

Neutrosophic Sets and Systems, Vol. 21, 2018 28

University of New Mexico

On Neutrosophic Crisp Semi Alpha Closed Sets

Riad K. Al-Hamido¹, Qays Hatem Imran², Karem A. Alghurabi³ and Taleb Gharibah⁴

^{1,4}Department of Mathematics, College of Science, Al-Baath University, Homs, Syria.
 <u>E-mail: riad-hamido1983@hotmail.com</u>
 <u>E-mail: taleb.gharibah@gmail.com</u>
 ²Department of Mathematics, College of Education for Pure Science, Al Muthanna University, Samawah, Iraq.

E-mail: <u>qays.imran@mu.edu.iq</u>

³Department of Mathematics, College of Education for Pure Science, Babylon University, Hilla, Iraq. E-mail: <u>kareemalghurabi@yahoo.com</u>

Abstract. In this paper, we presented another concept of neutrosophic crisp generalized closed sets called neutrosophic crisp semi- α -closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. We also present neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior and study some of their fundamental properties. Mathematics Subject Classification (2000): 54A40, 03E72.

Keywords: Neutrosophic crisp semi- α -closed sets, neutrosophic crisp semi- α -open sets, neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior.

1. Introduction

The concept of "neutrosophic set" was first given by F. Smarandache [4,5]. A. A. Salama and S. A. Alblowi [1] presented the concept of neutrosophic topological space (briefly NTS). Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan [6] presented the idea of neutrosophic semi- α -open sets in neutrosophic topological spaces. In 2014, A. A. Salama, F. Smarandache and V. Kroumov [2] presented the concept of neutrosophic crisp topological space (briefly NCTS). The objective of this paper is to present the concept of neutrosophic crisp semi- α -closed sets and study their fundamental properties in neutrosophic crisp topological spaces. We also present neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior and obtain some of its properties.

2. Preliminaries

Throughout this paper, (\mathcal{U}, T) (or simply \mathcal{U}) always mean a neutrosophic crisp topological space. The complement of a neutrosophic crisp open set (briefly NC-OS) is called a neutrosophic crisp closed set (briefly NC-CS) in (\mathcal{U}, T) . For a neutrosophic crisp set \mathcal{A} in a neutrosophic crisp topological space (\mathcal{U}, T) , $NCcl(\mathcal{A})$, $NCint(\mathcal{A})$ and \mathcal{A}^c denote the neutrosophic crisp closure of \mathcal{A} , the neutrosophic crisp interior of \mathcal{A} and the neutrosophic crisp complement of \mathcal{A} , respectively.

Definition 2.1:

A neutrosophic crisp subset \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is said to be:

(i) A neutrosophic crisp pre-open set (briefly NCP-OS) [3] if $\mathcal{A} \subseteq NCint(NCcl(\mathcal{A}))$. The complement of a NCP-OS is called a neutrosophic crisp pre-closed set (briefly NCP-CS) in (\mathcal{U}, T) . The family of all NCP-OS (resp. NCP-CS) of \mathcal{U} is denoted by NCPO (\mathcal{U}) (resp. NCPC (\mathcal{U})).

(ii) A neutrosophic crisp semi-open set (briefly NCS-OS) [3] if $\mathcal{A} \subseteq NCcl(NCint(\mathcal{A}))$. The complement of a NCS-OS is called a neutrosophic crisp semi-closed set (briefly NCS-CS) in (\mathcal{U}, T) . The family of all NCS-OS (resp. NCS-CS) of \mathcal{U} is denoted by NCSO (\mathcal{U}) (resp. NCSC (\mathcal{U})).

(iii) A neutrosophic crisp α -open set (briefly NC α -OS) [3] if $\mathcal{A} \subseteq NCint(NCcl(NCint(\mathcal{A})))$. The complement of a NC α -OS is called a neutrosophic crisp α -closed set (briefly NC α -CS) in (\mathcal{U}, T) . The family of all NC α -OS (resp. NC α -CS) of \mathcal{U} is denoted by NC α O(\mathcal{U}) (resp. NC α C(\mathcal{U})).

Definition 2.2:

(i) The neutrosophic crisp pre-interior of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the union of all NCP-OS contained in \mathcal{A} and is denoted by $PNCint(\mathcal{A})[3]$.

(ii) The neutrosophic crisp semi-interior of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the union of all NCS-OS contained in \mathcal{A} and is denoted by $SNCint(\mathcal{A})[3]$.

(iii) The neutrosophic crisp α -interior of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the union of all NC α -OS contained in \mathcal{A} and is denoted by $\alpha NCint(\mathcal{A})[3]$.

Definition 2.3:

(i) The neutrosophic crisp pre-closure of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the intersection of all NCP-CS that contain \mathcal{A} and is denoted by $PNCcl(\mathcal{A})[3]$.

(ii) The neutrosophic crisp semi-closure of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the intersection of all NCS-CS that contain \mathcal{A} and is denoted by $SNCcl(\mathcal{A})[3]$.

(iii) The neutrosophic crisp α -closure of a neutrosophic crisp set \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is the intersection of all NC α -CS that contain \mathcal{A} and is denoted by $\alpha NCcl(\mathcal{A})[3]$.

Proposition 2.4 [7]:

In a neutrosophic crisp topological space (U,T), the following statements hold, and the equality of each statement are not true:

(i) Every NC-CS (resp. NC-OS) is a NC α -CS (resp. NC α -OS).

(ii) Every NC α -CS (resp. NC α -OS) is a NCS-CS (resp. NCS-OS).

