

Neutrosophic Sets and Systems, Vol. Neutrosophic Sets and Systems, Vol. 21, 2018 28

University of New Mexico

On Neutrosophic Crisp Semi Alpha Closed Sets

Riad K. Al-Hamido¹, Qays Hatem Imran², Karem A. Alghurabi³ and Taleb Gharibah⁴

^{1,4}Department of Mathematics, College of Science, Al-Baath University, Homs, Syria. ²Department of Mathematics, College of Education for Pure Science Department of Mathematics, College of Education for Pure Science, Al Muthanna University, Samawah, Iraq Muthanna University, Samawah, Iraq. E-mail: riad-hamido1983@hotmail.com E-mail: taleb.gharibah@gmail.com E-mail: qays.imran@mu.edu.iq

³Department of Mathematics, College of Education for Pure Science, Babylon University, Hilla, Iraq.
E-mail: <u>kareemalghurabi@yahoo.com</u>

Abstract. In this paper, we presented another concept of neutrosophic crisp generalized closed sets called neutrosophic crisp semi- α -closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. We also present neutrosophic crisp semi-α-closure and neutrosophic crisp semi-α-interior and study some of their fundamental properties. Mathematics Subject Classification (2000): 54A40, 03E72. sophic crisp semi-α-closure and neutrosophic crisp semi-α-interior and study some of their fundamental properties.
Mathematics Subject Classification (2000): 54A40, 03E72.
Keywords: Neutrosophic crisp semi-α-closed sets,

neutrosophic crisp semi- α -interior.

1. Introduction

The concept of "neutrosophic set" was first given by F. Smarandache [4,5]. A. A. Salama and S. A. Alblowi [1] presented the concept of neutrosophic topological space (briefly NTS). Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan $[6]$ presented the idea of neutrosophic semi- α -open sets in neutrosophic topological spaces. In 2014, A. A. Salama, F. Smarandache and V. Kroumov [2] presented the concept of neutrosophic crisp topological space (briefly NCTS). The objective of this paper is to present the concept of neutrosophic crisp semi- α -closed sets and study their fundamental properties in neutrosophic crisp topological spaces. We also present neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior and obtain some of its properties.

2. Preliminaries

Throughout this paper, (U, T) (or simply U) always mean a neutrosophic crisp topological space. The complement of a neutrosophic crisp open set (briefly NC-OS) is called a neutrosophic crisp closed set (briefly NC-CS) in $(1, T)$. For a neutrosophic crisp set A in a neutrosophic crisp topological space $(1, T)$, NCcl(A), $NCint(\mathcal{A})$ and \mathcal{A}^c denote the neutrosophic crisp closure of \mathcal{A} , the neutrosophic crisp interior of \mathcal{A} and the neutrosophic crisp complement of A , respectively.

Definition 2.1:

A neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) is said to be:

A neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) is said to be:
(i) A neutrosophic crisp pre-open set (briefly NCP-OS) [3] if $A \subseteq NCint(NCcl(A))$. The complement of a NCP-OS is called a neutrosophic crisp pre-closed set (briefly NCP-CS) in (U, T) . The family of all NCP-OS (resp. NCP-CS) of U is denoted by NCPO(U) (resp. NCPC(U)).

(ii) A neutrosophic crisp semi-open set (briefly NCS-OS) [3] if $A \subseteq NCcl(NCint(A))$. The complement of a NCS-OS is called a neutrosophic crisp semi-closed set (briefly NCS-CS) in (U, T) . The family of all NCS-OS (resp. NCS-CS) of U is denoted by NCSO(U) (resp. NCSC(U)).

(iii) A neutrosophic crisp α -open set (briefly NC α -OS) [3] if $\mathcal{A} \subseteq NCint(NCelt(\mathcal{M}Cint(\mathcal{A})))$. The complement of a NCα-OS is called a neutrosophic crisp α -closed set (briefly NC α -CS) in (\hat{u} , T). The family of all NC α -OS (resp. NC α -CS) of U is denoted by NC α O(U) (resp. NC α C(U)).

Definition 2.2:

(i) The neutrosophic crisp pre-interior of a neutrosophic crisp set A of a neutrosophic crisp topological space (u, T) is the union of all NCP-OS contained in A and is denoted by PNCint(A)[3].

Riad K. Al-Hamido, Qays Hatem Imran, Karem A. Alghurabi and Taleb Gharibah, On Neutrosophic Crisp Semi Alpha Closed Sets

(ii) The neutrosophic crisp semi-interior of a neutrosophic crisp set A of a neutrosophic crisp topological space (U, T) is the union of all NCS-OS contained in A and is denoted by SNCint(A)[3].

(iii) The neutrosophic crisp α -interior of a neutrosophic crisp set A of a neutrosophic crisp topological space (U, T) is the union of all NC α -OS contained in A and is denoted by $\alpha NCint(\mathcal{A})[3]$.

Definition 2.3:

(i) The neutrosophic crisp pre-closure of a neutrosophic crisp set A of a neutrosophic crisp topological space (U, T) is the intersection of all NCP-CS that contain A and is denoted by $PNCcl(\mathcal{A})[3]$.

(ii) The neutrosophic crisp semi-closure of a neutrosophic crisp set A of a neutrosophic crisp topological space (U, T) is the intersection of all NCS-CS that contain A and is denoted by SNCcl(A)[3].

(iii) The neutrosophic crisp α -closure of a neutrosophic crisp set A of a neutrosophic crisp topological space (U, T) is the intersection of all NC α -CS that contain A and is denoted by $\alpha NCcl(\mathcal{A})[3]$.

Proposition 2.4 [7]:

In a neutrosophic crisp topological space (U, T) , the following statements hold, and the equality of each statement are not true:

(i) Every NC-CS (resp. NC-OS) is a NC α -CS (resp. NC α -OS).

