 𝑁𝐶𝑐𝑙(ℬ).  
Therefore, 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, where ℱ = 𝑁𝐶𝑐𝑙(ℬ). 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Let 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. But 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) =
𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))  (by Proposition (2.8)). Hence 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(𝑖𝑖𝑖) ⟹ (𝑖𝑣) Let 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. Since ℬ ⊆ ℱ (by hypothesis), then we have 
𝑁𝐶𝑐𝑙(ℬ) ⊆ ℱ ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑁𝐶𝑖𝑛𝑡(ℱ) ⟹ 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⟹
𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ. 
(𝑖𝑣) ⟹ (𝑖) Let 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ.  
But 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))))  (by Proposition (2.8)). 
Hence, 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ ⟹ ℬ ∈ NCSC(𝒰). 

5. Conclusion

In this work, we have the new concept of neutrosophic crisp closed sets called neutrosophic crisp semi--
closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. The neutrosophic 
crisp semi--closed sets can obtain to derive a new decomposition of neutrosophic crisp continuity. 
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