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With the introduction of computers in medical imaging, which were popularized with

the presentation of Hounsfield’s ground-breaking work in 1971, numerical image

reconstruction and analysis of medical images became a vital part of medical imaging

research. While mathematical aspects of reconstruction dominated research in the

beginning, a growing body of literature attests to the progress made over the past 30

years in image fusion. This article describes the historical development of non-deformable

software-based image co-registration and it’s role in the context of hybrid imaging and

provides an outlook on future developments.

Keywords: multi-modal imaging, image registration, 2D/3D registration, image guided therapy, medical image
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INTRODUCTION

The advent of computed tomography (CT) [1–3] can be considered amilestone inmedical imaging,
not only due to its undisputed value for diagnostic radiology but also for introducing computers as
an integral part of medical imaging.What started as a comparatively simple exercise in solving large
sets of linear equations soon evolved into a broadened research effort driven by mathematicians,
computer scientists and physicists to further refine the reconstruction of a novel type of medical
image data, the three-dimensional (3D) volume dataset. Shortly after the introduction of the first
CT scanner, transverse motion of the patient during scanning was introduced [4], thus, providing
a correlate of human anatomy in 3D chunks of data where the well-known image element of digital
images, the pixel, was replaced by its 3D counterpart, the voxel. Even earlier, nuclear medicine,
which was made a “visual” discipline of medicine by the invention of the Anger camera [5] in the
late 1950s also became a 3D-image source when single photon emission tomography (SPECT) [6]
and positron emission tomography (PET) was developed [7]. Together with the introduction of
magnetic resonance imaging (MRI) around the same time [8–10], the spectrum of widely applied
3D modalities was completed. From that moment on, the fusion of different 3D information on
mobility and density of certain nuclei, such as protons in MRI, the chemical properties of tissue,
such as in CT, and patients metabolism, such as in nuclear medicine became a desire.

The problem of multimodal image registration in general lies in the determination of a
patient-related coordinate system in which all image data from different modalities have a common
frame of reference. In general, this is not the case as the coordinate system of the volume is
defined by the tomography unit itself. Still, combined imaging systems, such as PET/CT [11] and
PET/MR [12] are well established, and other combinations such as MR/CT [13] are currently being
conceived. Also, multiple protocols acquired with the patient in a consistent position, such as fMRI
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and MR spectroscopy image data fall into this category. In
addition, combinations with therapeutic devices, for instance
linear accelerators (LINACs) used in radiotherapy with cone-
beam CT [14] and MRI systems [15] are also considered.
Establishing a common frame of reference between image data
and a patient-related coordinate system is necessary in these
cases as well. Furthermore, ultrasound (US) imaging must not
be forgotten in this context as it plays a vital role in image-
guided biopsies. The purpose of this article is to give an overview
of mathematical image fusion methods within the context of
multimodal imaging.

THE DEVELOPMENT OF PARADIGMS FOR
MEDICAL IMAGE CO-REGISTRATION

All image registration methods rely on the same principle.
They assume the image data (often called the base and match
image IBase and IMatch) to be positioned in a common frame of
reference. By iterative comparison of image features at the same
position in this reference frame, it is possible to design a merit
function that is optimized for a variation of spatial transform
parameters. These parameters are the three Euler angles and the
three possible degrees of freedom in translation. A combination
of the corresponding rotationmatrices and a translation operator
results in a transformation matrix V=TRxRyRz, where T is
a translation matrix in homogeneous coordinates [16] and
Ri are the respective rotation matrices. The order of single
transformations is of course subject to convention; for rotation,
it is also worth mentioning that a more convenient and
useful parameterization of the rotation group is given in unit
quaternions. Once an optimum is found by varying six degrees-
of-freedom in rotation and translation, thematch image is moved
to the appropriate position, presenting patient specific image
data at the same location (Figure 1). Usually, the image area
where the comparison of image element gray values takes places
is confined to a common overlap, which makes many image
fusion algorithms dependent of an appropriate initial guess of
the registration matrix V. The merit function which is to be
optimized with respect to the transfomation parameters applied
to the image Imatch, can be derived from the position of known
markers, point clouds indentified in both image data sets, or from
intrinsic image element intensities.