(ii) Every NC α -CS (resp. NC α -OS) is a NCS-CS (resp. NCS-OS).

(iii) Every NC α -CS (resp. NC α -OS) is a NCP-CS (resp. NCP-OS).

Proposition 2.5 [7]:

A neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) is a NC α -CS (resp. NC α -OS) iff $\mathcal A$ is a NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS).

Theorem 2.6 [7]:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (\mathcal{U}, T) , $\mathcal{A} \in NC\alpha(\mathcal{U})$ iff there exists a NC-OS *H* such that $H \subseteq \mathcal{A} \subseteq NCint(NCcl(\mathcal{H}))$.

Proposition 2.7 [7]:

The union of any family of $NC\alpha$ -OS is a $NC\alpha$ -OS.

Proposition 2.8:

(i) If K is a NC-OS, then $SNCcl(K) = NCint(NCcl(K))$.

(ii) If A is a neutrosophic crisp subset of a neutrosophic crisp topological space (U, T) , then $SNCint(NCcl(A)) = NCcl(NCint(NCcl(A))).$

Proof: This follows directly from the definition (2.1) and proposition (2.4).

3. Neutrosophic Crisp Semi- α -Closed Sets

In this section, we present and study the neutrosophic crisp semi-α-closed sets and some of its properties.

Definition 3.1:

A neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) is called neutrosophic crisp semiα-closed set (briefly NCSα-CS) if there exists a NCα-CS H in U such that $NCint(\mathcal{H}) \subseteq \mathcal{A} \subseteq \mathcal{H}$ or equivalently if $NCint(\mathcal{A}) \subseteq \mathcal{A}$. The family of all NCS α -CS of $\mathcal U$ is denoted by NCS $\alpha C(\mathcal U)$.

Definition 3.2:

A neutrosophic crisp set A is called a neutrosophic crisp semi- α -open set (briefly NCS α -OS) if and only if its complement \mathcal{A}^c is a NCSα-CS or equivalently if there exists a NC α -OS \mathcal{H} in \mathcal{U} such that $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{H})$. The family of all NCS α -OS of $\mathcal U$ is denoted by NCS α O($\mathcal U$).

Proposition 3.3:

It is evident by definitions that in a neutrosophic crisp topological space (U, T) , the following hold: (i) Every NC-CS (resp. NC-OS) is a $NCS\alpha$ -CS (resp. $NCS\alpha$ -OS). (ii) Every NC α -CS (resp. NC α -OS) is a NCS α -CS (resp. NCS α -OS). The converse of Proposition (3.3) need not be true as shown by the following example.

Example 3.4:

Let $\mathcal{U} = \{p, q, r, s\}, \mathcal{A} = \{\{p\}, \{q, s\}, \{r\}\}, \mathcal{B} = \{\{p\}, \{q\}, \{r\}\}\$. Then $T = \{\emptyset_N, \mathcal{A}, \mathcal{B}, \mathcal{U}_N\}$ is a neutrosophic crisp topology on u .

Riad K. Al-Hamido, Qays Hatem Imran, Karem A. Alghurabi and Taleb Gharibah, On Neutrosophic Crisp Semi Alpha Closed Sets

(i) Let $\mathcal{H} = \langle \{p\}, \{q, r, s\}, \emptyset \rangle$, $\mathcal{A} \subseteq \mathcal{H} \subseteq NCcl(\mathcal{A}) = \mathcal{U}_N$, the neutrosophic crisp set \mathcal{H} is a NCS α -OS but not NC-OS. It is clear that $\mathcal{H}^c = \langle \{q, r, s\}, \{p\}, \mathcal{U} \rangle$ is a NCS α -CS but not NC-CS.

(ii) Let $\mathcal{K} = \langle \emptyset, \{q, r, s\}, \{r, s\} \rangle$ and so $\mathcal{K} \not\subseteq NCint(NCic)$, the neutrosophic crisp set \mathcal{K} is a NCS α -OS but not NCα-OS. It is clear that $\mathcal{K}^c = \langle \mathcal{U}, \{p\}, \{p, q\} \rangle$ is a NCSα-CS but not NCα-CS.

Remark 3.5:

The concepts of NCS α -CS (resp. NCS α -OS) and NCP-CS (resp. NCP-OS) are independent, as the following examples show.

Example 3.6:

Let $\mathcal{U} = \{p, q, r, s\}, \mathcal{A} = \{\{p\}, \{q\}, \{r\}\}, \mathcal{B} = \{\{r\}, \{q\}, \{s\}\}, \mathcal{C} = \{\{p, r\}, \{q\}, \emptyset\}, \mathcal{D} = \{\emptyset, \{q\}, \{r, s\}\}.$ Then $T = {\emptyset_N, A, B, C, D, \mathcal{U}_N}$ is a neutrosophic crisp topology on \mathcal{U} . Let $\mathcal{H} = \langle \{r, s\}, \{p, q\}, \{s\} \rangle$, $B \subseteq \mathcal{H} \subseteq$ $NCcl(B) = \langle \{r, s\}, \{q\}, \emptyset \rangle$, the neutrosophic crisp set *H* is a NCS α -OS but not NCP-OS. It is clear that \mathcal{H}^c = $\langle \{s\}, \{p, q\}, \{r, s\} \rangle$ is a NCS α -CS but not NCP-CS.

Example 3.7:

Let $u = \{p, q, r, s\}, \mathcal{A}_1 = \{\{p\}, \{q\}, \{r\}\}, \mathcal{A}_2 = \{\{p\}, \{q, s\}, \{r\}\}\$. Then $T = \{\emptyset_N, \mathcal{A}_1, \mathcal{A}_2, \mathcal{U}_N\}$ is a neutrosophic crisp topology on U. If $A_3 = \{\{p, q\}, \{r\}, \{s\}\}\)$, then A_3 is a NCP-OS but not NCS α -OS. It is clear that A_3^c = $\langle \{s\}, \{r\}, \{p, q\} \rangle$ is a NCP-CS but not NCS α -CS.

