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Abstract
Background/Aims: Hyperphosphatemia promotes medial vascular calcification, at least 
partly, by induction of osteo-/chondrogenic transdifferentiation of vascular smooth muscle 
cells (VSMCs). The complex signaling pathways regulating this process are still incompletely 
understood. The present study investigated the role of cytosolic serine hydroxymethyl 
transferase 1 (SHMT1) in phosphate-induced vascular calcification. Methods: Endogenous 
expression of SHMT1 was suppressed by silencing in primary human aortic smooth muscle 
cells (HAoSMCs) followed by treatment without and with phosphate or antioxidants. Results: 
In HAoSMCs, SHMT1 mRNA expression was up-regulated by phosphate. Silencing of SHMT1 
alone was sufficient to induce osteo-/chondrogenic transdifferentiation of HAoSMCs, as shown 
by increased tissue-nonspecific alkaline phosphatase (ALPL) activity and osteogenic markers 
MSX2, CBFA1 and ALPL mRNA expression. Furthermore, phosphate-induced ALPL mRNA 
expression and activity as well as calcification were augmented in SHMT1 silenced HAoSMCs 
as compared to negative control siRNA transfected HAoSMCs. Silencing of SHMT1 decreased 
total antioxidant capacity and up-regulated NADH/NADPH oxidase system components NOX4 
and CYBA mRNA expression in HAoSMCs, effects paralleled by increased mRNA expression 
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of matrix metalloproteinase MMP2 as well as BAX/BCL2 ratio. More importantly, additional 
treatment with antioxidants TEMPOL or TIRON blunted the increased osteogenic markers 
mRNA expression in SHMT1 silenced HAoSMCs. Conclusion: Silencing of SHMT1 promotes 
osteo-/chondrogenic signaling in VSMCs, at least in part, by inducing cellular oxidative stress. 
It thus aggravates phosphate-induced calcification of VSMCs. The present findings support 
a regulatory role of SHMT1 in vascular calcification during conditions of hyperphosphatemia 
such as chronic kidney disease.

Introduction

Medial vascular calcification is strongly associated with cardiovascular morbidity and 
mortality in chronic kidney disease (CKD) patients [1]. In these patients, impaired renal 
phosphate excretion leads to hyperphosphatemia, a major pathological factor promoting 
the initiation and progression of vascular calcification [2, 3]. Accordingly, plasma phosphate 
concentrations are predictive for an increased risk for cardiovascular events and mortality 
[4, 5].

The pathological deposition of calcium-phosphate in the media of the arterial wall is 
an active process, with similarities to physiological bone mineralization [6, 7]. Vascular 
calcification is promoted mainly by vascular smooth muscle cells (VSMCs) [2, 8, 9]. 
Pathological factors, especially phosphate, trigger the transdifferentiation of VSMCs into an 
osteoblast and chondroblast-like phenotype [2, 6, 10] including increased expression and 
activity of the osteogenic transcription factors msh homeobox 2 (MSX2) and core-binding 
factor α-1 (CBFA1) [11, 12] as well as osteogenic enzymes such as tissue-nonspecific alkaline 
phosphatase (ALPL) [9, 13] to initiate mineral deposition in the vascular tissue. The complex 
intracellular signaling pathways mediating osteo-/chondrogenic transdifferentiation of 
VSMCs are still incompletely understood.

The cytosolic serine hydroxymethyl transferase 1 (SHMT1) catalyzes the reversible 
conversion of serine and tetrahydrofolate to glycine and 5, 10-methylene tetrahydrofolate 
[14, 15] and is a critical enzyme in one carbon (methyl) metabolism [14-17]. One carbon 
transfer is a key component in amino acid and nucleotide synthesis as well as methylation 
of proteins, DNA and RNA [18, 19] and, thus, participating in the regulation of cell function, 
proliferation and growth [18, 20]. SHMT1 has been associated with apoptotic pathways 
[21]. SHMT1 differs in targets and effects from the mitochondrial isoform SHMT2 [14, 15, 
18]. Polymorphisms in the SHMT1 gene are associated with increased risk of cardiovascular 
disease [22, 23] including ischemic stroke [24]. Genetic variation in the SHMT1 gene is further 
associated with carotid intima-media thickness, a marker for atherosclerosis [25]. However, 
the impact of SHMT1 on VSMC function and vascular calcification remained illdefined.

Therefore, the present study aimed to elucidate the possible involvement of SHMT1 in 
osteo-/chondrogenic transdifferentiation and calcification of VSMCs during conditions of 
hyperphosphatemia in-vitro.

