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We analyzed the blood transcriptome of sepsis framed within community-acquired 
pneumonia (CAP) and characterized its molecular and cellular heterogeneity in terms of 
functional modules of co-regulated genes with impact for the underlying pathophysio-
logical mechanisms. Our results showed that CAP severity is associated with immune 
suppression owing to T-cell exhaustion and HLA and chemokine receptor deactivation, 
endotoxin tolerance, macrophage polarization, and metabolic conversion from oxidative 
phosphorylation to glycolysis. We also found footprints of host’s response to viruses and 
bacteria, altered levels of mRNA from erythrocytes and platelets indicating coagulopathy 
that parallel severity of sepsis and survival. Finally, our data demonstrated chromatin 
re-modeling associated with extensive transcriptional deregulation of chromatin modify-
ing enzymes, which suggests the extensive changes of DNA methylation with potential 
impact for marker selection and functional characterization. Based on the molecular 
footprints identified, we propose a novel stratification of CAP cases into six groups dif-
fering in the transcriptomic scores of CAP severity, interferon response, and erythrocyte 
mRNA expression with impact for prognosis. Our analysis increases the resolution of 
transcriptomic footprints of CAP and reveals opportunities for selecting sets of tran-
scriptomic markers with impact for translation of omics research in terms of patient 
stratification schemes and sets of signature genes.

Keywords: immune suppression, epigenetics, infections, blood disturbances, community-acquired pneumonia 
severity, molecular subtypes, prognostic impact

inTrODUcTiOn

Community-acquired pneumonia (CAP) is one of the most common infectious diseases, and it 
is an important cause of mortality and morbidity worldwide (1). CAP is an acute infection of the 
pulmonary parenchyma with symptom onset in the community. A complication of CAP is severe 
sepsis, the syndrome of infection often accompanied by systemic inflammation and organ dysfunc-
tion. Assessment of CAP severity is a cornerstone in its management, facilitating selection of the 
most appropriate site of care and empirical antibiotic therapy (2). Although a series of scores have 
been developed such as the Pneumonia Severity Index and Sequential Organ Failure Assessment 
(SOFA) score, so far, no ideal solution has been identified (3, 4). Increasing attention has been paid 
to research on biomarkers, since they have the potential to resolve fundamental issues regarding 
prognostic prediction that cannot be readily addressed using CAP-specific scores (5, 6). Biomarker 
selection, severity assessment, and therapy require an understanding of the heterogeneity of the 
individual host response to infection and of the underlying molecular determinants.
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Whole genome transcriptomic profiling of tissue-biopsies has 
been shown to successfully address these objectives in a large 
number of applications dealing with different diseases, such as 
cancer, infectious and civilization diseases (7). On the other 
hand, human peripheral blood can be understood as surrogate 
“liquid” biopsy material providing a less invasive option for 
patients. Its transcriptional profiling might reflect physiological 
and pathological events occurring in different tissues of the body 
(8). Its application is, however, potentially hampered by a series 
of factors such as the complexity of processes contributing to 
the blood transcriptome and also its stability. Only recently, 
a few interesting studies on the blood transcriptome of sepsis 
framed within CAP have been published that provided novel 
insights into alterations of gene expression (GE) caused by this 
disease and also into underlying physiological processes such 
as immune suppression and endotoxin tolerance (ET) in severe 
CAP cases (9–11).

Previously, we have developed an omics “portrayal” method 
based on machine learning using self-organizing maps (SOM) 
that enables a very detailed evaluation of the landscapes of 
transcriptomic data (12, 13). It takes into account the multidi-
mensional nature of gene regulation and pursues a modular view 
on GE, reduces dimensionality, and supports visual perception in 
terms of individual, case-specific “omics” portraits. The method 
was applied to a series of data types and diseases (13–19). In 
the first part of this publication, we re-analyzed the published 
CAP blood transcriptomic data (peripheral blood leukocytes) 
(9) using this method in order to disentangle the molecular het-
erogeneity of CAP with high resolution, to generate sample and 
feature landscapes, and to extract its modular structure, which is 
a straightforward concept, as has been demonstrated before for 
the healthy blood transcriptome (20). We aim at characterizing 
transcriptomic footprints of the immune response, of selected 
blood cell lineages (erythrocytes, platelets, T-cells, and mac-
rophages), and of host’s response to viral and bacterial infections. 
Special attention is paid toward footprints of epigenetic changes 
in the blood transcriptome of CAP cases, a so-far, weakly studied 
field, although its importance for the development of infectious 
diseases becomes increasingly accepted (21). In the second part of 
the paper, we propose a novel stratification scheme of CAP based 
on the multidimensional structure of the blood transcriptome as 
seen by our analysis together with a glimpse on the dynamics of 
transcriptomic changes in the first days of the disease and on the 
prognostic impact of the new classes.

We, hereby, pursue a multi-omics systems-based approach 
that is expected to enhance our understanding of the biology of 
sepsis framed within CAP and supports the translation of omics 
research in terms of stratification of CAP as a heterogeneous 
disease into subtypes and of extracting sets of signature genes 
with possible diagnostic and/or prognostic impact (22).

MaTerials anD MeThODs

Patients and ge Data
We have re-analyzed transcriptomic data of blood samples of CAP 
patients as described in Ref. (9, 10). CAP was defined as a febrile 

illness associated with cough, sputum production, breathlessness, 
leukocytosis, and radiological features of pneumonia acquired 
in the community or within 2 days of intensive care unit (ICU) 
admission. The cohort was recruited concurrently from 25 ICU 
in the UK during 8 years (2006–2014) and processed in parallel 
and independently as a discovery and a prospective validation 
cohort where equal numbers of survivors and non-survivors were 
selected in the validation cohort for optimal contrast as described 
in Ref. (9). GE was investigated in peripheral blood leukocytes 
and compared between CAP patients and 10 subjects undergo-
ing elective cardiac surgery serving as control. Preprocessed GE 
data (Illumina HumanHT-12 v4 platform) used in our study was 
taken from the publication of Burnham et al. (10) who compared 
transcriptomes of sepsis caused by CAP and fecal peritonitis 
(FP). Patients diagnosed as FP were not included in our analyses. 
CAP data were split in two cohorts: the discovery cohort consists 
of 127 samples taken from 73 patients at 1, 3, and 5 days after 
ICU admission [see Figure S1 in Supplementary Material for an 
overview and also Table 1 in Ref. (10) for patients description]. 
Some individuals from discovery cohort were sampled at several 
time points. The validation cohort consisted of 53 samples taken 
from 53 patients after ICU admission. These data were part of a 
larger study by Davenport et al. (9). In addition to the original 
labeling, we applied a sorting of samples using a “severity”-
score and, finally, we propose a novel stratification of samples 
based on the multidimensional structure extracted from the  
transcriptome data.