Remark 3.8:

(i) If every NC-OS is a NC-CS and every nowhere neutrosophic crisp dense set is NC-CS in any neutrosophic crisp topological space (U, T) , then every NCS α -CS (resp. NCS α -OS) is a NC-CS (resp. NC-OS).

(ii) If every NC-OS is a NC-CS in any neutrosophic crisp topological space (U, T) , then every NCS α -CS (resp. $NCS\alpha$ -OS) is a NCa -CS (resp. NCa -OS).

Remark 3.9:

(i) It is clear that every NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS) of any neutrosophic crisp topological space (U, T) is a NCS α -CS (resp. NCS α -OS) (by Proposition (2.5) and Proposition (3.3) (ii)). (ii) A NCS α -CS (resp. NCS α -OS) in any neutrosophic crisp topological space (U, T) is a NCP-CS (resp. NCP-OS) if every NC-OS of U is a NC-CS (from Proposition (2.4) (iii) and Remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) . The following properties are equivalent:

(i) $A \in NCS\alpha O(U)$.

(ii) There exists a NC-OS, say *H*, such that $H \subseteq \mathcal{A} \subseteq NCcl(NCint(NCel(\mathcal{H})))$.

(iii) $A \subseteq NCcl(NCint(NCcl(NCint(A))))$.

Proof:

(i) \Rightarrow (ii) Let $A \in NCSaO(U)$. Then, there exists $K \in NCaO(U)$, such that $K \subseteq A \subseteq NCcl(K)$. Hence there exists H NC-OS such that $\mathcal{H} \subseteq \mathcal{K} \subseteq NCint(NCcl(\mathcal{H}))$ (by Theorem (2.6)). Therefore, $NCcl(\mathcal{H}) \subseteq NCcl(\mathcal{K}) \subseteq$ $NCcl(NCint(NCcl(\mathcal{H})))$, implies that $NCcl(\mathcal{K}) \subseteq NCcl(NCint(NCcl(\mathcal{H})))$.

Then $\mathcal{H} \subseteq \mathcal{K} \subseteq \mathcal{A} \subseteq NCcl(\mathcal{K}) \subseteq NCcl(NCint(NCl(\mathcal{H})))$. Hence, $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCl(\mathcal{H})))$, for some H NC-OS.

(ii) \Rightarrow (iii) Suppose that there exists a NC-OS H such that $H \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$. We know that $NCint(\mathcal{A}) \subseteq \mathcal{A}$. On the other hand, $\mathcal{H} \subseteq NCint(\mathcal{A})$ (since $NCint(\mathcal{A})$ is the largest NC-OS contained in \mathcal{A}). Hence $NCell(\mathcal{H}) \subseteq NCcl(NCint(\mathcal{A}))$, then $NCint(NCcl(\mathcal{H})) \subseteq NCint(NCint(\mathcal{A})))$,

therefore $NCcl(NCint(NCcl(H))) \subseteq NCcl(NCint(NCcl(MCint(A))))$. But $A \subseteq NCcl(NCint(NCcl(H)))$ (by hypothesis). Hence $A \subseteq NCcl(NCint(NCcl(\mathcal{H}))) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))$,

then
$$
\mathcal{A} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A}))))
$$
.

(iii) \Rightarrow (i) Let $\mathcal{A} \subseteq NCcl(NCint(NCint(\mathcal{A})))$. To prove $\mathcal{A} \in NCS\alpha(0,0)$, let $\mathcal{K} = NCint(\mathcal{A})$; we know that $NCint(\mathcal{A}) \subseteq \mathcal{A}$. To prove $\mathcal{A} \subseteq NCcl(NCint(\mathcal{A})).$

Since
$$
NCint(NCcl(NCint(A))) \subseteq NCcl(NCint(A)).
$$

Hence, $NCcl(NCint(NCint(A)))) \subseteq NCcl(NCcl(NCint(A)))) = NCcl(NCint(A)).$

But $A \subseteq NCcl(NCint(NCint(A)))$ (by hypothesis). Hence, $A \subseteq NCcl(NCint(MCint(A)))$ $\subseteq NCcl(NCint(\mathcal{A})) \Rightarrow \mathcal{A} \subseteq NCcl(NCint(\mathcal{A}))$. Hence, there exists an NC-OS say \mathcal{K} , such that $\mathcal{K} \subseteq \mathcal{A} \subseteq$

 $NCcl(\mathcal{A})$. On the other hand, $\mathcal K$ is a NC α -OS (since $\mathcal K$ is a NC-OS). Hence $\mathcal A \in NCS(\mathcal{A})$.

Corollary 3.11:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) , the following properties are equivalent:

(i) $A \in NCS\alpha\mathcal{C}(\mathcal{U})$.

(ii) There exists a NC-CS $\mathcal F$ such that $NCint(NCil(T(\mathcal F))) \subseteq \mathcal A \subseteq \mathcal F$.

(iii) $NCint(NCcl(NCint(NCcl(A)))) \subseteq \mathcal{A}$.

Proof:

(i) \Rightarrow (ii) Let $\mathcal{A} \in NCS\alpha\mathcal{C}(\mathcal{U})$, then $\mathcal{A}^c \in NCS\alpha\mathcal{O}(\mathcal{U})$. Hence there is $\mathcal{H} \cap NCS\alpha\mathcal{C}$ such that $\mathcal{H} \subseteq \mathcal{A}^c \subseteq$ $NCcl(NCint(NCcl(H)))$ (by Theorem (3.10)). Hence $(NCcl(NCint(NCcl(H))))^c \subseteq \mathcal{A}^{c} \subseteq \mathcal{H}^c$, i.e., $\mathcal{N}Cint(\mathcal{NC}int(\mathcal{H}^c)) \subseteq \mathcal{A} \subseteq \mathcal{H}^c$. Let $\mathcal{H}^c = \mathcal{F}$, where \mathcal{F} is a NC-CS in \mathcal{U} .