(iii) Every NC α -CS (resp. NC α -OS) is a NCP-CS (resp. NCP-OS).

Proposition 2.5 [7]:

A neutrosophic crisp subset \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is a NC α -CS (resp. NC α -OS) iff \mathcal{A} is a NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS).

Theorem 2.6 [7]:

For any neutrosophic crisp subset \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) , $\mathcal{A} \in NC\alpha O(\mathcal{U})$ iff there exists a NC-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq NCint(NCcl(\mathcal{H}))$.

Proposition 2.7 [7]:

The union of any family of NC α -OS is a NC α -OS.

Proposition 2.8:

(i) If \mathcal{K} is a NC-OS, then $SNCcl(\mathcal{K}) = NCint(NCcl(\mathcal{K}))$.

(ii) If \mathcal{A} is a neutrosophic crisp subset of a neutrosophic crisp topological space (\mathcal{U}, T) , then $SNCint(NCcl(\mathcal{A})) = NCcl(NCint(NCcl(\mathcal{A})))$.

Proof: This follows directly from the definition (2.1) and proposition (2.4).

3. Neutrosophic Crisp Semi- α -Closed Sets

In this section, we present and study the neutrosophic crisp semi- α -closed sets and some of its properties.

Definition 3.1:

A neutrosophic crisp subset \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) is called neutrosophic crisp semi- α -closed set (briefly NCS α -CS) if there exists a NC α -CS \mathcal{H} in \mathcal{U} such that $NCint(\mathcal{H}) \subseteq \mathcal{A} \subseteq \mathcal{H}$ or equivalently if $NCint(\alpha NCcl(\mathcal{A})) \subseteq \mathcal{A}$. The family of all NCS α -CS of \mathcal{U} is denoted by NCS α C(\mathcal{U}).

Definition 3.2:

A neutrosophic crisp set \mathcal{A} is called a neutrosophic crisp semi- α -open set (briefly NCS α -OS) if and only if its complement \mathcal{A}^c is a NCS α -CS or equivalently if there exists a NC α -OS \mathcal{H} in \mathcal{U} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{H})$. The family of all NCS α -OS of \mathcal{U} is denoted by NCS α O(\mathcal{U}).

Proposition 3.3:

It is evident by definitions that in a neutrosophic crisp topological space (\mathcal{U}, T) , the following hold: (i) Every NC-CS (resp. NC-OS) is a NCS α -CS (resp. NCS α -OS). (ii) Every NC α -CS (resp. NC α -OS) is a NCS α -CS (resp. NCS α -OS). The converse of Proposition (3.3) need not be true as shown by the following example.

Example 3.4:

Let $\mathcal{U} = \{p, q, r, s\}, \mathcal{A} = \langle \{p\}, \{q, s\}, \{r\} \rangle, \mathcal{B} = \langle \{p\}, \{q\}, \{r\} \rangle$. Then $T = \{\emptyset_N, \mathcal{A}, \mathcal{B}, \mathcal{U}_N\}$ is a neutrosophic crisp topology on \mathcal{U} .

30

(i) Let $\mathcal{H} = \langle \{p\}, \{q, r, s\}, \emptyset \rangle$, $\mathcal{A} \subseteq \mathcal{H} \subseteq NCcl(\mathcal{A}) = \mathcal{U}_N$, the neutrosophic crisp set \mathcal{H} is a NCS α -OS but not NC-OS. It is clear that $\mathcal{H}^c = \langle \{q, r, s\}, \{p\}, \mathcal{U} \rangle$ is a NCS α -CS but not NC-CS.

(ii) Let $\mathcal{K} = \langle \emptyset, \{q, r, s\}, \{r, s\} \rangle$ and so $\mathcal{K} \not\subseteq NCint(NCcl(NCint(\mathcal{K})))$, the neutrosophic crisp set \mathcal{K} is a NCS α -OS but not NC α -OS. It is clear that $\mathcal{K}^c = \langle \mathcal{U}, \{p\}, \{p, q\} \rangle$ is a NCS α -CS but not NC α -CS.

Remark 3.5:

The concepts of NCS α -CS (resp. NCS α -OS) and NCP-CS (resp. NCP-OS) are independent, as the following examples show.

Example 3.6:

Let $\mathcal{U} = \{p, q, r, s\}, \mathcal{A} = \langle \{p\}, \{q\}, \{r\} \rangle, \mathcal{B} = \langle \{r\}, \{q\}, \{s\} \rangle, \mathcal{C} = \langle \{p, r\}, \{q\}, \emptyset \rangle, \mathcal{D} = \langle \emptyset, \{q\}, \{r, s\} \rangle.$ Then $T = \{\emptyset_N, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{U}_N\}$ is a neutrosophic crisp topology on \mathcal{U} . Let $\mathcal{H} = \langle \{r, s\}, \{p, q\}, \{s\} \rangle, \mathcal{B} \subseteq \mathcal{H} \subseteq NCcl(\mathcal{B}) = \langle \{r, s\}, \{q\}, \emptyset \rangle$, the neutrosophic crisp set \mathcal{H} is a NCS α -OS but not NCP-OS. It is clear that $\mathcal{H}^c = \langle \{s\}, \{p, q\}, \{r, s\} \rangle$ is a NCS α -CS but not NCP-CS.