expression Portrayal Using sOM
Transcriptome analysis was performed using the omics “por-
trayal” method that was developed by our group based on 
machine learning using SOM (12, 13, 23). It enables a detailed 
evaluation of the landscapes of transcriptomic data, takes into 
account the multidimensional nature of gene regulation, pursues 
a modular view on GE, and supports a visual perception guided 
analysis. SOM portrayal itself represents a dimension-reduction 
approach that keeps the intrinsic data structure unchanged and 
unaffected by the class labels of the samples. We have combined 
discovery and validation cohorts and used initial grouping of 
samples proposed in Ref. (10) in order to obtain a global view 
on their transcriptomic landscapes as well to disentangle any 
systematic differences between cohorts and/or the original clas-
sification groups. With this aim, we trained one SOM using the 
whole CAP-related sample set in order to obtain a holistic view 
of all relevant transcriptional modes inherent in the data. Note 
also that comparison of the “personalized” expression portraits 
require a joint SOM training to make the portraits mutually com-
parable. For this, gene-centric expression data were quantile nor-
malized, then centralized and clustered using the SOM machine 
learning algorithm. The SOM-portrayal method translates the 
gene-centric data profiles into 2,500 metagene profiles and visual-
izes their levels using a two-dimensional quadratic 50 × 50 pixel 
map and a maroon-to-blue color code for high-to-low metagene 
expression values (12). The mosaic image obtained for each sam-
ple serves as a fingerprint portrait of its GE landscape (Figure 
S2 in Supplementary Material). Class-specific mean portraits 
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were generated by averaging the metagene landscapes of all cases 
belonging to one class. Difference portraits between them were 
calculated as the differences between the metagene values in each 
pixel of these maps.

A “prognostic map” was generated by associating survival data 
(28-day survival) with the expression levels of the metagenes 
in their SOM-portraits as follows: the survival rate of all cases 
showing expression levels exceeding the SD of expression of the 
metagenes was counted as the percentage of survivors referring 
to this particular metagene, which is then color coded in the map. 
Metagenes providing less than 10% of cases were not considered 
for the survival analysis (white areas in the map).

Bioinformatics analysis
Downstream bioinformatics analyses were performed based on 
the SOM portraits as described previously (12, 23). This includes 
diversity analysis of the sample’s SOM, feature selection in terms 
of so-called spot clusters, and functional interpretation in terms 
of gene set analysis. Diversity analysis was performed using a 
graph representation called correlation network and pairwise 
correlation maps. Clusters of co-expressed genes were obtained by 
segmentation of the SOM images using the “maximum-distance 
between neighboring pixels” (U-map)-topology as implemented 
in Ref. (24). For functional interpretation, we applied gene set 
analysis by means of spot enrichment using Fishers exact test, 
of gene set enrichment Z-score (GSZ) profiling and of popula-
tion maps of the set genes that show their positions in the SOM 
(25). Gene sets were taken from GSEA-repository (26) using 
the categories gene ontology (GO) “biological process” and 
“hallmarks of cancer” (23, 26, 27), from a previous study on the 
blood transcriptome (20) and from the literature for different 
other functional categories (Table S1 in Supplementary Material). 
Chromatin state-related gene sets for selected blood compounds 
were extracted from the respective genomic regions, which were 
taken from a recent study of the NIH Roadmap Epigenomics 
Consortium for a series of epigenetic states (28). We assigned all 
genes within these regions to the respective state and further pro-
cessed them in analogy to gene sets that provided GSZ-values for 
each sample [see also Ref. (29) for details]. Heatmap presentations 
were generated by standard R-functions including hierarchical 
clustering options. The activity of selected KEGG-pathways was 
estimated using the pathway signal flow (PSF) method (30).  
All the methods were implemented in the R-package “oposSOM” 
used for the analysis (24).

class Discovery
Class discovery of new CAP classes was performed by K-means 
clustering based on Pearson’s correlations coefficients (“r”) of 
all pairwise combinations of SOM portraits. The class stability 
“silhouette” score “S” was calculated for each sample as a quality 
estimate how it fits into its class compared with the other classes 
(19, 29). The score is defined as the difference between the differ-
ence of the r-value of each sample and its cluster centroid and the 
smallest (i.e., the best) difference to any centroid’s r-value of the 
other classes. The sample similarity score is positive if the sample 
best fits into its class while it is negative if another class provides 
closer similarity. The result is presented as silhouette plot that 

shows the S-ranked samples for each class. After initial K-means 
clustering the S-score is maximized by iteratively assigning the 
samples to best-matching classes to increase their S-score until 
convergence. Cluster stability is estimated by bootstrapping and 
calculating the mean percentage of samples that maintain their 
class label.

resUlTs

The landscape of the caP Blood 
Transcriptome
In the first step, we have generated SOM transcriptomic portraits 
of all samples studied (Figure S2A in Supplementary Material). 
Then, we have calculated the mean portraits of each group consid-
ered and a similarity network for an overview of transcriptional 
diversity of the samples (Figure 1A). In this network, the samples 
are roughly spread along two major dimensions, (i) directing 
either from the healthy controls (C) toward group 1 samples of 
the discovery (D1) and validation (V1) cohorts or (ii) dividing the 
discovery and validation cohorts (see arrows in Figure 1A). The 
mean group portraits show specific over- and underexpression 
patterns as red and blue spot-like areas in different regions of the 
maps. The spot areas collect co-expressed genes with mutually 
correlated expression profiles that concertedly show high or low 
expression values in the different sample groups in terms of the 
over- and underexpression spots mentioned (the profiles were 
shown in Figure 2 below). For an overview, we make use of the 
variance map of GE that reveals the spot-clusters of co-expressed 
genes as brown areas of highly variant expression (Figure 1B). 
In total, we identified 12 major spots labeled by capital letters 
“A–L” (gene lists are provided in Table S2 in the Supplementary 
Material). The spot-activation patterns of the groups reflect 
symmetry along two major dimensions similar to that of the 
samples (see arrows in Figure 1B). Difference portraits between 
the groups further support this result (Figure 1C): The two spots 
A and L antagonistically switch between all CAP- and the control 
groups, thus collecting genes commonly down and upregulated 
in CAP compared with the controls. Therefore, they refer to the 
major dimension on GE level. Contrarily, both cohorts differ sys-
tematically by spot activation in the left and right part of the map.