Materials and Methods

Cell culture of primary human aortic smooth muscle cells
Primary human aortic smooth muscle cells (HAoSMCs) were obtained from Thermo Fisher Scientific 

[26-28]. Cells were grown to confluence in complete medium containing Waymouth’s MB 752/1 medium 
and Ham’s F-12 nutrient mixture (1:1 ratio, Thermo Fisher Scientific), 10% FBS (Thermo Fisher Scientific), 
100 U/ml penicillin and 100 µg/ml streptomycin (Thermo Fisher Scientific). HAoSMCs were used in all 
experiments from passages 4 to 11.

HAoSMCs were transfected with 10 nM SHMT1 siRNA (ID no. s12820, Thermo Fisher Scientific) or with 
10 nM negative control siRNA (ID no. 4390843, Thermo Fisher Scientific) using siPORT amine transfection 
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agent (Thermo Fisher Scientific) according to the manufacturer’s protocol. The cells were used 48 hours 
(qRT-PCR and antioxidant capacity), 7 days (ALPL activity) or 9 days (calcium deposition) after transfection. 
Silencing efficiency was determined by quantitative RT-PCR.

HAoSMCs were treated for 24 hours (qRT-PCR) or 7 days (ALPL activity) with 2 mM β-glycerophosphate 
(Sigma Aldrich), 10 µM TEMPOL (4-hydroxy-TEMPO, stock in DMSO; Sigma-Aldrich) or 10 µM TIRON (4, 
5-dihydroxy-1, 3-benzenedisulfonic acid disodium salt monohydrate; Sigma-Aldrich). Equal amounts of vehicle 
were used as control. Treatment with calcification medium (10 mM β-glycerophosphate and 1.5 mM CaCl2, 
Sigma-Aldrich) for 9 days was used for the calcium content analysis and Alizarin Red staining [26, 29, 30]. 
Fresh media with agents were added every 2-3 days.

Quantitative RT-PCR
Total RNA was isolated from HAoSMCs by using Trizol Reagent (Thermo Fisher Scientific) according 

to the manufacturer’s instructions [31, 32]. Reverse transcription of total RNA was performed using 
oligo(dT)12-18 primers (Thermo Fisher Scientific) and SuperScript III Reverse Transcriptase (Thermo Fisher 
Scientific). Quantitative RT-PCR was performed with the iCycler iQTM Real-Time PCR Detection System (Bio-
Rad Laboratories) and iQTM Sybr Green Supermix (Bio-Rad Laboratories) according to the manufacturer’s 
instructions. The following human primers were used (Thermo Fisher Scientific, 5’→3’ orientation):

ALPL fw: GGGACTGGTACTCAGACAACG;
ALPL rev: GTAGGCGATGTCCTTACAGCC;
BAX fw: CCCGAGAGGTCTTTTTCCGAG;
BAX rev: CCAGCCCATGATGGTTCTGAT;
BCL2 fw: GGTGGGGTCATGTGTGTGG;
BCL2 rev: CGGTTCAGGTACTCAGTCATCC;
CBFA1 fw: GCCTTCCACTCTCAGTAAGAAGA;
CBFA1 rev: GCCTGGGGTCTGAAAAAGGG;
CYBA fw: CCCAGTGGTACTTTGGTGCC;
CYBA rev: GCGGTCATGTACTTCTGTCCC;
GAPDH fw: GAGTCAACGGATTTGGTCGT;
GAPDH rev: GACAAGCTTCCCGTTCTCAG;
MMP2 fw: TACAGGATCATTGGCTACACACC;
MMP2 rev: GGTCACATCGCTCCAGACT;
MSX2 fw: TGCAGAGCGTGCAGAGTTC;
MSX2 rev: GGCAGCATAGGTTTTGCAGC;
NOX4 fw: TGACGTTGCATGTTTCAGGAG;
NOX4 rev: AGCTGGTTCGGTTAAGACTGAT;
SHMT1 fw: TTGCCTCGGAGAATTTCGCC;
SHMT1 rev: GTCCCGCCATAGTATCTCTGG.
The specificity of the PCR products was confirmed by analysis of the melting curves. All PCRs were 

performed in duplicate and relative mRNA expression was calculated by using the 2-ΔΔCt method with GAPDH 
as housekeeping gene. Results were normalized to the negative control silenced group.