MARKER-BASED METHODS

The most straightforward and often most precise and failsafe
method for finding common features in different datasets or in
a dataset and the patient located in a device is to use artificial
landmarks or fiducial markers. A hallmark in this technology was
the introduction of the Leksell-frame in neurosurgery [17]. The
field of neurosurgery, where the patient is often immobilized by
means of a Mayfield clamp, was also an early adopter of patient-
to-image registration for registration of a surgical microscope
[18] or for fusion of functional data such as SPECT with
anatomical data derived fromMRI [19–21].

Markers can be stickers attached to the patients, skin or
per- and subcutaneous screws (e.g., in cranio-and maxillofacial

FIGURE 1 | The general principle of image registration; a spatial transform

V—basically a combination of three-dimensional rotation and translation—is

iteratively determined by comparing features in both image datasets (referred

to as base and match images in the text). The important issue is the fact that

the comparison of image element coordinates in a common frame of reference.

surgery [22]), removable attachments [23] and implanted
structures such as gold markers in fractionated prostate
radiotherapy and related fields [24, 25]. The latter markers are
often located by means of additional imaging such as B-mode
ultrasound (US) [24] or X-ray [26]. Technically, registration
based on fiducial markers is performed by minimizing the
Euclidean distance between paired point sets coordinates [27,
28], thus, resulting in the aforementioned six parameters of
rigid body motion. To date, fiducial-marker based registration is
widespread—especially in therapeutic interventions—but it bears
the disadvantage of being clinically elaborate and invasive. For
the field of multi-modal imaging, soon other techniques were
about to be developed.

It has to be mentioned that anatomical landmarks which can
be localized with sufficient accuracy (for instance foramina in the
facial skeleton) can also be utilized as fiducial markers. In many
retrospective studies, this is the only way to assess registration
accuracy of, for instance, an image-guided procedure. A potential
risk here lies in the fact that this process is dependent on the
accuracy of landmark localization. Sometimes, point-to-point
registration of anatomical landmarks is also used to initialize a
registration process.

In summary, fiducial marker based registration is generally
robust and accurate if a reproducible marker position is ensured.
On the downside, it is invasive and cannot be applied in
retrospective studies. An example is found in Birkfellner et al.
[22] where miniature titanium screws placed under the oral
mucosa preoperatively were used to register a high-resolution CT
to a position sensor rigidly attached to the patient’s facial skeleton
in image-guided oral implant placement (Figure 2).
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FIGURE 2 | A screenshot of fiducial markers attached to a cadaver heads

zygoma. In this case, miniature titanium screws (2mm overall length, 2mm

head diameter) were inserted prior to the CT scan. Localization of these

fiducial markers using an optical tracking system allowed for precise

registration for image-guided maxillofacial surgery. The crosshair is determined

by measuring the 3D-location of a surgical probe. The multiplanar reformatted

CT slice shows two titanium markers located on the zygomatic bone.

SURFACE– AND GRADIENT BASED
METHODS

Early efforts that go beyond simple patent-fixation approaches,
such as the aforementioned Leksell frame are closely related
to therapeutic applications and CT-MR image fusion. One
milestone of modern image fusion was certainly the “Head-and-
Hat” algorithm [29, 30] for mergingmultimodal image data; here,
unordered sets of surface point data from segmented volume
data are iteratively matched by finding a rigid-body transform—
again expressed as an algebraic matrix defined by six parameters
of rotation and translation in 3D space [16]—as a result of an
iterative numerical optimization procedure.