The stability of classification was estimated by means of the 
silhouette plot in Figure  1D (17). It reflects high stability for 
C-samples by positive values while D2-samples show closer simi-
larities either with C- or D1-groups as indicated by negative values 
of the similarity score. Note that our similarity analysis is based 
on the whole transcriptome expression portraits and thus it does 
not contradict the classification taken from the original publica-
tions (9, 10). It, however, demonstrates that group D2 collects 
samples that form a continuum of transcriptional states linking 
the healthy blood transcriptome in C and the CAP transcriptome 
in D1. The results indicate the heterogeneity in the discovery and 
validation cohort samples but also systematic differences between 
them. While the molecular portraits of D1 and V1 show similar 
spot distribution, V2 and D2 are clearly different indicating the 
incompatibility of group 2 samples across cohorts. The mean 
SOFA-score at the day of sampling averaged over all samples of 
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FigUre 1 | Self organizing map (SOM) portrayal of the blood transcriptome of community-acquired pneumonia (CAP). (a) The sample similarity (correlation) 
network and the mean expression portraits of the five sample groups, healthy control (c), discovery cohort groups 1 and 2 (D1 and D2), and validation cohort group 
1 and 2 (V1 and V2) reveal two major dimensions of diversity (arrows). (B) The expression variance map indicates 12 major spots (A–L) of co-expressed genes.  
(c) Difference portraits between the sample groups reveal modes of differential expression. (D) The similarity score describes the similarity of each sample to its own 
cluster. Negative scores indicate that the sample is more similar to other clusters. The figure shows that D2 is an unspecific group for which most of the samples are 
more similar to C and D1 (see arrows) while C and V1 are specific groups. (e) The spot frequency distributions indicates that sample SOM portraits express more 
spots in direction from the left to the right, thus reflecting a larger heterogeneity of transcriptional programs activated in CAP compared with the controls.
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each group in group 1 exceeds that of group 2 [7.9 ±  4 versus 
5.4 ± 3.2 in the D-cohort and 8.6 ± 4.9 versus 6.7 ± 3.2 in the 
V-cohort, see Table 2 in Ref. (9)]. Moreover, the mortality (after 
14 days, 28 days, and 6 months) is significantly higher in group 1 
compared with group 2 in the D- and V-cohorts as well [p < 0.04, 
14-day mortality 22% for group 1 versus 10% for group2, hazard 
ratio 2.4, see Table 2 in Ref. (9)]. Thus, on the average, group 2 col-
lects samples of a less severe form of CAP compared with group 
1. Hence, the major dimension, which directs from controls via 
group 2 to group 1 can be interpreted as the major severity axis of 

CAP in this data. The closer similarity of C-samples with D2 can 
be explained by the fact that C-samples were collected as part of 
the D-cohort (9). The number of overexpression spots detected in 
each of the samples were summarized in the spot-number distri-
bution shown in Figure 1E. C-group samples mostly overexpress 
only spot A, while the number of spots progressively increases in 
group 2 and even more in group 1 resulting in a broad distribution 
of spot numbers. This trend reflects an increased heterogeneity 
of activated transcriptional programs in CAP compared with 
healthy blood, which is further gained with CAP severity.
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FigUre 2 | Profiling of the expression modules: pairwise correlation maps of the sample self organizing maps and of the expression profiles of the spot modules 
were generated in two variants of sample sorting using either the group-classification (left part) or the inflammatory activity as estimated by the mean gene 
expression of spot L (right part). The barplots in the right part show the percentage of samples of each class expressing the respective spot. Healthy blood 
signatures enriched in the spots (p < 10−7, Fishers exact test) were taken from Ref. (20, 31) and other signatures from Ref. (32, 33).
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In summary, SOM portrayal resolves heterogeneity of samples 
and of transcriptional programs along two major dimensions 
describing either the severity of CAP or systematic differences 
between the two cohorts studied.

Modules of co-expressed genes
Next, we aimed at studying the spot expression characteristics 
more in detail. For this purpose, we ranked the samples in two 
different ways: first, according to their group memberships to 
highlight systematic differences between the groups (Figure  2, 
left part); and second, with increasing expression of spot L. It 
was assigned to upregulated expression in CAP versus control 
samples and to group 1 versus group 2 cases (Figure 1B). We, 
therefore, assume that this dimension roughly estimates the 
severity of CAP and, therefore, we used it as transcriptomics 
measure of CAP severity. Ranking along this axis associates with 
a U-shaped variability profile of GE, which reflects the fact that 
this dimension covers the major dimension of transcriptional 
variability. Independent component analysis (ICA) supports this 
result: the first component (IC1) describes the variability along 

the severity axis, while IC2 captures the variability introduced by 
the two cohorts (Figure S3 in Supplementary Material). ICA also 
shows that the variability of the transcriptomes due to independ-
ent processes gains along the severity axis in agreement with the 
spot-frequency distributions (Figure 1E). The pairwise similarity 
heatmap further divides the samples along this axis into three 
main categories, which either resemble the control group or the 
severe CAP cases in group 1, or an intermediate category forming 
a sort of continuum between these two bordering situations.

The functional context of each spot was characterized using 
gene set analysis based on expression signature genes from a 
previous study on healthy blood (20) and other literature sources 
(Figure 2, table in the right part and Figure S4 in Supplementary 
Material). The major alterations of GE due to CAP were assigned 
to a strong gain of inflammatory function (spot L) paralleled with 
the decay of T- and B-cell expression signatures (spot A). Both 
cohorts differ mainly in the expression of mitochondrial transla-
tion (spot E), G-protein coupled receptors (GPCR) and olfactory 
transduction (spot F), and functions related to myeloid lineage 
(spots G and I). Spots C (plasma cells), J (platelets, erythrocytes), 
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and K (neutrophils) show rather scattered expression profiles 
that virtually seem to not fit into the two major dimensions of 
heterogeneity established above. Instead, they show maximum 
of expression in group 2 samples (spot J) or they reveal a weak 
increasing (spot K) or decreasing (spot C) trend, however, with 
strong sample-to-sample variability. The correlations between the 
spots are negative for the two main dimensions of heterogeneity, 
thus reflecting antagonistic changes between the respective genes 
(Figure S5 in Supplementary Material). The spots F (olfactory 
receptors) and J (platelets and erythrocytes) only weakly correlate 
with the spots of the two main dimensions.

Hence, the expression landscape decomposes into a set of 
one dozen spot modules of co-regulated genes of defined func-
tional context and with different impact for CAP severity and 
heterogeneity.

immune response and Disease severity
We performed gene set expression analysis in terms of the gene 
set Z-score [GSZ (25)] using different functional categories. The 
expression scores of sets of the GO “Biological process” terms 
such as transcription, immune response, and T-cell receptor 
(TCR) pathway decrease, while that of inflammatory response, 
extracellular matrix organization, acute phase response, and 
glycolysis increase with disease severity (Figure  3A). Also, 
“lifestyle” (Figure 3B) and “hallmarks of cancer” (Figure S6 in 
Supplementary Material) signatures reveal each two groups of 
gene sets that up- and downregulate with disease severity. The 
latter functional category characterizes cell and pathway activities 
frequently dysregulated in cancer and other diseases. Only few sets 
such as “Myc-targets,” “DNA-repair,” and “oxidative phosphoryla-
tion” (oxphos) decay, while a larger number of sets mostly gain 
activity presumably due to their relation to inflammation (e.g., 
“TGFbeta,” “PI3K-Akt-MTOR,” and “IL6-JAK-Stat3”-signaling, 
“hypoxia,” “coagulation,” “reactive-oxygen-species”). Metabolic 
switching from oxphos to glycolysis was reported previously to 
constitute the metabolic basis of immunity due to the glucose 
consumption of trained monocytes (34). Similar changes were 
observed for gene signatures, which were related to obesity, smok-
ing, blood pressure, and aging. This result suggests an overreach-
ing responsiveness of the blood transcriptome to multiple factors 
in terms of the processes discussed here (Figure 3B). Moreover, 
part of the heterogeneity of the CAP-transcriptome potentially 
can originate from the heterogeneity of the blood transcriptome 
of the patients under healthy conditions before CAP onset.