Then $NCint(NCil(T)) \subseteq \mathcal{A} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS.

(ii) \Rightarrow (iii) Suppose that there exists *F* NC-CS such that $NCint(NCint(\mathcal{F})) \subseteq \mathcal{A} \subseteq \mathcal{F}$, but $NCcl(\mathcal{A})$ is the smallest NC-CS containing \mathcal{A} . Then $NCcl(\mathcal{A}) \subseteq \mathcal{F}$, and therefore: $NCint(NCl(\mathcal{A})) \subseteq NCint(\mathcal{F})$

 $\Rightarrow NCcl(NCint(NCcl(A))) \subseteq NCcl(NCint(\mathcal{F})) \Rightarrow NCint(NCcl(NCint(NCcl(A)))) \subseteq$

 $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{A} \implies NCint(NCcl(NCint(NCcl(\mathcal{A})))) \subseteq \mathcal{A}.$

 $(iii) \Rightarrow (i)$ Let $NCint(NCcl(NCicl(\mathcal{A})))) \subseteq \mathcal{A}$. To prove $\mathcal{A} \in NCSc(U)$, i.e., to prove $\mathcal{A}^c \in \mathcal{A}$ $NCS\alpha O(U)$. Then $\mathcal{A}^c \subseteq (NCint(NCil(NCil(\mathcal{A}))))^c = NCcl(NCint(NCil(\mathcal{A}^c))))$, but $(NCint(NCcl(NCint(NCcl(A))))^c = NCcl(NCint(NCcl(NCint(A^c))))$.

Hence $\mathcal{A}^c \subseteq NCcl(NCint(NCint(\mathcal{A}^c))))$, and therefore $\mathcal{A}^c \in NCSaO(U)$, i.e., $\mathcal{A} \in NCSaC(U)$.

Theorem 3.12:

The union of any family of NCSα-OS is a NCSα-OS.

Proof: Let $\{\mathcal{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of NCS α -OS. To prove $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ is a NCS α -OS. Since $\mathcal{A}_{\lambda} \in NCS\alphaO(\mathcal{U})$. Then there is a NC α -OS B_{λ} such that $B_{\lambda} \subseteq A_{\lambda} \subseteq NCcl(B_{\lambda})$, $\forall \lambda \in \Lambda$. Hence $\bigcup_{\lambda \in \Lambda} B_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} NCcl(B_{\lambda}) \subseteq$ $NCl(\bigcup_{\lambda \in \Lambda} B_{\lambda})$. But $\bigcup_{\lambda \in \Lambda} B_{\lambda} \in NCaO(\mathcal{U})$ (by Proposition (2.7)). Hence $\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda} \in NCS\alpha\mathcal{O}(\mathcal{U})$.

Corollary 3.13:

The intersection of any family of NCSα-CS is a NCSα-CS. Proof: This follows directly from Theorem (3.12).

Remark 3.14:

The following diagram shows the relations among the different types of weakly neutrosophic crisp closed sets that were studied in this section:

4. Neutrosophic Crisp Semi- α -Closure and Neutrosophic Crisp Semi- α -Interior

We present neutrosophic crisp semi- α -closure and neutrosophic crisp semi- α -interior and obtain some of their properties in this section.

Definition 4.1:

The intersection of all NCS α -CS in a neutrosophic crisp topological space (U,T) containing A is called neutrosophic crisp semi- α -closure of A and is denoted by $S\alpha NCcl(\mathcal{A})$, $S\alpha NCcl(\mathcal{A}) = \bigcap \{\mathcal{B} : \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a }$ $NCS\alpha$ -CS $\}$.

Definition 4.2:

The union of all NCS α -OS in a neutrosophic crisp topological space (U, T) contained in A is called neutrosophic crisp semi- α -interior of A and is denoted by $S\alpha NCint(\mathcal{A})$, $S\alpha NCint(\mathcal{A}) = \bigcup \{\mathcal{B} : \mathcal{B} \subseteq \mathcal{A}, \mathcal{B} \text{ is a NCS}\alpha\text{-OS}\}\$.

Proposition 4.3:

Let A be any neutrosophic crisp set in a neutrosophic crisp topological space (U, T) , the following properties are true:

(i) $S\alpha NCcl(\mathcal{A}) = \mathcal{A}$ iff \mathcal{A} is a NCS α -CS. (ii) $S\alpha NCint(\mathcal{A}) = \mathcal{A}$ iff \mathcal{A} is a NCS α -OS. (iii) $S\alpha NCcl(\mathcal{A})$ is the smallest NCS α -CS containing \mathcal{A} . (iv) $S\alpha NCint(\mathcal{A})$ is the largest NCS α -OS contained in \mathcal{A} . Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let A be any neutrosophic crisp set in a neutrosophic crisp topological space (U, T) , the following properties hold:

(i) $S\alpha NCint(\mathcal{U}_N - \mathcal{A}) = \mathcal{U}_N - (S\alpha NCcl(\mathcal{A})),$ (ii) $S\alpha NCcl(\mathcal{U}_N - \mathcal{A}) = \mathcal{U}_N - (S\alpha NCint(\mathcal{A})).$ **Proof:** (i) By definition (2.3), $S\alpha NCl(\mathcal{A}) = \bigcap \{\mathcal{B} : \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NCS}\alpha\text{-CS}\}\$ \mathcal{U}_N − ($S\alpha NCcl(\mathcal{A})$) = \mathcal{U}_N − $\bigcap \{\mathcal{B}:\mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NCSc-CS}\}\$ $= \bigcup \{ \mathcal{U}_N - \mathcal{B} : \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a NCS}\}\$ = $\bigcup \{ \mathcal{H}: \mathcal{H} \subseteq \mathcal{U}_N - \mathcal{A}, \mathcal{H} \text{ is a NCS}\}\$ $= S \alpha N C \text{int}(\mathcal{U}_N - \mathcal{A}).$

(ii) The proof is similar to (i).