Today, this method is known by a refined form, referred
to as the Iterative Closest Point (ICP) algorithm, which was
presented in 1992 [31]. Again, it is interesting to see the link
between multimodal image fusion—the application this method
was intended for in Levin et al. [29]—and image-guided therapy,
where ICP is still a mainstay when it comes to merging physical
coordinate systems such as a stereotactic fixation device or a
LINAC to the coordinate system of a volume image [32–43]. In
the latter case, surface points can either be manually digitized by
using a 3D input device [40] or by optical or other non-invasive
technologies such as A-mode US [34, 35, 37, 41, 42].

While these image registration methods using surface
matching are straightforward and computationally inexpensive
(which is less of an argument nowadays compared to the
computing power available one or two decades ago), there are
also considerable drawbacks. Above all, the exact determination
of contoured image data requires segmentation, an error prone
process often including manual interaction. Furthermore, the
surface used for matching is a critical component as, for instance,
a spherical surface offers less information content on unique

spatial landmarks compared to a complex-shaped manifold, such
as the human face.

Surface-based methods turned out to be advantageous over
fiducial marker based methods as they are usually not highly
invasive; on the other hand, segmentation of body surfaces—
a sometimes error-prone process—is necessary, and dedicated
hardware for surface digitization is required.

Around the same time, a similar method was presented based
on deriving a parameterization of sudden intensity changes in
image data. In short, rapid changes in gray values in an image are
considered edges. These can be derived by computing a local total
differential of the image; in order to understand this concept, an
image has to be understood as a discrete mathematical function.
The gray value in an image element is determined by a physical
measurement (e.g., the linear attenuation of X-rays), and it
is considered the dependent variable for a pair or triplet of
independent variables, the location of the pixels or voxels. By
computing finite differences, it is possible to determine a gradient
vector for the image, and the length of this gradient vector gives
the amount of change in the image. A large gradient is associated
with an edge. A number of edge detection algorithms is known
in image processing, with all of them being essentially based
on the same principle. A popular method for computing image
gradients is the Sobel filter [43].

In medicine, it was the desire to merge the coordinate
systems of image data and a physical device that promoted the
development of image fusion techniques. For repeated patient
positioning in fractionated radiotherapy, Gilhuijs and van Herk
presented amethod called chamfer matching [44]. Here, an X-ray
image derived from the planning CT data, the simulator image
or digitally rendered radiograph (DRR) [45–47] is compared
to a low-contrast electronic portal image (EPI), a projection
of attenuation coefficients of photons produced by the LINAC
[48, 49]. The EPI is produced using photons at an energy
of approximately 6 MeV. Therefore, the contrast is very low
compared to conventional radiographs taken with photons in an
energy range of typically 90–120 keV. Still, image edges from
cortical bone can be identified in an EPI, and this information
can be used for further image registration.

The chamfer matching algorithm relies on the identification
of image edges in both the EPI and the DRR. Both edge images
undergo segmentation by a simple threshold, producing binary
black-and-white images. One of the images also undergoes a
morphological operation—dilation- and a distance transform
[16], which encodes the distance of a white (non-zero) image
element to the closest black (zero) image element. The product
of gray values of both images becomes a maximum when the
two images coincide. While edge-based methods can be very
sensitive, they usually do not show very favorable numerical
convergence behavior; in other words, the images have to be pre-
registered in a rather precise manner in order to gain a usable
result. This is a reasonable challenge for clinical applications, but
could become more difficult for the serial automated registration
of large numbers of datasets.

In summary, image registration based on surface and image
edges is a straightforward approach, especially for therapeutic
applications, and has found wide acceptance in a whole lot of
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commercially available solutions. It also has another important
intrinsic property—image edges, above all surfaces of organs
or the skeleton—are visible in a variety of modalities; in cases
where it is possible to identify common surfaces or edges, these
methods are intrinsically multi-modal. Therefore, they can also
be applied to multimodal image-to-image registration. More
general, these methods are termed feature-based registration
methods as sudden changes in image brightness are considered
features in the sense of computer vision terminology. These are
to be covered in the following sections.