Expression of a whole battery of chemokines, among them, 
CXCL1, 5, 8 (IL8), and 10 is initially high, thus indicating stimu-
lation of immune response; but it decreases with CAP severity, 
reflecting progressive immune suppression (Figure 3C). A series 
of receptor–ligand pairs show concerted profiles suggesting de-
activation of the respective immune cells (39). Another subset 
of chemokines, CXCL2, 3, and 14 changes expression into the 
opposite direction and gets upregulated in CAP. The decay of 
immune response can be attributed to loss of HLA class II antigen 
presentation and to T-cell exhaustion, as indicated by the down-
regulation of GE of HLA class II antigens, of their regulator genes 
(CIITA and RFX5) and of the immune checkpoint inhibitors CTL4, 
IDO1, LAG3, and PD-L1 in agreement with (9) (Figure  3C).  

In contrast, disease severity is paralleled by increasing expression 
of the inflammasome AIM2 indicating activation of host response 
against cytosolic bacteria and viruses (42). Gene maps localize 
genes mentioned above within the expression landscape of CAP 
(Figure 3D). Immune checkpoint blockade genes and the MHC 
II compounds, all locate in or near spot A, thus reflecting their 
co-expression with the A-spot profile. In contrast, location of 
AIM2 in spot L clearly indicates co-expression with the inflam-
matory characteristics of this spot. Genes affected by AIM2 such 
as CASP1, IL1-beta, and IL18 locate in different regions of the 
map presumably due to modulation of their expression by other 
factors, such as specific host response to viruses (see below).

A comprehensive collection of gene sets referred to as 
“immunome” (40, 41) supports these results and provides further 
details (Figure 3E): the cluster associated with decaying adaptive 
immune response includes signatures of lymphoid cells such 
as T-cells, central memory CD4 and CD8 cells, cytotoxic cells, 
and B-cells. Increasing inflammation associates with the gain 
of expression signatures of myeloid cells, such as monocytes, 
neutrophils, and myeloid-derived suppressor cells (MDSC), all 
with different roles in innate immunity (21). MDSCs are con-
sidered immunosuppressive cells, are increased in sepsis, and 
can block specific T  cell function (43). A third group of gene 
sets upregulates in an intermediate range enriched with group 2 
patients and includes the signatures of eosinophils and mast cells. 
The signature genes of central memory CD4 accumulate in and 
near spot A and that of activated CD4+ in and near spot K while 
that of effector memory CD4 reflect intermediate characteristics. 
These alterations illustrate differentiation of CD4 cells (44) and 
activation of inflammatory response in the course of CAP.

In summary, the major severity axis of CAP is characterized 
by progressive decay of immune responsiveness due to T-cell 
exhaustion and loss of MHC II activity paralleled by the gain 
of expression signatures of inflammation, myeloid blood com-
pounds, glycolytic activity, and hypoxia.

Footprints of Viral and Bacterial infections
Respiratory viruses including influenza are considered as one of 
the causes of CAP, particularly among children and people with 
serious medical comorbidities (45). Co-infection with viruses 
and bacteria is also common, and it remains challenging to deter-
mine which patients have only viral or mixed infection as the 
cause of CAP. Using a series of standard gene sets related to viral 
and bacterial infections, we identified three clusters of functional 
signatures (Figure 4A). The first one (green background color) 
decays in expression along with increase in CAP severity: it refers 
to viral transcription and spot B. This cluster, however, lacks high 
specificity for viral infections because it seems to intermix with 
characteristics of the normal transcriptional machinery of the 
blood cells. The expression of the second cluster increases with 
CAP severity, it relates to the responses to bacterial infections and 
is associated with spot L (red background color). The third cluster 
collects a battery of gene sets characterizing interferon responses 
(blue background color). Their genes densely accumulate in 
spot D associated with very scattered profiles that relatively and 
weakly correlate with the major CAP severity dimension (see also 
below). The heatmap presentation in Figure 4A also reveals that 
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FigUre 3 | Gene expression heatmaps of functional categories (a) gene ontology biological process, (B) lifestyle, aging, BMI, and blood pressure signatures of 
peripheral blood taken from Ref. (35–38). (c) Selected genes with functions in immune response such as HLA type I and II, their regulators (BLM2, CIITA, RFX5), 
immune checkpoint inhibitors, and the inflammasome gene AIM2. All heatmaps reveal two major clusters of either decaying (green background) or increasing 
(apricot) expression with increasing community-acquired pneumonia (CAP) severity. Cytokines show similar profiles. Selected receptor–ligand pairs are connected by 
arrows and assigned to the respective immune cells according to Ref. (39). (D) Selected immunity genes were mapped onto the self organizing map portraits, where 
immune checkpoint inhibitors and MHC II-related genes accumulate in the region of spot A collecting genes that become deactivated in CAP. (e) GSZ-heatmaps 
“Immunome” signatures of immune cells and constituents, as provided by Ref. (40, 41). The part below shows gene maps and expression profiles of signature 
genes characterizing different stages of CD4 activation: upon activation the position of the respective genes shift from spot A to spot K (see gray arrows in the 
maps), where they show either decaying or increasing expression profiles.

8

Hopp et al. The Blood Transcriptome of CAP

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1620

clustering splits the samples roughly into two strata of high and 
low IFN-response with accumulation of samples from D2 in the 
former one and of D1 in the latter one.

Next, we analyzed recently published gene signatures derived 
from multi-cohort meta-analyses to differentiate between differ-
ent types of infections (46, 47). Their expression patterns almost 
reproduce the three clusters mentioned above (Figure 4B): specific 
signatures for viral infections closely agree with the interferon-
related signatures, whereas signatures of genes downregulated 
upon viral infections increase with CAP severity and resemble 
that of innate immune response and bacterial infections (see 
below Figures 4A,D). Further reduced sets of marker genes that 
were generated by several authors to robustly identify viral infec-
tions by overexpression commonly locate in spot D of interferon 
inducible genes (Figure 4D). For example, 10 out of the 11 genes 
of the influenza meta signature locate in spot D together with 
their transcriptional regulators IRF7 and STAT1 (46). Contrarily, 
marker genes of bacterial infections virtually upregulate with 
CAP severity as indicated by their location in and near spot L.  
A collection of key genes of bacterial response and ET, such as 
TLR4, MyD88, IL10, IRAK2, IRAK4, and ARG1 (53, 54) also locate 
in and around this spot. This indicates their progressive activation 
with CAP severity together with activation of a series of gene sets 
related to bacterial response and ET (Figure 4C). The signatures 
of TLR4-pathway signaling, of ET (48), of macrophages, of an 
LPS-tolerant state (49), and of the polarization of macrophages to 
an immunosuppressive M2 state (50), which is shown to resemble 
ET macrophages (39, 53, 55), all suggest development of ET with 
CAP severity in agreement with (9).