Example 3.7:

Let $\mathcal{U} = \{p, q, r, s\}, \mathcal{A}_1 = \langle \{p\}, \{q\}, \{r\} \rangle, \mathcal{A}_2 = \langle \{p\}, \{q, s\}, \{r\} \rangle$. Then $T = \{\emptyset_N, \mathcal{A}_1, \mathcal{A}_2, \mathcal{U}_N\}$ is a neutrosophic crisp topology on \mathcal{U} . If $\mathcal{A}_3 = \langle \{p, q\}, \{r\}, \{s\} \rangle$, then \mathcal{A}_3 is a NCP-OS but not NCS α -OS. It is clear that $\mathcal{A}_3^c = \langle \{s\}, \{r\}, \{p, q\} \rangle$ is a NCP-CS but not NCS α -CS.

Remark 3.8:

(i) If every NC-OS is a NC-CS and every nowhere neutrosophic crisp dense set is NC-CS in any neutrosophic crisp topological space (\mathcal{U} , T), then every NCS α -CS (resp. NCS α -OS) is a NC-CS (resp. NC-OS).

(ii) If every NC-OS is a NC-CS in any neutrosophic crisp topological space (\mathcal{U}, T) , then every NCS α -CS (resp. NCS α -OS) is a NC α -CS (resp. NC α -OS).

Remark 3.9:

(i) It is clear that every NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS) of any neutrosophic crisp topological space (\mathcal{U}, T) is a NCS α -CS (resp. NCS α -OS) (by Proposition (2.5) and Proposition (3.3) (ii)). (ii) A NCS α -CS (resp. NCS α -OS) in any neutrosophic crisp topological space (\mathcal{U}, T) is a NCP-CS (resp. NCP-OS) if every NC-OS of \mathcal{U} is a NC-CS (from Proposition (2.4) (iii) and Remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T). The following properties are equivalent:

(i) $\mathcal{A} \in NCS\alpha O(\mathcal{U})$.

(ii) There exists a NC-OS, say \mathcal{H} , such that $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$.

(iii) $\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A})))).$

Proof:

 $(i) \Rightarrow (ii)$ Let $\mathcal{A} \in NCS\alpha O(\mathcal{U})$. Then, there exists $\mathcal{K} \in NC\alpha O(\mathcal{U})$, such that $\mathcal{K} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{K})$. Hence there exists \mathcal{H} NC-OS such that $\mathcal{H} \subseteq \mathcal{K} \subseteq NCint(NCcl(\mathcal{H}))$ (by Theorem (2.6)). Therefore, $NCcl(\mathcal{H}) \subseteq NCcl(\mathcal{K}) \subseteq NCcl(\mathcal{K}) \subseteq NCcl(\mathcal{H}))$, implies that $NCcl(\mathcal{K}) \subseteq NCcl(NCint(NCcl(\mathcal{H})))$.

Then $\mathcal{H} \subseteq \mathcal{K} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{K}) \subseteq NCcl(NCint(NCcl(\mathcal{H})))$. Hence, $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$, for some \mathcal{H} NC-OS.

 $(ii) \Rightarrow (iii)$ Suppose that there exists a NC-OS \mathcal{H} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$. We know that $NCint(\mathcal{A}) \subseteq \mathcal{A}$. On the other hand, $\mathcal{H} \subseteq NCint(\mathcal{A})$ (since $NCint(\mathcal{A})$ is the largest NC-OS contained in \mathcal{A}). Hence $NCcl(\mathcal{H}) \subseteq NCcl(NCint(\mathcal{A}))$, then $NCint(NCcl(\mathcal{H})) \subseteq NCint(NCcl(NCint(\mathcal{A})))$,

therefore $NCcl(NCint(NCcl(\mathcal{H}))) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$. But $\mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$ (by hypothesis). Hence $\mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H}))) \subseteq NCcl(NCint(NCcl(\mathcal{A}))))$,

then
$$\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A})))).$$

 $(iii) \Rightarrow (i)$ Let $\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$. To prove $\mathcal{A} \in NCS\alpha O(\mathcal{U})$, let $\mathcal{K} = NCint(\mathcal{A})$; we know that $NCint(\mathcal{A}) \subseteq \mathcal{A}$. To prove $\mathcal{A} \subseteq NCcl(NCint(\mathcal{A}))$.

Since
$$NCint(NCcl(NCint(\mathcal{A}))) \subseteq NCcl(NCint(\mathcal{A})).$$

Hence, $NCcl(NCint(NCcl(NCint(\mathcal{A})))) \subseteq NCcl(NCcl(NCint(\mathcal{A})))) = NCcl(NCint(\mathcal{A})).$

But $\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ (by hypothesis). Hence, $\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ $\subseteq NCcl(NCint(\mathcal{A})) \Rightarrow \mathcal{A} \subseteq NCcl(NCint(\mathcal{A}))$. Hence, there exists an NC-OS say \mathcal{K} , such that $\mathcal{K} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{A})$. On the other hand, \mathcal{K} is a NC α -OS (since \mathcal{K} is a NC-OS). Hence $\mathcal{A} \in NCS\alphaO(\mathcal{U})$.

Corollary 3.11:

For any neutrosophic crisp subset \mathcal{A} of a neutrosophic crisp topological space (\mathcal{U}, T) , the following properties are equivalent:

(i) $\mathcal{A} \in \text{NCSaC}(\mathcal{U})$.

(ii) There exists a NC-CS \mathcal{F} such that $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{A} \subseteq \mathcal{F}$.