INTENSITY-BASED IMAGE REGISTRATION

While the previous sections highlighted the close connection of
patient-to-image registration and multimodal image fusion, the
registration of multiple datasets, either from the same individual
or a collective of individuals, is an important topic in clinical
research, for instance in therapy assessment or multicentric
studies. While the development of hybrid imaging devices is an
ongoing process, offline registration of datasets will therefore
stay an important tool for clinical applications of multimodal
imaging.

Early efforts were reported when MRI became a second
mainstay for tomographic imaging aside from CT in the
late 1980’s. While marker-based methods were continuously
used [50], statistical measures, such as the cross correlation
coefficient became increasingly important. The general principle
of intensity-based image registration is of course again the
comparison of image element intensities in a common frame of
reference. Gray values at the same location from both the base
and match image are considered statistically distributed random
variables. In an iterative process, a spatial transform is applied to
the match image until an optimal correlation of these variables
is achieved. Such methods were reported in computer vision for
a variety of problems and solutions relying on correlation were
presented both in the spatial and the Fourier-domain [51, 52]. An
interesting example of an early registration effort can be found
in a classical textbook on digital image processing [53]; here, the
base and match image are segmented to binary shapes, and for
each image, the resulting distribution of black and white pixels
is considered a scatterplot. A principal component analysis—a
well-known method for decorrelation of random variables from
statistics—is subsequently applied in order to align the shapes to
the main coordinate axes. An early review from 1993 [54] lists
some of these efforts; however, the intrinsic three-dimensional
nature of medical images soon rendered more specific methods
necessary.

As soon as 1998, a thorough review and classification scheme
for medical image registration was published [55]. In this work,
not only an excellent overview of the technical developments
during the first decade where multimodal image fusion became
a topic is given, but also the proposed classification scheme is
still valid; in general, this scheme involved the dimensionality
(e.g., 2D vs. 3D data), the nature of the information used for
registration (extrinsic markers or features, intrinsic information
such as image intensities, or non-image based methods

such as the knowledge of the relative position of imaging
modalities as used in hybrid imaging machines), the nature
of the transformation between the base and matching images
(rigid transformation, additional inclusion of local degrees-
of-freedom for compensation of deformations, and additional
use of projective degrees-of-freedom) and information on the
modalities involved. Furthermore, registration subjects (images
from the same subject, intersubject registration and registration
to atlases) need to be distinguished.

While the solutions for intersubject registration and atlases
or statistical shape models [56–58] gained considerable interest,
the major breakthrough for intensity based registration was the
definition of a similarity measure that is suited for intermodal
image data. Previous approaches, such as the aforementioned
gradient-based methods suffer from problematic numerical
convergence. Simple statistical measures such as cross correlation
or rank correlation [59, 60] cannot be applied to multimodal
image data where a linear or monotonous relationship between
image intensities is unavailable. A straightforward example for
a non-monotonous relationship between voxel intensities is the
comparison of CT and MR—both cortical bone and air are
usually black in MR, which, for air, is definitely not the case in
CT.

The major breakthrough for multimodal image co-
registration was the introduction of Shannons entropy [61]
in image fusion. While the information theoretic approach
of Shannon, derived from Boltzmanns entropy definition in
statistical physics, was not originally defined for image data, it
led to the development of similarity functions based on mutual
information. Shannons entropy H is given as:

H
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∑
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where I(x,y,z) is an image with voxel coordinates (x,y,z)T and
P(I) is the probability distribution—the histogram—of the image
intensities for a given image element. Zero values are usually
omitted. For comparing two images, Shannons entropy gives a
measure of disorder in a joint histogram P(IBase, IMatch), where
the occurrence of similar gray values at the same image element
position in IBase and IMatch is recorded in a two-dimensional
occurrence statistic [62–67]. Figure 3 illustrates the appearance
of a joint histogram of two images of different origin (CT
and MRI) and the effect of relative misregistration. Generally
speaking—the larger the number of occupied bins with small
counts, the higher the disorder. As already mentioned it is also
necessary to start with a gross estimate of the registration in order
to define the domain of image elements where the evaluation of
the single and joint histograms is to take place. This development
paved the way for multimodal image registration as a valuable
clinical tool in a plethora of applications and has to some extent
become the standard method for image fusion with a plethora of
publications.