A plot of the expression of the viral signature in Figure 5 (part 
above) as a function of CAP severity is highly scattered but it 
also reveals a decaying baseline, which suggests IFN exhaus-
tion after primary viral infection described as host response 
protecting from secondary bacterial infections (56). Note, that 
the percentages of bacterial infections in group 1 cases of both 
cohorts exceed that of the less severe group 2, while that of the 
viral infections show the opposite trend (9), or in other words, 
the incidence of bacterial infections in CAP increases with sever-
ity while that of viral infections decreases. On the other hand, 
the mean group-averaged value of the viral score only slightly 
decreases with CAP severity, but its variance markedly grows, 
thus suggesting an increasing heterogeneity of the cases regard-
ing their IFN-response (see boxplot in Figure 5). Note also that 
the CAP groups clearly separate between control, group 2 and 1 
along the baseline, while they considerably mix with increasing 
viral signature, which suggests that the IFN-response contributes 
to noisiness along the CAP severity axis. Furthermore, the viral 

expression score and the expression of spot D related to interferon 
response of D2-group cases exceeds that of V2-cases (Figures 2 
and 5), which corresponds to higher percentage of viral infections 
in D2 compared with V2 [11% in D2 versus 4% in V2, see Table 
2 in Ref. (9)]. Hence, the expression differences between both 
cohorts can partly be associated with the increased percentage of 
viral and bacterial infections in the discovery cohort [18 versus 
12% of Gram positive bacteria and 9 versus 3% of viral infections; 
see Table 1 in Ref. (9)]. Note that the percentage of viral infections 
in CAP tends to be underestimated with presumably stronger 
consequences as suggested by the relative low percentages given 
above (57).

Spot F accumulating G-protein coupled receptors (GPCR) also 
shows asymmetrical upregulation in samples of the D-cohort 
(Figure 2). GPCRs play a vital role in immune regulation (60, 61), 
e.g., for Treg-cell development and function (62) and T cell recep-
tor and immunoglobulin E signaling (60). Interestingly, cAMP 
signaling clusters together with GPCR suggesting associated 
functions (Figure 2A) as supported by the fact that cAMP act 
as core molecules in GPCR signaling (63). In summary, the CAP 
transcriptome expresses footprints of viral and bacterial infec-
tions. The former ones form an axis of variance, which is largely 
independent of the major CAP severity axis while the latter ones 
concertedly gain with CAP severity. GPCR functions seem to be 
related to these host responses, which, however, requires further 
studies. In summary, we find close correspondence between 
IFN-response and viral infection signatures, which show asym-
metrical activation in both cohorts considered. Signatures of 
bacterial infections and ET agree largely with the signature of 
severe CAP cases.

erythroid cells, Platelets, and coagulation
Erythrocytes and platelets, although without nucleus, contain a 
few thousand different mRNAs that are translated in circulating 
blood and fulfill a broad and multifaceted functional repertoire as 
inflammatory effector cells (64–66). SOM analysis collects tran-
scripts assigned to both cell types together into one spot J, although 
the gene sets considered do not overlap (20) (Figure 2). The data 
show increased expression levels in group 2 compared with the 
healthy reference state, and decreased levels in group 1 with  
higher CAP severity (Figure 5), which qualitatively agrees with 
clinical data on CAP-induced anemia: patients with CAP often 
exhibit impaired hemoglobin content during acute systemic 
inflammation and declined prognosis due to disturbances in 
iron homeostasis (67–69). Interestingly, the gene encoding the 
hypoxia-inducible transcription factors HIF1A locates also near 
spot J, thus suggesting co-regulation of hypoxia-related pathways. 
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FigUre 4 | Footprints of infections in the community-acquired pneumonia (CAP) transcriptome: (a) two-way hierarchical clustering of interferon-related, bacterial 
and viral response signatures reveals two clusters of IFN-high (IFN-H) and IFN-low (IFN-L) responsive cases, in addition to clusters of cases with up and down 
regulated expression according to CAP severity. The IFN-responsive genes accumulate strongly in spot D. (B) Gene sets from recent meta-analyses (46, 47) split 
into the same clusters as the gene sets in part A. The IFN-responsiveness associates with the signature for viral infections. The respective genes accumulate in 
different characteristic spot areas of the map. (c) The expression of gene signatures related to bacterial infections and endotoxin tolerance taken from Ref. (48–51) 
increases with CAP severity. (D) Gene markers that differentiate between different types of infections taken from Ref. (46, 47, 52) are mapped into the expression 
self organizing map. They locate typically in/near spots D (viral markers), L (bacterial and ET markers), and A (sterile infection).
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FigUre 5 | Analysis of the viral, erythrocyte, and platelet signatures as a function of the community-acquired pneumonia (CAP) severity scores. The scores are 
defined as GSZ-values of selected gene sets as indicated in the figure. The viral, erythrocyte, platelet, coagulation, and humoral response scores show different 
trends depending on the CAP severity score as indicated by the gray curves. The viral, erythrocyte, and also the coagulation scores positively correlate with each 
other as indicated by their joint accumulation within the same spot J and the respective scatter plots. The plot of the viral expression score as a function of the CAP 
severity score reveals a decaying baseline, which suggests exhaustion of interferon induction in more severe CAP cases. The gene set maps also show selected 
genes that regulate development of platelets and erythrocytes from their common precursors (58), as well as ribosome rescue in both types of cells (59). As a 
rationale that possibly explains co-expression of mRNA attributed to erythrocytes and platelets. Note also that the positions of the metagenes of highest gene 
density slightly differ between the platelet and erythrocyte signatures (see the gray circles), which reflects their similar but not identical profiles. The genes of both 
signatures do not overlap except for one gene (20).
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There is also a significant relation between both thrombocytope-
nia and thrombocytosis and mortality among the patients with 
CAP, where the platelet count is considered a better positive than a 
negative predictor value to the outcome (70). In our data, reduced 
amounts of mRNA from platelets indeed increases in parallel 
with the CAP severity score, especially of group 1 (Figure  5). 
Hence, the expression levels of mRNA from both types of cells 
seem to correlate with the platelet count and hemoglobin content, 
respectively. Interestingly, the signature genes of antibacterial 
humoral response accumulate in spot K showing a similar profile 
as that of the platelet mRNA with a markedly elevated expression 
level already in less severe CAP of group 2 (Figure 5). It presum-
ably reflects the role of platelets as inflammatory effector cells in 
initiating and accelerating vascular inflammatory conditions in 
pulmonary inflammation (64, 71).

The co-expression of mRNA of platelets and erythrocytes 
suggest common regulation mechanisms. Note that both cells are 
derived from a common precursor, the megakaryocyte–erythroid 
progenitor (58), which in turn is regulated by the hematopoietic 
transcription factor GATA1 and its co-factor FOG1 (72, 73). Both 
genes are also located in spot J, which indicates their co-expression  
with the platelet and erythrocyte signature genes (Figure 5). 
Deficiencies of GATA1 can cause thrombocytopenia and anemia 
(74, 75). Another common regulatory mechanism in both cell 
types associates with ribosome recycling and the recycling factor 
ABCE1 decaying in expression with CAP severity, as indicated by 
its location near spot A (Figure 5). For compensation, the cells 
need increased levels of the ribosome rescue factors PELO and 
HBS1L to support protein synthesis, which is indeed observed 
as indicated by the location of these genes near the spots L and 
J, respectively (Figure 5). Hence, common mechanisms during 
hematopoiesis and ribosome rescue rationalize the co-expression 
of platelet and erythrocyte mRNA in the CAP transcriptome.