(iii) $NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq \mathcal{A}$. **Proof:**

 $(i) \Rightarrow (ii)$ Let $\mathcal{A} \in \text{NCSaC}(\mathcal{U})$, then $\mathcal{A}^c \in \text{NCSaO}(\mathcal{U})$. Hence there is \mathcal{H} NC-OS such that $\mathcal{H} \subseteq \mathcal{A}^c \subseteq$ $NCcl(NCint(NCcl(\mathcal{H})))$ (by Theorem (3.10)). Hence $(NCcl(NCint(NCcl(\mathcal{H}))))^c \subseteq \mathcal{A}^{c^c} \subseteq \mathcal{H}^c$, i.e., $NCint(NCcl(NCint(\mathcal{H}^{c}))) \subseteq \mathcal{A} \subseteq \mathcal{H}^{c}$. Let $\mathcal{H}^{c} = \mathcal{F}$, where \mathcal{F} is a NC-CS in \mathcal{U} .

Then $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{A} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS.

 $(ii) \Rightarrow (iii)$ Suppose that there exists \mathcal{F} NC-CS such that $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{A} \subseteq \mathcal{F}$, but $NCcl(\mathcal{A})$ is the smallest NC-CS containing \mathcal{A} . Then $NCcl(\mathcal{A}) \subseteq \mathcal{F}$, and therefore: $NCint(NCcl(\mathcal{A})) \subseteq NCint(\mathcal{F})$

 $\Rightarrow NCcl(NCint(NCcl(\mathcal{A}))) \subseteq NCcl(NCint(\mathcal{F})) \Rightarrow NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{A} \Rightarrow NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq \mathcal{A}.$

 $(iii) \Rightarrow (i)$ Let $NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq \mathcal{A}$. To prove $\mathcal{A} \in NCS\alpha C(\mathcal{U})$, i.e., to prove $\mathcal{A}^c \in \mathcal{A}^c$ NCS $\alpha O(\mathcal{U})$. Then $\mathcal{A}^c \subseteq (NCint(NCcl(\mathcal{A}))))^c = NCcl(NCint(NCcl(\mathcal{A}^c))))$, but $(NCint(NCcl(NCint(NCcl(\mathcal{A})))))^{c} = NCcl(NCint(NCcl(NCint(\mathcal{A}^{c})))).$

Hence $\mathcal{A}^c \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}^c))))$, and therefore $\mathcal{A}^c \in NCS\alpha O(\mathcal{U})$, i.e., $\mathcal{A} \in NCS\alpha C(\mathcal{U})$.

Theorem 3.12:

The union of any family of NCS α -OS is a NCS α -OS.

Proof: Let $\{A_{\lambda}\}_{\lambda \in \Lambda}$ be a family of NCS α -OS. To prove $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is a NCS α -OS. Since $A_{\lambda} \in NCS\alphaO(\mathcal{U})$. Then there is a NC α -OS \mathcal{B}_{λ} such that $\mathcal{B}_{\lambda} \subseteq \mathcal{A}_{\lambda} \subseteq NCcl(\mathcal{B}_{\lambda}), \forall \lambda \in \Lambda$. Hence $\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} NCcl(\mathcal{B}_{\lambda}) \subseteq \mathcal{B}_{\lambda}$. $NCcl(\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda})$. But $\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \in NC\alpha O(\mathcal{U})$ (by Proposition (2.7)). Hence $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \in NCS\alpha O(\mathcal{U})$.

Corollary 3.13:

The intersection of any family of NCS α -CS is a NCS α -CS. **Proof:** This follows directly from Theorem (3.12).

Remark 3.14:

The following diagram shows the relations among the different types of weakly neutrosophic crisp closed sets that were studied in this section:

4. Neutrosophic Crisp Semi- α -Closure and Neutrosophic Crisp Semi- α -Interior

We present neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior and obtain some of their properties in this section.

Definition 4.1:

The intersection of all NCS α -CS in a neutrosophic crisp topological space (\mathcal{U}, T) containing \mathcal{A} is called neutrosophic crisp semi- α -closure of \mathcal{A} and is denoted by $S\alpha NCcl(\mathcal{A}), S\alpha NCcl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } NCS\alpha$ -CS}.

Definition 4.2:

The union of all NCS α -OS in a neutrosophic crisp topological space (\mathcal{U}, T) contained in \mathcal{A} is called neutrosophic crisp semi- α -interior of \mathcal{A} and is denoted by $S\alpha NCint(\mathcal{A}), S\alpha NCint(\mathcal{A}) = \bigcup \{\mathcal{B}: \mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \text{ is a NCS}\alpha$ -OS}.

Proposition 4.3:

Let \mathcal{A} be any neutrosophic crisp set in a neutrosophic crisp topological space (\mathcal{U}, T) , the following properties are true:

(i) SαNCcl(A) = A iff A is a NCSα-CS.
(ii) SαNCint(A) = A iff A is a NCSα-OS.
(iii) SαNCcl(A) is the smallest NCSα-CS containing A.
(iv) SαNCint(A) is the largest NCSα-OS contained in A. **Proof:** (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let \mathcal{A} be any neutrosophic crisp set in a neutrosophic crisp topological space (\mathcal{U}, T) , the following properties hold:

(i) $S\alpha NCint(\mathcal{U}_N - \mathcal{A}) = \mathcal{U}_N - (S\alpha NCcl(\mathcal{A})),$ (ii) $S\alpha NCcl(\mathcal{U}_N - \mathcal{A}) = \mathcal{U}_N - (S\alpha NCint(\mathcal{A})).$ **Proof:** (i) By definition (2.3), $S\alpha NCcl(\mathcal{A}) = \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } NCS\alpha-CS\}$ $\mathcal{U}_N - (S\alpha NCcl(\mathcal{A})) = \mathcal{U}_N - \bigcap \{\mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } NCS\alpha-CS\}$ $= \bigcup \{\mathcal{U}_N - \mathcal{B}: \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a } NCS\alpha-CS\}$ $= \bigcup \{\mathcal{H}: \mathcal{H} \subseteq \mathcal{U}_N - \mathcal{A}, \mathcal{H} \text{ is a } NCS\alpha-OS\}$ $= S\alpha NCint(\mathcal{U}_N - \mathcal{A}).$

(ii) The proof is similar to (i).