However, pitfalls still exist, as there is no absolute optimum
for this type of similarity measure—the numerical value of
Shannons entropy does neither provide an indication whether
the registration process was successful, nor does it indicate the
quality of the result. It is also necessary to emphasize that as of
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FIGURE 3 | An example of joint histograms and related normalized mutual information values. The two upper images show roughly co-registered slices of a porcine

cadaver specimen plus additional soft tissue deformation which was not accounted for. The left image was taken using a 64 slice CT, and the right image is a

T1-weighted image from a clinical 3 T scanner. Details on the image dataset can be found in Pawiro et al. [68]. The MR image was rotated by 10◦ clockwise, and the

resulting joint histogram is shown in the lower left corner of the illustration. Joint histograms are counting statistics where the occurrence of a gray value at the same

image element position in the two images under comparison is logged; the abscissa indicates bin locations for all possible gray values in the first image, often referred

to as IBase–the base image. The ordinate holds bins for all gray values of the second image to be matched—IMatch. The more bins occupied with low total counts, the

bigger the entropy in the joint histogram. Normalized mutual information reaches a maximum of −2.93 when the relative rotation of the images is 0◦. For relative

rotation of ±10◦, visual inspection shows that more bins are obviously occupied, leading to a higher entropy in the histogram. The dataset is available from https://

midas3.kitware.com/midas/community/3.

today, Shannons entropy is not widely used directly, but a derived
quantity, normalized mutual information (NMI), has become the
standard for multimodal image registration. A merit function
MNMI to be optimized numerically is given as:

MNMI =
H (IBase) +H (IMatch)

H (IBase, IMatch)

where H(IBase) and H(IMatch) are the entropies of the single
images to be compared and H(IBase, IMatch) is the entropy for
the joint histogram. A potential problem of the method lies
in the fact that it depends on a dense population of the joint
histogram; two-dimensional images or images with little contrast
will give a very sparse population of the joint histogram, therefore
leading to insufficient gradients for the optimization process.
Figures 4, 5 show the user interface of a research grade software
for image fusion using mutual information metrics [69].

In summary, the advantages of intensity-based multi-modal
registration algorithms are evident; however, sparse histogram
population and low image depth can lead to a merit function

that is hard to optimize numerically due to the presence of
many local optima. Even with the wide availability of intensity-
based image registration tools, the most important limitation of
the method is still the availability of corresponding structures
in the respective datasets. Registration of high-resolution data
from morphological modalities like CT and MR or—with
certain limitations—US is generally feasible [70–73], but severe
limitations become eminent when moving to co-registration
of anatomical and functional data. While registration of MR
and tomographic data from nuclear medicine (PET or SPECT)
for neurological purposes is reported to be successful for
decades [19, 20, 54, 74, 75], the same statement cannot be
made for other regions of the body. Here, the number of
common features is too small to guarantee an accurate result
where the registration error is in the range of the image
resolution. With the advent of hybrid imaging modalities like
PET/CT and PET/MR, a more robust and reliable clinical
solution for this problem became available. However, with
PET/CT it is possible to achieve robust registration of PET
and MR by applying an intensity-based registration to the
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FIGURE 4 | User interface of a modern research grade image fusion software for merging CT and MRI data using normalized mutual information. Here, a fusion of CT

and T2-weighted MRI of a neurological case is shown. Aside from rough manual positioning (see the user interface elements, indicated with arrow a), the process is

automatic. In this case, a neurological tumor is seen in the upper right fused image (indicated by arrow b). Deformation due to a neurosurgical intervention is obvious,

still the algorithm is capable of coping with these deviations for this case of rigid registration. This software was developed in the course of FP7-PEOPLE-2011-ITN

“SUMMER—Software for the Use of Multi-Modality images in External Radiotherapy” funded by the European Commission. More details on the software are provided

in Aselmaa et al. [69].