Disordered coagulation represents a third option of concerted 
expression of mRNA from erythrocytes and thrombocytes 
because the red blood cells contribute to thrombosis patho-
physiology (76). Disordered coagulation is known to accompany 
severe pneumonia, and it is positively correlated with severity and 
mortality owing to hemostatic abnormalities (77, 78). The tran-
scriptomic coagulation score (27) indeed shows elevated levels 
in CAP samples compared with the controls (Figure 5). Hence, 
expression of mRNA originating from platelets and erythroid 
cells initially gains in CAP but it reduces for severe CAP cases 
while the transcriptomic coagulation score seems to further gain, 
on the average. The used scores offer the options to use them as 
transcriptional measures of the respective blood characteristics.

Previous caP and sepsis signatures
Different sets of signature genes were previously published to 
serve as markers, e.g., to distinguish CAP from non-CAP cases 
(79), more severe CAP group 1 from group 2 (9), and to differenti-
ate sepsis due to CAP from FP and also to evaluate the time course 
of the disease (10). All the signatures estimating the severity of 
CAP and sepsis show very similar profiles closely resembling 
that of spot A and L for down- and upregulation, respectively, 
where the marker genes strongly accumulate in the respective 
spots (Figures 6A–C). Signatures derived from the time-course 
of the disease in Ref. (10) (differential expression was counted 
with respect to the onset of disease) also change along the major 
dimension of CAP severity indicating an increase of inflammation 
in the first 5 days after admission to the intensity care unit (“Day 
1-versus-5_DN”) and the recovery of normal immune function 
in 6  months-survivors (“6M_survival”). Survival after 28 and 
14  days associates with less clear profiles presumably because 
cases with improved and worsened courses of the disease mix 
in this intermediate time interval. Genes activated in CAP upon 
viral infection and during the 5 days CAP-dynamics accumulate 
in spot D (Figure 6D), which suggests the influence of confound-
ing factors related, e.g., to the type of infection. The alteration of 
expression of eQTL genes is compatible with the major dimen-
sion of severity due to the susceptibility of these genes for CAP.

A two-gene classifier of CAP versus non-CAP (79) and a 
seven-gene signature to differentiate between CAP cases of group 
1 and group 2 (9) well fit into the spot A versus spot L antagonism 
defining the main axis of CAP severity (Figure 6D). A signature 
differentiating CAP from FP (10) and a set of four gene-pairs 
distinguishing four molecular endo-types of sepsis, called MARS 
1–4 (11) partly deviate from this axis and locate in or near other 
spots, first of all, spot D, related to interferon induction, but also 
spots E and J. This result suggests stronger association of different 
processes with the MARS-endo-types and with FP in contrast to 
CAP. One can interpret the endo-types based on the spot assign-
ments and the location of the respective markers: the endo-type 
3 seems to reflect changes along the immune-suppression dimen-
sion, the endo-type 2 carries characteristics of viral infections 
and IFN response on one hand and inflammation and ET on 
the other. The endo-type 1 with worst prognosis also associates 
with IFN-response, which, however, antagonizes with alterations 
of the platelet and erythrocyte mRNA-counts. In turn, the CAP 
transcriptome thus shows clear characteristics of other forms of 
sepsis such as FP and the MARS endo-types, however, with a 
reduced contribution. Taken together, previous CAP and sepsis 
signatures well agree with the CAP severity dimension defined 
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FigUre 6 | Previous community-acquired pneumonia (CAP) and sepsis signatures were taken from Ref. (9–11, 79) and mapped onto the data analyzed here.  
(a,B) Expression heatmaps (GSZ-score) of the gene signatures mostly show two types of signatures, which antagonistically switch between normal conditions and 
CAP. (c) Profiles and gene set maps (genes are indicated by dots in the maps) reveal further details about the disease course and the noisiness of gene expression. 
Regions of increased local densities of signature genes were indicated by red and green frames. (D) Maps of selected sets of marker genes accumulate in regions of 
the spots detected here. MARS genes were provided pair-wisely for up- and downregulation in each of the MARS endo-types (11). The pairs are connected by lines 
as a guide for the eye.

12

Hopp et al. The Blood Transcriptome of CAP

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1620

here by the expression of spot modules A and L. Confounding 
factors such as the type of infection and the abundance of platelets 
and red blood cells produce additional heterogeneity with dif-
ferent impact in different stages and types of sepsis. Mapping of 
previous CAP and sepsis signatures into the CAP transcriptome 
landscape reveals correspondence between the studies and forms 
of sepsis regarding the processes involved but also show differ-
ences regarding their particular effect-size.

reprogramming of chromatin states
The drastic changes observed in the expression of genes involved 
in the immune responses suggest the intervention of epigenetic 
reprograming to condition the response of the immune system. 
We analyzed sets of genes assigned to distinct chromatin states 
in a series of different types of healthy blood cells taken from 
Ref. (28) and discovered systematic changes of their expression 
levels in the CAP data as possible indications for alterations of 
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chromatin organization between transcribed and silent states [see 
Ref. (80) for a detailed description of the chromatin states]. The 
expression data split into two major clusters (Figure  7A): one 

mostly contains transcribed genes with active promoters, while 
the other accumulates genes in repressed and poised states. Also, 
the samples are divided into two major clusters, where one is 
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FigUre 7 | Expression signatures of genes referring to different chromatin states in lymphocytes are evaluated in the community-acquired pneumonia (CAP) blood 
transcriptome. Chromatin states as defined in Ref. (81) were taken from Ref. (28). (a) Two-way hierarchical clustering of the GSZ-heatmap reveals two major 
groups of chromatin states showing either high expression in predominantly control and group 2 samples (green) or in predominantly group 1 samples (red). Genes 
upregulated in the former cluster are commonly in transcriptional active states, whereas poised and repressed states on the average are at low expression level. 
This relation reverses in the latter cluster. (B) Boxplots of mean group expression of selected chromatin states show either decaying or increasing expression with 
increasing severity of CAP. Note the relatively large height of the boxes due to large variability of gene expression (GE) in most of the groups. (c) Bar plots of 
samples ranked with CAP severity underline the increasing and decreasing trends but also the noisy character of GE. Gene sets were taken from Ref. (31, 32, 82). 
(D) Gene maps indicate the accumulation of genes from transcribed and repressed chromatin states in T-cells in different areas of the map, as indicated by the 
dashed frames. The genes were either shown as dots, or as local percentages in areas determined by K-means clustering (12) (number of genes attributed to the 
state/all genes in the respective area). The population map visualizes the number of genes in each pixel. Chromatin states were defined as follows: active promoters 
(TssA), transcribed genes (Tx), active enhancer and enhancer-like states (Enh and EnhG), zinc finger proteins (ZNF_rpts), quiescent (Quies), heterochromatin (Het), 
poised promoters, and enhancers (TssBiv, EnhBiv), repressed polycomb states (ReprPC) (81).
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enriched with controls and less severe cases and the second one 
with more severe CAP.