Total antioxidant capacity assay
Total antioxidant capacity of HAoSMCs was measured in the cell lysate by using the colorimetric antioxidant 

assay kit (Cayman Chemical) according to the manufacturer’s protocols [26, 33]. Relative antioxidant capacity 
was compared to that of Trolox as standard. The results were normalized to total protein concentration as 
assessed by the Bradford assay (Bio-Rad Laboratories) and to the negative control silenced group.

Alkaline phosphatase (ALPL) activity assay
ALPL activity in HAoSMCs was determined by using the ALP colorimetric assay kit (Abcam) according 

to the manufacturer’s protocol [34]. The results are shown normalized to total protein concentration 
measured by the Bradford assay (Bio-Rad Laboratories).

http://dx.doi.org/10.1159%2F000492248
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Determination of calcification
HAoSMCs were decalcified in 0.6 M HCl for 24 hours at 4°C. Calcium content in the supernatant was 

determined by using QuantiChrom Calcium assay kit (BioAssay Systems) according to the manufacturer’s 
protocol. HAoSMCs were lysed with 0.1 M NaOH/ 0.1% SDS and protein concentration was measured by 
the Bradford assay (Bio-Rad Laboratories). Results are shown normalized to total protein concentration 
[28, 35]. For Alizarin red staining, HAoSMCs were fixed with 4% paraformaldehyde/PBS and stained with 2% 
Alizarin Red (pH 4.5). The calcified areas are shown as red staining [26].

Statistics
Data are shown as scatter dot plots and arithmetic means ± SEM. N indicates the number of independent 

experiments performed at different passages of the cells. Normality was tested with Shapiro-Wilk test. Non-
normal datasets were transformed (log, reciprocal or sqrt) prior to statistical testing to provide normality 
according to Shapiro-Wilk test. Statistical testing was performed by one-way Anova followed by Tukey-test 
(homoscedastic data) or Games-Howell test (heteroscedastic data). Non-normal data were tested by the Steel-
Dwass method. Two groups were compared by unpaired two-tailed t-test. P<0.05 was considered statistically 
significant.

Results

To investigate the role of SHMT1 in vascular calcification, the endogenous expression 
in primary human aortic smooth muscle cells (HAoSMCs) was suppressed by silencing of 
the SHMT1 gene followed by additional treatment without and with phosphate. As shown 
in Fig. 1, SHMT1 mRNA expression was significantly lower in SHMT1 silenced HAoSMCs 
than in negative control siRNA transfected HAoSMCs. The 
negative control transfection conditions alone did not 
significantly affect SHMT1 gene expression in HAoSMCs as 
compared to untransfected HAoSMCs (n=5; 1.004±0.042 
a.u. in untransfected HAoSMCs vs. 0.998±0.059 a.u. in 
negative control siRNA silenced HAoSMCs). Phosphate 
treatment significantly up-regulated SHMT1 mRNA 
expression in negative control silenced HAoSMCs (Fig. 1).

As illustrated by Alizarin Red staining and 
quantification of calcium content, treatment with 
calcification medium increased calcification of negative 
control silenced HAoSMCs, an effect aggravated in 
SHMT1 silenced HAoSMCs (Fig. 2A, B). Silencing of 
SHMT1 alone did not significantly modify calcium 
deposition in HAoSMCs (Fig. 2A, B). However, SHMT1 
knockdown alone was sufficient to significantly increase 
ALPL activity (Fig. 2C) and mRNA expression of 
osteogenic transcription factors MSX2 and CBFA1 as well 
as of osteogenic enzyme ALPL (Fig. 2D-F) in HAoSMCs to 
similar high levels as phosphate treatment. Furthermore, 
the phosphate-induced ALPL activity and mRNA 
expression were significantly augmented following 
silencing of SHMT1 in HAoSMCs. Silencing of SHMT1 
tended to augment MSX2 and CBFA1 mRNA expression 
in phosphate treated HAoSMCs, an effect, however, not 
reaching statistical significance. Taken together, silencing 
of SHMT1 is sufficient to promote osteo-/chondrogenic 
transdifferentiation and to aggravate the phosphate-
induced calcification of VSMCs.