CT-part of the PET/CT dataset. Multi-dimensional image
registration.

A special case is the intensity-based registration of image
data, which were derived using the same principle but with
different imaging geometry. The most important case is 2D/3D
image registration of digitally rendered radiographs (DRRs)
and X-ray images taken with a known projection geometry
[68, 76–82]. This is widely used in image-guided surgery and
image-guided radiotherapy. One or more DRRs are iteratively
compared to radiographs which are usually taken prior to
or during an intervention; while early efforts suffered from
the high computational load connected to the iterative DRR-
generation, the advent of general purpose computing on graphics
processor units (GPGPU) [47, 83–85] boosted this application as
a valuable tool, especially for patient positioning in radiotherapy

[84, 86–89]. Figure 6 shows a screenshot from such a program
for 2D/3D registration of projective images—the software and its
underlying mechanism is described in more detail in Spoerk et al.
[83], Gendrin et al. [84], Furtado et al. [87], Li et al. [88].

Another important 2D/3D registration method is the fusion
of single slices to a complete volume dataset of the same
patient [90–95]—this is generally referred to as slice-to-volume
registration. The application here is either a modality that
acquires a single slice in a fixed position while the patient is, for
instance, breathing. In the case of CT, such an imaging mode
is called Fluoro CT-mode; it has applications in interventional
radiology, where biopsies are taken under CT surveillance.
Slice-to-volume registration is of some help here as the co-
registration of a volume featuring contrast enhancement can
aid in localization of the biopsy target site. Other modalities
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FIGURE 5 | An important image processing tool for the research community is 3D Slicer (www.slicer.org). The image registration module is similar to Figure 4, but

here a fusion of a diagnostic CT is shown together with a cone-beam CT acquired prior to radiation therapy treatment. Fusion of diagnostic grade CT for radiation

therapy planning and low quality pre-fraction CBCT is a widespread application in routine quality control for fractionated radiotherapy despite the fact that patient

specific molds and other fixation measures are taken. A closer look at the transformation matrix (see arrow a) reveals that no correction with respect to rotation was

necessary, but a spatial translation by (−6.5, 2.8, 2.7)T mm had to be carried out to ensure that the target region is aligned with the treatment plan.

that acquire single slices are histology [96], Cine-MR [97] and
conventional ultrasound [98, 99]. It has to be said that multi-
dimensional image registration is not multi-modal image fusion
in a strict sense—yet the difference in image dimensionality
makes it a special case worth mentioning.

In principle, 2D/3D registration has a huge advantage—it
is usually non-invasive if markers are avoided, and it can be
fully automated. However, the sparse information in 2D data
makes the optimization process a delicate operation, and gross
misregistrations can occur.

DEFORMABLE REGISTRATION

Another important topic in image fusion in general is deformable
image co-registration [100], a method to compensate for
inter- and intra-specimen specific morphological differences. In
general, deformable registration is typically intensity-based and
a deformation model adds additional degrees-of freedom. In
the context of multimodal imaging, the relevance of deformable
registration is limited as these methods will most likely stay
in the domain of pure algorithmic applications from a current
perspective. Still it is emerging as a powerful tool in image-guided
and adaptive radiotherapy for compensation of organ motion
and handling of anatomical changes in the course of treatment
[101–108].

REGISTRATION VALIDATION

Finally, a topic that applies to both hybrid imaging and image
registration is the question of registration accuracy validation.
In hybrid imaging, this might apply to quality control routine
applications and resolution of anatomical detail; for PET/CT, this
might be necessary if image fusion errors are encountered after
maintenance since the relative positioning of the PET and CT
image data is not automatic but given in a specific DICOM tag
in some systems. If this value is not properly set, misregistration
might occur in PET/CT or even in SPECT/CT [109, 110]. For
PET/MR, local field in homogeneitiesmight lead to a local change
in the image metric that leads to misregistration.