Importantly, the expression in the former cluster of samples 
is in correspondence with the “canonical” assignment of chro-
matin states in healthy lymphocytes, namely high expression of 
active genes and low expression of repressed and poised genes. 
This situation completely reverses in the second cluster of more 
severe CAP cases, namely nominally transcribed states markedly 
decay in expression while nominally repressed and poised states 
become strongly activated. This switching of transcriptional 
activity suggests changes of the underlying chromatin states, 
more specifically, activation of repressed and bivalent ones and 
possibly also deactivation of active ones. Notably, part of the 
samples form a sort of transition group with intermediate expres-
sion levels between the two clusters, which suggests a continuous 
character of chromatin re-modeling. These antagonistic trends 
become also evident in the class averaged expression data shown 
as boxplots in Figure 7B. They are very similar for most of the 
cell types considered, including T- and B-cells, T-regulatory and 
T-helper cells and natural killer cells with exception of monocytes 
whose genes in active and repressed states both increase in parallel 
with CAP severity.

Regulation of GE in active states can be achieved by alterna-
tive mechanisms, e.g., via “classical” transcription factors, which 
potentially overlay with the epigenetic mechanisms studied here. 
The profiles of signature sets of lymphocytes (31) and of tran-
scription factors associated with weakly expressed genes under 
healthy conditions (82) closely resemble the profiles of active and 
repressed chromatin states, respectively (Figure 7B, part below). 
This agreement lets us conclude that the expression character-
istics of the chromatin states indeed reflect essential expression 
characteristics of the blood cells studied. The relative large SD 
of the group-related expression values reflects a large noisiness 
of the expression of chromatin states (Figure 7B). The barcode 
patterns in Figure 7C further illustrates this in terms of scattered 
black and white stripes referring to high and low expression 
levels, respectively. Importantly, gene maps show that the 
expression landscape divides roughly into two major areas 
that accumulate either active or repressed states referring to low 
and high severity of CAP, respectively (Figure 7B, part below).  
In summary, blood transcriptomics reveals footprints of progres-
sive chromatin re-organization with CAP progression, where 
silent states in healthy blood on average become activated and 
active states decay in expression.

chromatin Modifying enzymes
Chromatin organization is regulated by a large battery of chroma-
tin modifying enzymes whose transcriptional activity is expected 
to vary between the CAP groups in parallel with the changes of 
chromatin states reported in the previous subsection. We evalu-
ated GE of more than 50 chromatin modifying enzymes either 
catalyzing methylation [methyltransferases (MTs)] or demethyla-
tion (demethylases, DM) of lysine or arginine side chains of the 
histone-component H3, or directly catalyzing methylation and 
demethylation of DNA cytosines usually in CpGs. The heatmap 
in Figure 8A reveals two main clusters of enzymes with either 
up- or downregulated expression in the control group and group 
2 on one hand, and mostly antagonistic expression in group 1 of 
the more severe CAP cases on the other, i.e., a similar cluster-
ing of cases as for the expression of chromatin states discussed 
above. For example, the expression of the histone demethylase 
KDM6B upregulates with CAP severity. It de-methylates repres-
sive H3K27me3 marks in repressed and poised gene promoters 
giving rise to transcriptional activation of the affected genes, sug-
gesting a trend that corresponds to the changes of initially silent 
chromatin states. KDM6B was recently shown to link microbial 
stimulus with epigenetic gene regulation during host responses 
(83). The MTs SETMAR, KMT3C (SMYD2), KMT3E (SMYD3), 
KMT2F (SETD1A), all catalyzing methylation of the histone 
marks H3K4me1-me3 associated with active promoters concert-
edly decay in expression, thus showing a trend that corresponds 
to the changes of initially active chromatin states. However, the 
expression of a series of demethylases of H3K4me1-me3 such as 
C14orf169 (RIOX), KDM1A (LSD1), and KDM5D (JARID1D9), 
accomplishing the opposite role, also decays with CAP sever-
ity, which makes the picture more puzzling. In general, one 
finds a mix of different enzymes writing or erasing repressive 
(H3K27me3, H3K9me3) and active (H3K4me3, H3K36me3) 
marks in both clusters of decreasing and increasing expression 
with CAP severity. Overall, this result suggests massive deregu-
lation of the machinery of chromatin modifying enzymes in 
the course of CAP, which parallels chromatin re-organization 
discussed in the previous subsection [see Ref. (84) for a general 
review]. Mapping of lysine methylases and de-methylases into 
the SOM portraits reveals an asymmetrical distribution with a 
larger density in the region assigned to active chromatin states 
(Figure 8B, compare with Figure 7D), which suggests that these 
enzymes were preferentially transcribed from active states under 
healthy conditions.
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FigUre 8 | (a) Expression heatmap of chromatin modifying enzymes in the five sample groups: the gene expression data of methyltransferases (MTs) and 
demethylases (DM’s) of DNA cytosines, histone lysine (H3K), and arginine (H3R) side chains split into two main clusters down- or upregulated in the control group 
compared with the community-acquired pneumonia groups. The plots in the right part show expression profiles for selected enzymes with single sample resolution. 
(B) Maps of genes encoding lysine MTs and demethylases of H3K4, H3K9, H3K26, and H3K36, and of their local percentage among all genes. The genes are 
accumulated in the region assigned to active chromatin states and are depleted in the region assigned to repressed and poised states as shown in Figure 7D.  
(c) Genes and gene signatures related to DNA methylation suggest activation of repressed and poised genes by DNA-demethylation.
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Changes of chromatin states due to alteration of enzyme 
activity in CAP are expected to also modify DNA-methylation. 
It represents another epigenetic level of transcriptional regula-
tion, where poised and repressed states often tend to become 
methylated and active states tend to loose DNA methylation 
marks. DNA methylation is directly governed by DNA (de-)
methylating enzymes (85). We find that the expression of the 
DNA-methyltransferase DNMT1 ensuring maintenance of 
DNA methylation after cell division decays with CAP sever-
ity while the expression of the DNA dioxygenase TET2 that 
de-methylates DNA (86) increases (Figure  8A, right part). 
DNMT1 expression was shown to correlate with pro-inflammatory  
cytokine production in the peripheral blood monocytes (87) and 
the release of LPS-induced pro-inflammatory cytokines, such as 
TNF-α and IL-6 in macrophages (88). Moreover, de-activation 
of DNMT1 might lead to M2 polarization (89), as suggested by 
our data. TET genes, particularly TET2, play an antagonistic role 
by restraining inflammatory GE in macrophages (90) and its 
level was shown to decrease after viral infection (91). The trends 
observed for DNMT1 and TET2 expression suggest loss of DNA-
methylation marks with CAP severity. Data on DNA-methylation 
in pneumonia and, particularly, CAP are rather scarce or even 
missing to our best knowledge. One study found that lung inflam-
mation indeed leads to DNA hypomethylation in the lung and 
blood, which suggests disease development (92). Another study 
reported DNA demethylation of the FOXP3 gene and other key 
genes typifying the Treg lineage (92) with potential impact for 
therapy (93). FOXP3 co-localizes with TET2 in our CAP-SOM, 
indicating co-expression, which is compatible with activation of 
FOXP3 by DNA de-methylation (Figure 8C). Interestingly, the 
expression of signature genes with aberrant methylation patterns 
in colorectal cancer [CIMP-genes (94)], gliomas [GCIMP-genes 
(95)], and also B-cells (96) increase with CAP-severity. These traces 
in the CAP transcriptome indicate that similar mechanisms and 
gene groups are susceptible for alterations of DNA-methylation 
in different tissues and diseases, which particularly applies to 
genes with poised and repressed promoters having impact for 
cell fate decisions, development, and differentiation (17, 96–98).  
We hypothesize that genes in repressed and poised states de-
methylate with possible consequences for immune response. In 
summary, we find extensive transcriptional deregulation of chro-
matin modifying enzymes in the CAP transcriptome presumably 
affecting chromatin organization and predicting widespread 
alterations of DNA methylation.