Theorem 4.5:

Let \mathcal{A} and \mathcal{B} be two neutrosophic crisp sets in a neutrosophic crisp topological space (\mathcal{U}, T) . The following properties hold:

(i) SaNCcl(Ø_N) = Ø_N, SaNCcl(U_N) = U_N.
(ii) A ⊆ SaNCcl(A).
(iii) A ⊆ B ⇒ SaNCcl(A) ⊆ SaNCcl(B).
(iv) SaNCcl(A∩B) ⊆ SaNCcl(A)∩SaNCcl(B).
(v) SaNCcl(A)∪SaNCcl(B) ⊆ SaNCcl(A∪B).
(vi) SaNCcl(SaNCcl(A)) = SaNCcl(A).
Proof: (i) and (ii) are evident.
(iii) By (ii), B ⊆ SaNCcl(B). Since A ⊆ B, we have A ⊆ SaNCcl(B). But SaNCcl(B) is a NCSα-CS. Thus SaNCcl(B) is a NCSα-CS containing A.

Since $S\alpha NCcl(\mathcal{A})$ is the smallest NCS α -CS containing \mathcal{A} , we have $S\alpha NCcl(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{B})$. Hence, $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow S\alpha NCcl(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{B})$.

(iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$. Therefore, by (iii), $S \alpha NCcl(\mathcal{A} \cap \mathcal{B}) \subseteq S \alpha NCcl(\mathcal{A})$ and $S \alpha NCcl(\mathcal{A} \cap \mathcal{B}) \subseteq S \alpha NCcl(\mathcal{B})$. Hence $S \alpha NCcl(\mathcal{A} \cap \mathcal{B}) \subseteq S \alpha NCcl(\mathcal{B})$.

(v) Since $\mathcal{A} \subseteq \mathcal{A} \cup \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A} \cup \mathcal{B}$, it follows from part (iii) that $S\alpha NCcl(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{A} \cup \mathcal{B})$

and $S \alpha NCcl(\mathcal{B}) \subseteq S \alpha NCcl(\mathcal{A} \cup \mathcal{B})$. Hence $S \alpha NCcl(\mathcal{A}) \cup S \alpha NCcl(\mathcal{B}) \subseteq S \alpha NCcl(\mathcal{A} \cup \mathcal{B})$.

(vi) Since $S\alpha NCcl(A)$ is a NCS α -CS, we have by Proposition (4.3)(i), $S\alpha NCcl(S\alpha NCcl(A)) = S\alpha NCcl(A)$.

Theorem 4.6:

Let \mathcal{A} and \mathcal{B} be two neutrosophic crisp sets in a neutrosophic crisp topological space (\mathcal{U}, T) . The following properties hold:

(i) $SaNCint(\phi_N) = \phi_N, SaNCint(\mathcal{U}_N) = \mathcal{U}_N.$ (ii) $SaNCint(\mathcal{A}) \subseteq \mathcal{A}.$

(iii) $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow SaNCint(\mathcal{A}) \subseteq SaNCint(\mathcal{B}).$ (iv) $SaNCint(\mathcal{A} \cap \mathcal{B}) \subseteq SaNCint(\mathcal{A}) \cap SaNCint(\mathcal{B}).$ (v) $SaNCint(\mathcal{A}) \cup SaNCint(\mathcal{B}) \subseteq SaNCint(\mathcal{A} \cup \mathcal{B}).$ (vi) $SaNCint(SaNCint(\mathcal{A})) = SaNCint(\mathcal{A}).$ **Proof:** (i), (ii), (iii), (iv), (v) and (vi) are obvious.