In image registration, the most important application for
validation measures is the assessment of the clinical relevance of
registration outcome. An image registration algorithm producing
irreproducable or too inaccurate results does not provide any
patient benefit. As stated earlier, the residual value of the
similarity measure is not necessarily a reasonable quantity in
this case since it is possible that no absolute minimum can
be defined like in the case of normalized mutual information.
Therefore, target registration error (TRE) was estimated as
the most important measure for assessing registration quality
[111, 112]. The term was originally applied to marker-based
registration but found general application; in short, the TRE is
defined as the average or maximum euclidean distance of unique
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FIGURE 6 | User interface of FIRE, a research grade software for real-time 2D/3D image registration in fractionated external radiation therapy. The position of the

patient as well as intrafractional tumor motion—in this case caused by lung motion—is measured using simulated digitally rendered radiographs and calibrated X-ray

and electronic portal imaging data. The upper row represents the x-ray data from the LINAC mounted digital x-ray source (the tumor is indicated by arrow a in this

case), and the lower row shows a comparison of an artificial x-ray image rendered from CT compared to a low-contrast electronic portal image taken with the therapy

beam itself.

and well-defined landmarks whose position was not subject to
the registration effort itself. These markers are either defined
as anatomical landmarks, or as fiducial markers excluded from
the registration process, for instance by masking their position
in the images. The number of registration accuracy studies is
immeasurable—what is, however, important in such a process
is the use of standardized image datasets, which were published
for a number of anatomical entities and registration methods
[65, 66, 68, 82, 113, 114]. It is to be noted that recent efforts
aim at automatic TRE estimation by automated localization of
feature points [115, 116]; these methods stem from computer
vision [117, 118], and their role in image registration is not
yet fully clear. In general, it has to be stated that despite the
considerable research efforts that went into the subject, a final
visual assessment by an expert is inevitable in clinical decision
making [119]. Awareness of potential misregistration—even in
fully hybrid imaging systems—is therefore an absolute necessity
for all diagnostic decisions based on hybrid image data.

CONCLUSIONS

We tried to give an overview of both the historical and
technical development of image registration algorithms; in total,
it can be said that invasive methods using implanted fiducial

markers provide utmost robustness and accuracy and will be
of importance for image-guided and robotic procedures for
the future. Gradient-based methods using surface digitization
suffer mainly from numerical robustness as the convergence
range for solving the optimization problem is limited, but
provide a non-invasive alternative if a good initial guess is
available, for instance for patient repositioning in image-guided
radiotherapy. Intensity-based registration of patient pose and
pre-interventional image data—this field is mainly dominated
by 2D/3D registration—is probably the most advanced method
for co-registration in image-guided therapy but suffers from
additional imaging dose and also problematic numerical stability.

The methods for image-intensity based co-registration of
multi-modal features compete directly with hybrid imaging
devices—we dare to state that the fusion of nuclear medicine data
and morphological imaging such as MR or CT is superior when
using hybrid imaging, whereas the co-registration of time series,
deformable registration or, in general, fusion of morphological
data from different modalities will remain field where numerical
methods excel.

The latter application field—fusion of data from different
time points and modalities—deserves special mentioning and
discussion; as the statistical analysis of image data becomes a
more andmore important topic—just consider the recent interest
in “Big Data” and “Deep Learning” in medicine [120, 121]—the
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utilization of different images of the same patient in this context
is a central issue. The de-facto standard for storage of medical
images—DICOM [122]—is of limited usability here as its basic
structure stems from the computing requirements of the last
century. While enhancements and additions were made for this
standard, it is hard to imagine from a practical point of view that
large amounts ofmulti-modal image data for a big population can
be stored and handled in this way.What is a challenge for medical
informatics is the definition of a new standard for digital image

storage format that allows for comparison of patient-specific co-
registered image data over a large range of individuals. In such a
setup, the further development of robust and clinically applicable
image registration methods will be an integral part.
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