Theorem 4.5:

Let A and B be two neutrosophic crisp sets in a neutrosophic crisp topological space (U, T) . The following properties hold:

(i) $S\alpha NCcl(\emptyset_N) = \emptyset_N$, $S\alpha NCcl(\mathcal{U}_N) = \mathcal{U}_N$. (ii) $A \subseteq S \alpha N \mathcal{C} cl (A)$. (iii) $A \subseteq B \implies S \alpha NCcl(A) \subseteq S \alpha NCcl(B)$. (iv) $S\alpha NCcl(\mathcal{A}\cap \mathcal{B}) \subseteq S\alpha NCcl(\mathcal{A})\cap S\alpha NCcl(\mathcal{B}).$ (v) $S\alpha NCcl(\mathcal{A})\cup S\alpha NCcl(\mathcal{B})\subseteq S\alpha NCcl(\mathcal{A}\cup \mathcal{B}).$ (vi) $S\alpha NCcl(S\alpha NCcl(A)) = S\alpha NCcl(A)$. Proof: (i) and (ii) are evident. (iii) By (ii), $\mathcal{B} \subseteq \mathcal{S} \alpha NCcl(\mathcal{B})$. Since $\mathcal{A} \subseteq \mathcal{B}$, we have $\mathcal{A} \subseteq \mathcal{S} \alpha NCcl(\mathcal{B})$. But $\mathcal{S} \alpha NCcl(\mathcal{B})$ is a NCS α -CS. Thus $S\alpha NCcl(B)$ is a NCS α -CS containing A.

Since $S\alpha NCcl(\mathcal{A})$ is the smallest NCS α -CS containing A, we have $S\alpha NCcl(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{B})$. Hence, $\mathcal{A} \subseteq$ $B \implies S\alpha NCcl(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{B}).$

(iv) We know that $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{A}$ and $\mathcal{A} \cap \mathcal{B} \subseteq \mathcal{B}$. Therefore, by (iii), $S \alpha NCcl(\mathcal{A} \cap \mathcal{B}) \subseteq S \alpha NCcl(\mathcal{A})$ and $SaNCcl(\mathcal{A}\cap\mathcal{B})\subseteq SaNCcl(\mathcal{B})$. Hence $SaNCcl(\mathcal{A}\cap\mathcal{B})\subseteq SaNCcl(\mathcal{A})\cap SaNCcl(\mathcal{B})$.

(v) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, it follows from part (iii) that $S \cap C \cap C \cap (A \cup B)$

and $SaNCcl(B) \subseteq SaNCcl(A \cup B)$. Hence $SaNCcl(A) \cup SaNCcl(B) \subseteq SaNCcl(A \cup B)$.

(vi) Since $SaNCcl(\mathcal{A})$ is a NCS α -CS, we have by Proposition (4.3)(i), $SaNCcl(SaNCcl(\mathcal{A})) = SaNCcl(\mathcal{A})$.

Theorem 4.6:

Let A and B be two neutrosophic crisp sets in a neutrosophic crisp topological space (U, T) . The following properties hold:

(i) $S\alpha N Cint(\phi_N) = \phi_N$, $S\alpha N Cint(\mathcal{U}_N) = \mathcal{U}_N$. (ii) $S\alpha NCint(\mathcal{A}) \subseteq \mathcal{A}$.

Riad K. Al-Hamido, Qays Hatem Imran, Karem A. Alghurabi and Taleb Gharibah, On Neutrosophic Crisp Semi Alpha Closed Sets

(iii) $A \subseteq B \implies S\alpha N\text{Cint}(\mathcal{A}) \subseteq S\alpha N\text{Cint}(B)$. (iv) $S\alpha NCint(\mathcal{A}\cap\mathcal{B}) \subseteq S\alpha NCint(\mathcal{A})\cap S\alpha NCint(\mathcal{B}).$ (v) $S\alpha NCint(\mathcal{A})\bigcup S\alpha NCint(\mathcal{B}) \subseteq S\alpha NCint(\mathcal{A}\bigcup \mathcal{B}).$ (vi) $\mathcal{S}\alpha \mathcal{N} \mathcal{C} \mathit{int}(\mathcal{S}\alpha \mathcal{N} \mathcal{C} \mathit{int}(\mathcal{A})) = \mathcal{S}\alpha \mathcal{N} \mathcal{C} \mathit{int}(\mathcal{A}).$ **Proof:** (i), (ii), (iii), (iv), (v) and (vi) are obvious.