Fig. 1. Phosphate up-regulates 
cytosolic serine hydroxymethyl 
transferase 1 (SHMT1) expression 
in HAoSMCs. Scatter dot plots and 
arithmetic means ± SEM (n=8; 
arbitrary units, a.u.) of SHMT1 
relative mRNA expression in 
HAoSMCs following silencing for 48 
hours with negative control siRNA 
(Neg.si) or SHMT1 siRNA (SHMT1si) 
and additional treatment for 24 
hours with control or with 2 mM 
β-glycerophosphate (Pi). *(p<0.05), 
***(p<0.001) statistically significant 
vs. negative control silenced 
HAoSMCs.
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To explore the mechanisms underlying the pro-calcific role of SHMT1 knockdown, 
another series of experiments analyzed the effects on oxidative stress in HAoSMCs. Total 
antioxidant capacity (Fig. 3A) was significantly lower and the mRNA expression of oxidative 
stress markers NOX4 and p22phox encoded by the CYBA gene (Fig. 3B, C) was significantly 
higher in SHMT1 silenced HAoSMCs than in negative control silenced HAoSMCs. Similarly, 
silencing of SHMT1 significantly up-regulated matrix metalloproteinase MMP2 mRNA 
expression (Fig. 3D), a downstream target of oxidative stress in VSMCs. These effects were 
paralleled by increased BAX/BCL2 mRNA expression ratio as indicator of apoptosis in SHMT1 
silenced HAoSMCs (Fig. 3E). Thus, SHMT1 knockdown induces oxidative stress in VSMCs.

Further experiments investigated whether induction of oxidative stress is responsible 
for the effects of SHMT1 silencing on osteo-/chondrogenic transdifferentiation of VSMCs. 
As shown in Fig. 4, the increased mRNA expression of osteo-/chondrogenic markers MSX2, 
CBFA1 and ALPL in SHMT1 silenced HAoSMCs was significantly suppressed following 
additional treatment with antioxidants TEMPOL or TIRON. Thus, the effects of SHMT1 
silencing in promoting osteo-/chondrogenic transdifferentiation of VSMCs are due, at least 
partially, to induction of cellular oxidative stress.

Fig. 2. Silencing of SHMT1 promotes osteoinductive signaling and aggravates phosphate-induced osteo-/
chondrogenic transdifferentiation and calcification of HAoSMCs. A. Representative original images showing 
Alizarin red staining (n=3) in HAoSMCs following silencing for 9 days with negative control siRNA (Neg.
si) or SHMT1 siRNA (SHMT1si) and additional treatment with control or with calcification medium 
(Calc.). The calcified areas are shown as red staining. B. Scatter dot plots and arithmetic means ± SEM 
(n=4; µg/mg protein) of calcium content in HAoSMCs following silencing for 9 days with negative control 
siRNA (Neg.si) or SHMT1 siRNA (SHMT1si) and additional treatment with control or with calcification 
medium (Calc.). C. Scatter dot plots and arithmetic means ± SEM (n=6; U/mg protein) of ALPL activity in 
HAoSMCs following silencing for 7 days with negative control siRNA (Neg.si) or SHMT1 siRNA (SHMT1si) 
and additional treatment with control or with 2 mM β-glycerophosphate (Pi). D-F. Scatter dot plots and 
arithmetic means ± SEM (n=8; arbitrary units, a.u.) of MSX2 (D), CBFA1 (E) and ALPL (F) relative mRNA 
expression in HAoSMCs following silencing for 48 hours with negative control siRNA (Neg.si) or SHMT1 
siRNA (SHMT1si) and additional treatment for 24 hours with control or with 2 mM β-glycerophosphate 
(Pi). *(p<0.05), **(p<0.01), ***(p<0.001) statistically significant vs. negative control silenced HAoSMCs; 
†(p<0.05), ††(p<0.01) statistically significant vs. negative control silenced and Pi treated HAoSMCs.
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Discussion

This study reveals a role of SHMT1 in the regulation of VSMC osteo/chondrogenic 
transdifferentiation and calcification. Phosphate up-regulates SHMT1 expression in 
VSMCs, while silencing of SHMT1 aggravates phosphate-induced osteo/chondrogenic 
transdifferentiation and calcification of VSMCs. Silencing of SHMT1 in VSMCs induces oxidative 
stress and additional treatment with antioxidants blocks the pro-calcific effects of SHMT1 
silencing. The present observations, therefore, suggest that vascular SHMT1 is a powerful 
regulator of the cellular response in pathological conditions such as hyperphosphatemia in 
CKD [2].