Proposition 4.7:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T), then: (i) $NCint(\mathcal{A}) \subseteq \alpha NCint(\mathcal{A}) \subseteq S\alpha NCint(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{A}) \subseteq \alpha NCcl(\mathcal{A}) \subseteq NCcl(\mathcal{A}).$ (ii) $NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(NCint(\mathcal{A})) = NCint(\mathcal{A}).$ (iii) $\alpha NCint(S\alpha NCint(\hat{A})) = S\alpha NCint(\alpha NCint(\hat{A})) = \alpha NCint(\hat{A}).$ (iv) NCcl(SaNCcl(A)) = SaNCcl(NCcl(A)) = NCcl(A). (v) $\alpha NCcl(S\alpha NCcl(A)) = S\alpha NCcl(\alpha NCcl(A)) = \alpha NCcl(A).$ (vi) SaNCcl(A) = AUNCint(NCcl(NCint(NCcl(A)))).(vii) $S \alpha NCint(\mathcal{A}) = \mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))).$ (viii) $NCint(NCcl(\mathcal{A})) \subseteq S\alpha NCint(S\alpha NCcl(\mathcal{A})).$ **Proof:** We shall prove only (ii), (iii), (iv), (vii) and (viii). (ii) To prove $NCint(SaNCint(\mathcal{A})) = SaNCint(NCint(\mathcal{A})) = NCint(\mathcal{A})$, we know that $NCint(\mathcal{A})$ is a NC-OS. It follows that NCint(A) is a $NCS\alpha$ -OS. Hence $NCint(A) = S\alpha NCint(NCint(A))$ (by Proposition (4.3)). Therefore: $NCint(\mathcal{A}) = S\alpha NCint(NCint(\mathcal{A}))$(1) Since $NCint(\mathcal{A}) \subseteq SanCint(\mathcal{A}) \xrightarrow{\sim} NCint(NCint(\mathcal{A})) \subseteq NCint(SanCint(\mathcal{A})) \Rightarrow NCint(\mathcal{A}) \subseteq NCint(\mathcal{A})$ $NCint(S\alpha NCint(\mathcal{A}))$. Also, $S\alpha NCint(\mathcal{A}) \subseteq \mathcal{A} \Rightarrow NCint(S\alpha NCint(\mathcal{A})) \subseteq NCint(\mathcal{A})$. Hence: $NCint(\mathcal{A}) = NCint(S\alpha NCint(\mathcal{A}))$(2) Therefore by (1) and (2), we get NCint(SaNCint(A)) = SaNCint(NCint(A)) = NCint(A). (iii) Now we prove $\alpha NCint(S\alpha NCint(\hat{A})) = S\alpha NCint(\alpha NCint(\hat{A})) = \alpha NCint(A)$. Since $\alpha NCint(\mathcal{A})$ is NC α -OS, therefore $\alpha NCint(\mathcal{A})$ is NCS α -OS. Therefore by Proposition (4.3): $\alpha NCint(\mathcal{A}) = S\alpha NCint(\alpha NCint(\mathcal{A}))....(1)$ Now, to prove $\alpha NCint(\hat{A}) = \alpha NCint(S\alpha NCint(A))$, we have $\alpha NCint(A) \subseteq S\alpha NCint(A) \Rightarrow$ $\alpha NCint(\alpha NCint(\mathcal{A})) \subseteq \alpha NCint(S\alpha NCint(\mathcal{A})) \Longrightarrow \alpha NCint(\mathcal{A}) \subseteq \alpha NCint(S\alpha NCint(\mathcal{A})).$ Also, $S\alpha NCint(\mathcal{A}) \subseteq \mathcal{A} \Rightarrow \alpha NCint(S\alpha NCint(\mathcal{A})) \subseteq \alpha NCint(\mathcal{A}).$ Hence: $\alpha NCint(\mathcal{A}) = \alpha NCint(S\alpha NCint(\mathcal{A}))$(2) Therefore by (1) and (2), we get $\alpha NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(\alpha NCint(\mathcal{A})) = \alpha NCint(\mathcal{A}).$ (iv) To prove $NCcl(S\alpha NCcl(A)) = S\alpha NCcl(NCcl(A)) = NCcl(A)$. We know that NCcl(A) is a NC-CS, so it is NCS α -CS. Hence by proposition (4.3), we have: $NCcl(\mathcal{A}) = S\alpha NCcl(NCcl(\mathcal{A}))$(1) To prove $NCcl(\mathcal{A}) = NCcl(S\alpha NCcl(\mathcal{A}))$, we have $S\alpha NCcl(\mathcal{A}) \subseteq NCcl(\mathcal{A})$ (by part (i)). Then $NCcl(S \land NCcl(\mathcal{A})) \subseteq NCcl(NCcl(\mathcal{A})) = NCcl(\mathcal{A}) \Longrightarrow NCcl(S \land NCcl(\mathcal{A})) \subseteq NCcl(\mathcal{A}).$ Since $\mathcal{A} \subseteq S \alpha NCcl(\mathcal{A}) \subseteq NCcl(S \alpha NCcl(\mathcal{A}))$, then $\mathcal{A} \subseteq NCcl(S \alpha NCcl(\mathcal{A}))$. Hence, $NCcl(\mathcal{A}) \subseteq NCcl(NCcl(S\alpha NCcl(\mathcal{A}))) = NCcl(S\alpha NCcl(\mathcal{A})) \Longrightarrow NCcl(\mathcal{A}) \subseteq NCcl(S\alpha NCcl(\mathcal{A}))$ and therefore: $NCcl(\mathcal{A}) = NCcl(S\alpha NCcl(\mathcal{A}))'$(2) Now, by (1) and (2), we get that $NCcl(S\alpha NCcl(A)) = S\alpha NCcl(NCcl(A))$. Hence $NCcl(S\alpha NCcl(A)) =$ $S\alpha NCcl(NCcl(\mathcal{A})) = NCcl(\mathcal{A}).$ (vii) To prove $S \alpha NCint(\mathcal{A}) = \mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$, since $S \alpha NCint(\mathcal{A}) \in NCS\alpha O(\mathcal{U}) \Rightarrow$ $S\alpha NCint(\mathcal{A}) \subseteq NCcl(NCint(NCcl(NCint(S\alpha NCint(\mathcal{A}))))) = NCcl(NCint(NCcl(NCint(\mathcal{A})))))$ (by part (ii)). Hence, $S\alpha NCint(\mathcal{A}) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$, also $S\alpha NCint(\mathcal{A}) \subseteq \mathcal{A}$. Then: $S\alpha NCint(\mathcal{A}) \subseteq \mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))).$ (1) To prove $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ is a NCS α -OS contained in \mathcal{A} . It is clear that $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ and also it is clear $NCint(\mathcal{A}) \subseteq NCcl(NCint(\mathcal{A})) \Rightarrow NCint(NCint(\mathcal{A})) \subseteq NCint(NCcl(NCint(\mathcal{A}))) \Rightarrow NCint(\mathcal{A}) \subseteq NC$ that $NCint(NCcl(NCint(\mathcal{A}))) \Rightarrow NCcl(NCint(\mathcal{A})) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ and $NCint(\mathcal{A}) \subseteq NCcl(NCint(\mathcal{A}))$ $NCcl(NCint(\mathcal{A})) \implies NCint(\mathcal{A}) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A})))) \text{ and } NCint(\mathcal{A}) \subseteq \mathcal{A} \implies NCint(\mathcal{A}) = \mathcal{A} \implies NCint(\mathcal{A} \implies NCint(\mathcal{A}$ $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))) \quad . \quad We \quad get \quad NCint(\mathcal{A}) \subseteq \mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))) \subseteq \mathcal{A} \cap NCcl(NCint(\mathcal{A})))$ $NCcl(NCint(NCcl(NCint(\mathcal{A}))))$. Hence $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ is a NCS α -OS (by Proposition (4.3)). Also, $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$ is contained in \mathcal{A} . Then $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))) \subseteq S\alpha NCint(\mathcal{A})$ (since $S\alpha NCint(\mathcal{A})$ is the largest NCS α - OS contained in \mathcal{A}). Hence: $\mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A})))) \subseteq Sancint(\mathcal{A})$(2) By (1) and (2), we get that $S\alpha NCint(\mathcal{A}) = \mathcal{A} \cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$. (viii) To prove that $NCint(NCcl(\mathcal{A})) \subseteq S\alpha NCint(S\alpha NCcl(\mathcal{A}))$, we know that $S\alpha NCcl(\mathcal{A})$ is a NCS α -CS, therefore $NCint(NCcl(NCint(NCcl(S\alpha NCcl(A))))) \subseteq S\alpha NCcl(A)$ (by Corollary (3.11)).Hence $NCint(NCcl(\mathcal{A})) \subseteq NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq S\alpha NCcl(\mathcal{A})$ (by part (iv)). Therefore,