Proposition 4.7:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) , then: (i) $NCint(\mathcal{A}) \subseteq \alpha NCint(\mathcal{A}) \subseteq S\alpha NCint(\mathcal{A}) \subseteq S\alpha NCcl(\mathcal{A}) \subseteq \alpha NCcl(\mathcal{A}) \subseteq NCcl(\mathcal{A}).$ (ii) $NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(NCint(\mathcal{A})) = NCint(\mathcal{A}).$ (iii) $\alpha NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(\alpha NCint(\mathcal{A})) = \alpha NCint(\mathcal{A}).$ (iv) $NCell(SaNCcl(A)) = SaNCcl(NCcl(A)) = NCcl(A).$ (v) $\alpha NCcl(S\alpha NCcl(A)) = S\alpha NCcl(\alpha NCcl(A)) = \alpha NCcl(A).$ (vi) $S\alpha NCcl(\mathcal{A}) = \mathcal{A} \cup NCint(NCcl(NCint(NCcl(\mathcal{A}))))$. (vii) $S\alpha NCint(\mathcal{A}) = \mathcal{A}\cap NCcl(NCint(NCcl(NCint(\mathcal{A}))))$. (viii) $NCint(NCcl(\mathcal{A})) \subseteq S\alpha NCint(S\alpha NCcl(\mathcal{A})).$ Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii). (ii) To prove $NCint(SaNCint(\mathcal{A})) = SaNCint(NCint(\mathcal{A})) = NCint(\mathcal{A}),$ we know that $NCint(\mathcal{A})$ is a NC-OS. It follows that $N\text{Cint}(\mathcal{A})$ is a NCS α -OS. Hence $N\text{Cint}(\mathcal{A}) = S\alpha N\text{Cint}(N\text{Cint}(\mathcal{A}))$ (by Proposition (4.3)). Therefore: () = ൫()൯…...…...(1) Since $NCint(\mathcal{A}) \subseteq S\alpha NCint(\mathcal{A}) \Rightarrow NCint(NCint(\mathcal{A})) \subseteq NCint(S\alpha NCint(\mathcal{A})) \Rightarrow NCint(\mathcal{A}) \subseteq$ $NCint(SaNCint(\mathcal{A}))$. Also, $SaNCint(\mathcal{A}) \subseteq \mathcal{A} \Rightarrow NCint(SaNCint(\mathcal{A})) \subseteq NCint(\mathcal{A})$. Hence: () = ൫()൯…………………...(2) Therefore by (1) and (2), we get $NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(NCint(\mathcal{A})) = NCint(\mathcal{A}).$ (iii) Now we prove $\alpha N Cint(\mathcal{S}\alpha N Cint(\mathcal{A})) = S\alpha N Cint(\alpha N Cint(\mathcal{A})) = \alpha N Cint(\mathcal{A}).$ Since $\alpha NCint(\mathcal{A})$ is NC α -OS, therefore $\alpha NCint(\mathcal{A})$ is NCS α -OS. Therefore by Proposition (4.3): () = ൫()൯………..(1) Now, to prove $\alpha NCint(\mathcal{A}) = \alpha NCint(S\alpha NCint(\mathcal{A}))$, we have $\alpha NCint(\mathcal{A}) \subseteq S\alpha NCint(\mathcal{A}) \implies$ $\alpha NCint(\mathcal{A}) \subseteq \alpha NCint(S\alpha NCint(\mathcal{A})) \Rightarrow \alpha NCint(\mathcal{A}) \subseteq \alpha NCint(S\alpha NCint(\mathcal{A})).$ Also, $\mathcal{S} \alpha \mathcal{N} \mathcal{C} \text{int}(\mathcal{A}) \subseteq \mathcal{A} \Rightarrow \alpha \mathcal{N} \mathcal{C} \text{int}(\mathcal{S} \alpha \mathcal{N} \mathcal{C} \text{int}(\mathcal{A})) \subseteq \alpha \mathcal{N} \mathcal{C} \text{int}(\mathcal{A}).$ Hence: () = ൫()൯………………..(2) Therefore by (1) and (2), we get $\alpha NCint(S\alpha NCint(\mathcal{A})) = S\alpha NCint(\alpha NCint(\mathcal{A})) = \alpha NCint(\mathcal{A}).$ (iv) To prove $NCell(SaNCel(A)) = SaNCel(NCel(A)) = NCell(A)$. We know that $NCell(A)$ is a NC-CS, so it is NCS α -CS. Hence by proposition (4.3), we have: $NCell(\mathcal{A}) = S\alpha NCell(NCell(\mathcal{A}))$(1) To prove $NCell(\mathcal{A}) = NCcl(S\alpha NCcl(\mathcal{A}))$, we have $S\alpha NCcl(\mathcal{A}) \subseteq NCcl(\mathcal{A})$ (by part (i)). Then $NCell(SaNCel(A)) \subseteq NCel(NCel(A)) = NCel(A) \Rightarrow NCel(SaNCel(A)) \subseteq NCel(A)$. Since $A \subseteq S$ $\alpha NCcl(\mathcal{A}) \subseteq NCcl(S \alpha NCcl(\mathcal{A}))$, then $A \subseteq NCcl(S \alpha NCcl(\mathcal{A}))$. Hence, $NCell(\mathcal{A}) \subseteq NCcl(NCell(SaNCel(\mathcal{A})) = NCcl(SaNCel(\mathcal{A})) \Rightarrow NCel(\mathcal{A}) \subseteq NCcl(SaNCel(\mathcal{A}))$ and therefore: () = ൫()൯……...(2) Now, by (1) and (2), we get that $NCol(SaNCel(\mathcal{A})) = SaNCel(NCol(\mathcal{A}))$. Hence $NCel(SaNCel(\mathcal{A})) =$ $S\alpha NCcl(NCcl(A)) = NCcl(A).$ (vii) To prove $\text{S}\alpha\text{NCint}(\mathcal{A}) = \mathcal{A}\bigcap \text{NCcl}(\text{NCint}(\mathcal{A}))\big)$, since $\text{S}\alpha\text{NCint}(\mathcal{A}) \in \text{NCS}\alpha\text{O}(U) \Rightarrow$ $S\alpha NCint(\mathcal{A}) \subseteq NCcl(NCint(NCint(S\alpha NCint(\mathcal{A})))) = NCcl(NCint(NCint(\mathcal{A}))))$ (by part (ii)). Hence, $S \alpha N C \text{int}(\mathcal{A}) \subseteq NCcl(NC \text{int}(NC \text{int}(\mathcal{A})))$), also $S \alpha N C \text{int}(\mathcal{A}) \subseteq \mathcal{A}$. Then: () ⊆ ⋂(((())))..(1) To prove $\mathcal{A}\bigcap NCcl(NCint(NCint(\mathcal{A})))$ is a NCS α -OS contained in \mathcal{A} . It is clear that $\mathcal{A}\cap NCcl(NCint(NCint(\mathcal{A})))\subseteq NCcl(NCint(NCint(\mathcal{A})))$ and also it is clear that $NCint(\mathcal{A}) \subseteq NCcl(NCint(\mathcal{A})) \Rightarrow NCint(NCint(\mathcal{A})) \subseteq NCint(NCint(\mathcal{A}))) \Rightarrow NCint(\mathcal{A}) \subseteq$ $NCint(NCcl(NCint(A))) \Rightarrow NCcl(NCint(\mathcal{A})) \subseteq NCcl(NCint(NCcl(NCint(\mathcal{A})))$ and $NCint(\mathcal{A}) \subseteq$ $NCcl(NCint(\mathcal{A})) \Rightarrow NCint(\mathcal{A}) \subseteq NCcl(NCint(NCint(\mathcal{A})))$ and $NCint(\mathcal{A}) \subseteq \mathcal{A} \Rightarrow NCint(\mathcal{A}) \subseteq$ $\mathcal{A}\bigcap NCcl(NCint(NCint(\mathcal{A})))\big)$. We get $NCint(\mathcal{A})\subseteq \mathcal{A}\bigcap NCcl(NCint(NCint(\mathcal{A})))\big) \subseteq$ $NCcl(NCint(NCcl(NCint(A))))$. Hence $\mathcal{A}\bigcap NCcl(NCint(NCil(MCint(A))))$ is a NCS α -OS (by Proposition (4.3)). Also, $\mathcal{A}\bigcap NCcl(NCint(NCint(\mathcal{A})))$ is contained in \mathcal{A} . Then $\mathcal{A}\cap NCcl(NCint(NCint(\mathcal{A})))\subseteq S\alpha NCint(\mathcal{A})$ (since $S\alpha NCint(\mathcal{A})$ is the largest NCS α - OS contained in A). Hence: $A \cap NCcl(NCint(NCcl(NCint(A)))) \subseteq S \alpha NCint(A)$(2) By (1) and (2), we get that $S\alpha NCint(\mathcal{A}) = \mathcal{A}\bigcap NCcl(NCint(NCint(\mathcal{A})))\big)$. (viii) To prove that $NCint(NCl(\mathcal{A})) \subseteq S\alpha NCint(S\alpha NCl(\mathcal{A}))$, we know that $S\alpha NCl(\mathcal{A})$ is a NCS α -CS, therefore $NCint(NCci(NCci(NCci(S\alpha NCci(\mathcal{A})))) \subseteq S\alpha NCci(\mathcal{A})$ (by Corollary (3.11)). Hence $NCint(NCcl(\mathcal{A})) \subseteq NCint(NCcl(NCint(NCl(\mathcal{A}))) \subseteq S\alpha NCcl(\mathcal{A})$ (by part (iv)). Therefore,