Hyperphosphatemia and dysregulation of mineral homeostasis are critical pathological 
factors promoting vascular calcification [2, 6]. In-vitro, elevated extracellular phosphate levels 
trigger osteo-/chondrogenic transdifferentiation and calcification of VSMCs [36]. We show 

Fig. 3. Silencing of SHMT1 increases 
oxidative stress and apoptosis in 
HAoSMCs. A. Scatter dot plots and 
arithmetic means ± SEM (n=6; arbitrary 
units, a.u.) of total antioxidant capacity 
in HAoSMCs following silencing for 
48 hours with negative control siRNA 
(Neg.si) or SHMT1 siRNA (SHMT1si). 
B-E. Scatter dot plots and arithmetic 
means ± SEM (n=6; a.u.) of NOX4 (B), 
CYBA (C) and MMP2 (D) relative mRNA 
expression as well as BAX/BCL2 (E) 
relative mRNA expression ratio in 
HAoSMCs following silencing for 48 
hours with negative control siRNA 
(Neg.si) or SHMT1 siRNA (SHMT1si). 
*(p<0.05), **(p<0.01), ***(p<0.001) 
statistically significant vs. negative 
control silenced HAoSMCs.
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here that silencing of SHMT1 augments phosphate-induced osteo-/chondrogenic signaling 
and calcification of VSMCs. Increased SHMT1 levels in phosphate-treated VSMCs are, thus, 
apparently necessary to limit the extent of calcification. VSMC calcification models in-vitro 
require calcium and phosphate supplementation in the cell culture media as substrate for 
calcification, to permit maximal mineralization [29]. Accordingly, SHMT1 knockdown alone 
induces osteo-/chondrogenic transdifferentiation, but does not affect mineralization of 
HAoSMCs, as the substrate for calcification is insufficient. These interpretations are however 
limited, as the in-vitro findings may not directly reflect vascular calcification in-vivo [37, 38]. 
Nonetheless, the present observations indicate that vascular SHMT1 interferes with the 
osteo-/chondrogenic signaling in phosphate-induced VSMC calcification in-vitro.

Oxidative stress is a critical mediator of vascular calcification [39-41] by inducing 
osteo-/chondrogenic transdifferentiation of VSMCs [4, 26, 33, 39]. Silencing of SHMT1 in 
VSMCs induces an imbalance between antioxidant systems and oxidative products, as shown 
by reduced total antioxidant capacity as well as up-regulation of NOX4 and CYBA mRNA 
expression, important components of the superoxide-generating NADH/NADPH oxidase 
system [42].

Oxidative stress may induce osteo-/chondrogenic transdifferentiation of VSMCs via 
various mechanisms [33, 39, 43-45]. Silencing of SHMT1 is able to increase the expression 
of downstream effectors of oxidative stress such as matrix gelatinase MMP2 [43], an 
essential factor in phenotypical transformation of VSMCs and matrix remodeling to initiate 
mineralization [44, 45]. Oxidative stress may further promote vascular calcification by 
inducing apoptosis of VSMCs [6, 46]. Also, the BAX/BCL2 expression ratio was higher in 
SHMT1 silenced VSMCs, indicative of increased apoptosis.

Nonetheless, other mechanisms may contribute to the osteoinductive effects of SHMT1 
knockdown in VSMCs. The reaction catalyzed by SHMT1 is an important source of glycine 
[14, 15] and hypoglycinemia was shown to contribute to occurrence of vascular calcification 
and elevated cardiovascular risk in diabetes and CKD [47]. Furthermore, direct targets of 
SHMT1-mediated methylation [18-21] may be involved in osteoinductive signaling in VSMCs. 
Conversely, SHMT1 may mediate anti-calcific effects of folate-dependent pathways to protect 
against vascular calcification [48].

Excessive oxidative stress is prevalent in CKD patients [49, 50] and associated with 
vascular calcification [42] and with increased cardiovascular and all-cause mortality [51]. 
NADPH oxidase activation is associated with coronary artery calcification [52]. Accordingly, 
antioxidants may prevent the progression of vascular calcification in CKD [53]. Beyond its 
role in vascular calcification, SHMT1 may further play an important role in vascular disease 
in other conditions associated with oxidative stress and apoptosis [49, 50]. Thus, SHMT1 
may potentially have a role in systemic changes during disease progression. Further studies 
are necessary to confirm the potential role of SHMT1 in these conditions.

Conclusion

SHMT1 knockdown promotes osteo-/chondrogenic transdifferentiation of VSMCs, 
at least in part, by increasing cellular oxidative stress and oxidative stress-dependent 
osteoinductive signaling. It aggravates vascular calcification during conditions of 
hyperphosphatemia in-vitro. The present observations, thus, reveal SHMT1 as novel player 
in the signaling of vascular calcification.
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