 $SaNCint(NCcl(\mathcal{A}))) \subseteq SaNCint(SaNCcl(\mathcal{A})) \Longrightarrow NCint(NCcl(\mathcal{A})) \subseteq SaNCint(SaNCcl(\mathcal{A})) \text{ (by (ii))}.$

Theorem 4.8:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T). The following properties are equivalent:

(i) $\mathcal{A} \in \text{NCSaO}(\mathcal{U})$. (ii) $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{NCcl}(\text{NCint}(\text{NCcl}(\mathcal{H})))$, for some NC-OS \mathcal{H} . (iii) $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\mathcal{H}))$, for some NC-OS \mathcal{H} . (iv) $\mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\text{NCint}(\mathcal{A})))$. **Proof:** (i) \Rightarrow (ii) Let $\mathcal{A} \in \text{NCSaO}(\mathcal{U})$, then $\mathcal{A} \subseteq \text{NCcl}(\text{NCint}(\text{NCcl}(\mathcal{A})))$ and $\text{NCint}(\mathcal{A}) \subseteq \mathcal{A}$. Hence $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{NCcl}(\text{NCint}(\text{NCcl}(\mathcal{H})))$, where $\mathcal{H} = \text{NCint}(\mathcal{A})$. (ii) \Rightarrow (iii) Suppose $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{NCcl}(\text{NCint}(\text{NCcl}(\mathcal{H})))$, for some NC-OS \mathcal{H} . But $\text{SNCint}(\text{NCcl}(\mathcal{H})) =$ $\text{NCcl}(\text{NCint}(\text{NCcl}(\mathcal{H})))$ (by Proposition (2.8)). Then $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\mathcal{H}))$, for some NC-OS \mathcal{H} . (iii) \Rightarrow (iv) Suppose that $\mathcal{H} \subseteq \mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\mathcal{H}))$, for some NC-OS \mathcal{H} . Since \mathcal{H} is a NC-OS contained in \mathcal{A} . Then $\mathcal{H} \subseteq \text{NCint}(\mathcal{A}) \Rightarrow \text{NCcl}(\mathcal{H}) \subseteq \text{NCcl}(\text{NCint}(\mathcal{A}))$ $\Rightarrow \text{SNCint}(\text{NCcl}(\mathcal{H})) \subseteq \text{SNCint}(\text{NCcl}(\text{NCint}(\mathcal{A})))$. But $\mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\mathcal{H}))$ (by hypothesis), then $\mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\text{NCint}(\mathcal{A})))$. (iv) \Rightarrow (i) Let $\mathcal{A} \subseteq \text{SNCint}(\text{NCcl}(\text{NCint}(\mathcal{A})))$. But $\text{SNCint}(\text{NCcl}(\text{NCint}(\mathcal{A}))) = \text{NCcl}(\text{NCint}(\mathcal{A})))$) (by Proposition (2.8)).