 $S\alpha NCint(NCol(\mathcal{A}))\subseteq S\alpha NCint(S\alpha NCol(\mathcal{A}))\Rightarrow NCint(NCol(\mathcal{A}))\subseteq S\alpha NCint(S\alpha NCol(\mathcal{A}))$ (by (ii)).

Theorem 4.8:

For any neutrosophic crisp subset A of a neutrosophic crisp topological space (U, T) . The following properties are equivalent:

(i) $A \in \text{NCS}\alpha 0(\mathcal{U})$. (ii) $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$, for some NC-OS \mathcal{H} . (iii) $\mathcal{H} \subseteq \mathcal{A} \subseteq SNCint(NCcl(\mathcal{H}))$, for some NC-OS \mathcal{H} . (iv) $A \subseteq SNCint(NCcl(NCint(A))).$ Proof: $(i) \Rightarrow (ii)$ Let $\mathcal{A} \in NCS\alpha O(\mathcal{U})$, then $\mathcal{A} \subseteq NCcl(NCint(NCint(\mathcal{A})))$ and $NCint(\mathcal{A}) \subseteq \mathcal{A}$. Hence $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$, where $\mathcal{H} = NCint(\mathcal{A})$. (ii) \Rightarrow (iii) Suppose $\mathcal{H} \subseteq \mathcal{A} \subseteq NCcl(NCint(NCcl(\mathcal{H})))$, for some NC-OS \mathcal{H} . But $SNCint(NCcl(\mathcal{H})) =$ $NCcl(NCint(NCcl(\mathcal{H})))$ (by Proposition (2.8)). Then $\mathcal{H} \subseteq \mathcal{A} \subseteq SNCint(NCcl(\mathcal{H}))$, for some NC-OS \mathcal{H} . $(iii) \Rightarrow (iv)$ Suppose that $\mathcal{H} \subseteq \mathcal{A} \subseteq SNCint(NCcl(\mathcal{H}))$, for some NC-OS \mathcal{H} . Since \mathcal{H} is a NC-OS contained in A . Then $\mathcal{H} \subseteq NCint(\mathcal{A}) \Rightarrow NCcl(\mathcal{H}) \subseteq NCcl(NCint(\mathcal{A}))$ \Rightarrow SNCint(NCcl(H)) \subseteq SNCint(NCcl(NCint(A))). But $A \subseteq SNCint(NC(\mathcal{H}))$ (by hypothesis), then $A \subseteq SNCint(NCcl(NCint(A))).$ $(iv) \Rightarrow (i)$ Let $\mathcal{A} \subseteq SNCint(NCcl(NCint(\mathcal{A}))).$ But $SNCint(NCcl(NCint(A))) = NCcl(NCint(NCcl(NCint(A))))$ (by Proposition (2.8)).

Hence, $A \subseteq NCcl(NCint(NCint(\mathcal{A}))) \implies A \in NCSo(1)).$

Corollary 4.9:

For any neutrosophic crisp subset $\mathcal B$ of a neutrosophic crisp topological space $(\mathcal U, \mathcal T)$, the following properties are equivalent:

(i) $\mathcal{B} \in \text{NCS}\alpha\mathcal{C}(\mathcal{U})$. (ii) $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. (iii) $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. (iv) $SNCcl(NCint(NCcl(B))) \subseteq B$. Proof: $(i) \Rightarrow (ii)$ Let $\mathcal{B} \in \text{NCSac}(\mathcal{U}) \Rightarrow \text{NCint}(\text{NCcl}(NCint(NCcl(\mathcal{B})))) \subseteq \mathcal{B}$ (by Corollary(3.11)) and $B \subseteq NCcl(B)$. Hence we obtain $NCint(NCcl(NCl(B)))) \subseteq B \subseteq NCcl(B)$. Therefore, $NCint(NCcl(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, where $\mathcal{F} = NCcl(\mathcal{B})$. $(iii) \implies (iii)$ Let $NCint(NCil(NCint(\mathcal{F}))) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. But $NCint(NCil(NCint(\mathcal{F})))$ =

 $SNCcl(NCint(\mathcal{F}))$ (by Proposition (2.8)). Hence $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. $(iii) \Rightarrow (iv)$ Let $SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \subseteq \mathcal{F}$, for some \mathcal{F} NC-CS. Since $\mathcal{B} \subseteq \mathcal{F}$ (by hypothesis), then we have $NCcl(\mathcal{B}) \subseteq \mathcal{F} \Longrightarrow NCint(NCl(\mathcal{B}) \subseteq NCint(\mathcal{F}) \Longrightarrow SNCcl(NCint(NCl(\mathcal{B}))) \subseteq SNCcl(NCint(\mathcal{F})) \subseteq \mathcal{B} \Longrightarrow$ $SNCcl(NCint(NCcl(B))) \subseteq B$. $(iv) \Rightarrow (i)$ Let $SNCcl(NCint(NCcl(B))) \subseteq B$.

But $SNCcl(NCint(NCcl(\mathcal{B}))) = NCint(NCcl(NCint(NCcl(\mathcal{B}))))$ (by Proposition (2.8)). Hence, $NCint(NCcl(NCcl(\mathcal{B})))) \subseteq \mathcal{B} \implies \mathcal{B} \in NCS\alpha\mathcal{C}(\mathcal{U}).$

5. Conclusion

In this work, we have the new concept of neutrosophic crisp closed sets called neutrosophic crisp semi- α closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. The neutrosophic crisp semi- α -closed sets can obtain to derive a new decomposition of neutrosophic crisp continuity.

References

- [1] A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3(2012), 31-35.
- [2] A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces. Neutrosophic Sets and Systems, 2(2014), 25-30.
- [3] A. A. Salama, Basic structure of some classes of neutrosophic crisp nearly open sets & possible application to GIS topology. Neutrosophic Sets and Systems, 7(2015), 18-22.
- [4] F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).

Riad K. Al-Hamido, Qays Hatem Imran, Karem A. Alghurabi and Taleb Gharibah, On Neutrosophic Crisp Semi Alpha Closed Sets

- [5] F. Smarandache, Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [6] Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi- α -open sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
- [7] W. Al-Omeri, Neutrosophic crisp sets via neutrosophic crisp topological spaces NCTS. Neutrosophic Sets and Systems, 13(2016), 96-104.

[8] Arindam Dey, Said Broumi, Le Hoang Son, Assia Bakali, Mohamed Talea, Florentin Smarandache, "A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs", Granular Computing (Springer), pp.1-7, 2018.

[9] S Broumi, A Dey, A Bakali, M Talea, F Smarandache, LH Son, D Koley, "Uniform Single Valued Neutrosophic Graphs", Neutrosophic sets and systems, 2017.

[10] S Broumi, A Bakali, M Talea, F Smarandache, A. Dey, LH Son, "Spanning tree problem with Neutrosophic edge weights", in Proceedings of the 3rd International Conference on intelligence computing in data science, Elsevier, science direct, Procedia computer science, 2018.

[11] Said Broumi; Arindam Dey; Assia Bakali; Mohamed Talea; Florentin Smarandache; Dipak Koley,"An algorithmic approach for computing the complement of intuitionistic fuzzy graphs" 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)

[12] Abdel-Basset, M., Mohamed, M., Smarandache, F., & Chang, V. (2018). Neutrosophic Association Rule Mining Algorithm for Big Data Analysis. *Symmetry*, *10*(4), 106.

[13] Abdel-Basset, M., & Mohamed, M. (2018). The Role of Single Valued Neutrosophic Sets and Rough Sets in Smart City: Imperfect and Incomplete Information Systems. Measurement. Volume 124, August 2018, Pages 47-55 [14] Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. A novel method for solving the fully neutrosophic linear programming problems. *Neural Computing and Applications*, 1-11. [15] Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. *Design Automation for Embedded Systems*, 1- 22.

[16] Abdel-Basset, M., Mohamed, M., & Chang, V. (2018). NMCDA: A framework for evaluating cloud computing services. *Future Generation Computer Systems*, *86*, 12-29.

[17] Abdel-Basset, M., Mohamed, M., Zhou, Y., & Hezam, I. (2017). Multi-criteria group decision making based on neutrosophic analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 33(6), 4055-4066. [18] Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. Symmetry 2018, 10, 116.

[19] Abdel-Basset, Mohamed, et al. "A novel group decision-making model based on triangular neutrosophic numbers." Soft Computing (2017): 1-15. DOI: https://doi.org/10.1007/s00500-017-2758-5 [20] Abdel-Baset, Mohamed, Ibrahim M. Hezam, and Florentin Smarandache. "Neutrosophic goal programming." Neutrosophic Sets Syst 11 (2016): 112-118.

[21] El-Hefenawy, Nancy, et al. "A review on the applications of neutrosophic sets." Journal of Computational and Theoretical Nanoscience 13.1 (2016): 936-944.

Received: June 18, 2018. Accepted: July 9, 2018.