Hence, $\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A})))) \Rightarrow \mathcal{A} \in NCS\alpha O(\mathcal{U}).$

Corollary 4.9:

For any neutrosophic crisp subset \mathcal{B} of a neutrosophic crisp topological space (\mathcal{U}, T) , the following properties are equivalent:

(i) $\mathcal{B} \in \text{NCSaC}(\mathcal{U})$. (ii) $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. (iii) $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. (iv) $SNCcl(NCint(NCcl(\mathcal{B}))) \subseteq \mathcal{B}$. **Proof:** (i) \Rightarrow (ii) Let $\mathcal{B} \in \text{NCSaC}(\mathcal{U}) \Rightarrow NCint(NCcl(NCint(NCcl(\mathcal{B})))) \subseteq \mathcal{B}$ (by Corollary(3.11)) and $\mathcal{B} \subseteq NCcl(\mathcal{B})$. Hence we obtain $NCint(NCcl(NCint(NCcl(\mathcal{B})))) \subseteq \mathcal{B} \subseteq NCcl(\mathcal{B})$. Therefore, $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, where $\mathcal{F} = NCcl(\mathcal{B})$. (ii) \Rightarrow (iii) Let $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. But $NCint(NCcl(NCint(\mathcal{F}))) =$

 $SNCcl(NCint(\mathcal{F}))$ (by Proposition (2.8)). Hence $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. (*iii*) \Rightarrow (*iv*) Let $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. Since $\mathcal{B} \subseteq \mathcal{F}$ (by hypothesis), then we have $NCcl(\mathcal{B}) \subseteq \mathcal{F} \Rightarrow NCint(NCcl(\mathcal{B}) \subseteq NCint(\mathcal{F})) \Rightarrow SNCcl(NCint(NCcl(\mathcal{B}))) \subseteq SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \Rightarrow SNCcl(NCint(NCcl(\mathcal{B}))) \subseteq \mathcal{B}.$ (*iv*) \Rightarrow (*iv*) \Rightarrow (*iv*) $x \in SNCcl(NCint(NCcl(\mathcal{B}))) \subseteq \mathcal{B}.$

 $(iv) \Rightarrow (i)$ Let $SNCcl(NCint(NCcl(\mathcal{B}))) \subseteq \mathcal{B}$.

But $SNCcl(NCint(NCcl(\mathcal{B}))) = NCint(NCcl(NCint(NCcl(\mathcal{B}))))$ (by Proposition (2.8)). Hence, $NCint(NCcl(NCint(NCcl(\mathcal{B})))) \subseteq \mathcal{B} \Rightarrow \mathcal{B} \in NCS\alphaC(\mathcal{U}).$

5. Conclusion

In this work, we have the new concept of neutrosophic crisp closed sets called neutrosophic crisp semi- α -closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. The neutrosophic crisp semi- α -closed sets can obtain to derive a new decomposition of neutrosophic crisp continuity.

References

- A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3(2012), 31-35.
- [2] A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces. Neutrosophic Sets and Systems, 2(2014), 25-30.
- [3] A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets & possible application to GIS topology. Neutrosophic Sets and Systems, 7(2015), 18-22.
- [4] F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).

- [5] F. Smarandache, Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [6] Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi-α-open sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
- [7] W. Al-Omeri, Neutrosophic crisp sets via neutrosophic crisp topological spaces NCTS. Neutrosophic Sets and Systems, 13(2016), 96-104.
- [8] Arindam Dey, Said Broumi, Le Hoang Son, Assia Bakali, Mohamed Talea, Florentin Smarandache, "A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs", Granular Computing (Springer), pp.1-7, 2018.

[9] S Broumi, A Dey, A Bakali, M Talea, F Smarandache, LH Son, D Koley, "Uniform Single Valued Neutrosophic Graphs", Neutrosophic sets and systems, 2017.

[10] S Broumi, A Bakali, M Talea, F Smarandache, A. Dey, LH Son, "Spanning tree problem with Neutrosophic edge weights", in Proceedings of the 3rd International Conference on intelligence computing in data science, Elsevier, science direct, Procedia computer science, 2018.

[11] Said Broumi; Arindam Dey; Assia Bakali; Mohamed Talea; Florentin Smarandache; Dipak Koley,"An algorithmic approach for computing the complement of intuitionistic fuzzy graphs" 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)

[12] Abdel-Basset, M., Mohamed, M., Smarandache, F., & Chang, V. (2018). Neutrosophic Association Rule Mining Algorithm for Big Data Analysis. *Symmetry*, *10*(4), 106.

[13] Abdel-Basset, M., & Mohamed, M. (2018). The Role of Single Valued Neutrosophic Sets and Rough Sets in Smart City: Imperfect and Incomplete Information Systems. Measurement. <u>Volume 124</u>, August 2018, Pages 47-55 [14] Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. A novel method for solving the fully neutrosophic linear programming problems. *Neural Computing and Applications*, 1-11.
[15] Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. *Design Automation for*

Embedded Systems, 1- 22. [16] Abdel-Basset, M., Mohamed, M., & Chang, V. (2018). NMCDA: A framework for evaluating cloud computing services. *Future Generation Computer Systems*, 86, 12-29.

[17] Abdel-Basset, M., Mohamed, M., Zhou, Y., & Hezam, I. (2017). Multi-criteria group decision making based on neutrosophic analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 33(6), 4055-4066.
[18] Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. Symmetry 2018, 10, 116.

[19] Abdel-Basset, Mohamed, et al. "A novel group decision-making model based on triangular neutrosophic numbers." Soft Computing (2017): 1-15. DOI: <u>https://doi.org/10.1007/s00500-017-2758-5</u>
[20] Abdel-Baset, Mohamed, Ibrahim M. Hezam, and Florentin Smarandache. "Neutrosophic goal programming." Neutrosophic Sets Syst 11 (2016): 112-118.

[21] El-Hefenawy, Nancy, et al. "A review on the applications of neutrosophic sets." Journal of Computational and Theoretical Nanoscience 13.1 (2016): 936-944.

Received: June 18, 2018. Accepted: July 9, 2018.