Deregulation of Pathway activities
So far, we have mined functional knowledge using gene set analy-
sis that calculates mean expression levels of signature genes but 
ignores potential interactions between them (23). PSF analysis 
considers this information in terms of pathway topologies (30). 

The PSF activity heatmap of KEGG-pathways divides into two 
major clusters of processes either activated in the controls and 
deactivated in CAP or vice versa. The B-cell receptor (BCR) and 
T-cell receptor (TCR) signaling pathways, natural killer cell-
mediated cytotoxicity, cell adhesion, JAK-STAT, RAS, PI3K-AKT, 
and p53 signaling pathways belong to the former ones (Figure S7 
in Supplementary Material). They reflect deactivation of immune 
functions. Among the pathways activated in CAP are MAPK-, 
HIF1-, toll-like receptor-, NFkappaB-signaling pathways, olfac-
tory transduction, glycogenesis and gluconeogenesis, glucosami-
noglycan degradation, water adsorption, and drug metabolism.

The detailed evaluation of selected pathways reveals a more 
diverse situation (Figures S8 to S17 in the Supplementary Material). 
Part of these pathways, namely Fc-gamma-mediated phagocytosis 
and GnRH signaling, become strongly activated in CAP in all of 
their branches (Figures S9 and S10 in the Supplementary Material). 
These pathways are among the top deregulated pathways in a meta-
analysis of a series autoimmunity and autoinflammation diseases 
(99). Conversely, most of the alterations in other pathways refer only 
to certain branches. For example, HIF1-pathway leads to activation 
of CREBBP and ARNT that then lead to expression of several genes 
leading to diverse functional outcomes, such as VEGF-signaling 
and adaptive response to hypoxia (Figure S15 in Supplementary 
Material). On the other hand, NFkappaB- (and/or MAPK) is repre-
sented as a branch in multiple pathways such as the TCR-, BCR-, 
toll-like receptor-, and cytosolic DNA-sensing-signaling pathways. 
These processes either become activated or deactivated in CAP 
depending on the pathway they are involved in (e.g., deactivated in 
TCR signaling, Figure S8 in Supplementary Material or activated in 
toll-like receptor signaling, Figure S11 in Supplementary Material, 
partly also BCR-signaling, Figure S13 in Supplementary Material), 
owing to different entry points of the signals (e.g., MYD88 in 
toll-like receptor signaling), due to involvement of diverse regula-
tory processes and also due to different requirements to control 
transcription and cell survival under stress. Hence, activation of the 
pathway branches is dependent on the particular context.

Note that the sets of signature genes discussed in the previous 
subchapters often accumulate within or near one spot because 
they are usually selected by applying the criterion of “concerted 
up- or downregulation.” In contrast, the pathways consider 
activating and repressive interactions between the genes that give 
rise to correlated, anti-correlated, and even more complex mutual 
expression changes between member genes (100). As a conse-
quence, the maps of the pathway genes often accumulate in more 
than one spot-area, as a rule of thumb (e.g., see Figures S13 and 
S16 in Supplementary Material). Especially, spots H and I in the 
right lower corner of the map are occupied by genes of the BCR-, 
HIF1-, NFkappaB-, and MAPK21-pathways, which attributes 
these spots to activation pattern of these pathways (Figures S13, 
S15, and S17 in Supplementary Material).
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Taken together, pathway analysis estimates activation of genes 
in the context of their wirings, e.g., in signaling cascades and 
thus it complements gene set analysis. The pathways considered 
clearly divide into two clusters with antagonistic alterations of 
their mean activity in CAP.

sOM Portrayal suggests a novel 
stratification scheme With  
Potential Prognostic impact
The SOM analysis of GE modules in CAP-induced sepsis 
indicates considerable heterogeneity of responses that cannot 
be fully explained by division into two groups of low and high 
immune-suppression (9, 10). This classification considers the 
severity dimension of sepsis but not explicitly the IFN-response 
dimension related to viral infections (spot D) and the expression 
of mRNA originating from erythrocytes and platelets (spot J).  
Based on the spot expression profiles and subsequent class 
discovery, we re-classified the CAP cases into six novel groups 
(Figure S18 in Supplementary Material). The mean portraits of the 
new groups (Figure 9A, see also Figure S2B in the Supplementary 
Material for the sample portraits) reveal specific spot patterns 
that indicate the most elevated transcriptional modules in each 
of the novel groups, which were assigned to low and high sever-
ity (spots A and L, respectively), interferon response (spot D),  
blood disturbances (BD) (spot J), and medium severity (spot H).  
The frequency distributions of the CAP severity score show 
pronounced differences between the groups that combine with 
specific differences in the distributions of the erythrocyte and 
viral infection scores, thus providing a stratification scheme along 
three dimensions of the CAP transcriptome. The novel groups 
distinguish CAP cases of low (LS), middle (MS), and high (HS) 
severity levels, CAP cases showing high expression of the BD 
spot J and mostly medium levels of severity, and CAP cases with 
strongly expressed interferon response that further divide into 
a group of low (to middle) and high severity score (IFN LS and 
IFN HS, respectively). The LS group accumulates slightly younger 
patients (mean age 59 years, p < 0.05, Fishers exact test, Table 
S3 in Supplementary Material) while IFN-LS collects slightly 
elderly ones (71 years, p < 0.1). The 28-day survival rate is best 
for LS (89%, p = 0.07, Fishers exact test) and worse for HS (76%) 
and MS (78%) groups meaning that cases with intermediate 
values of the severity score have still relatively bad prognosis. 
Interestingly, combination of IFN response with high levels 
of immune-suppression in IFN HS results in worst prognosis 
(62%, p  =  0.02) while all patients in IFN LS survived (100%, 
p = 0.09). Please note also that the MS, BD, and IFN-LS groups 
show very similar frequency distributions of the severity score 
while their expression spot patterns and survival rates markedly 
differ. This result illustrates the potential prognostic impact of 
the additional dimensions of CAP. For validation of these results 
in terms of the two-cohort concept applied in Ref. (9, 10), we 
further stratified the 28-day survival rates of the new groups 
with respect to samples taken from the discovery and validation 
cohorts (Table S4 in Supplementary Material). Both cohorts show 
worst prognosis for IFN HS and best prognosis for IFN LS and 
LS groups. The combination of enhanced IFN response and of 

strong immune-suppression as in IFN HS and an associated poor 
prognosis was also observed in FP and the MARS endo-types 3 
and 4 (Figure 6D). This result further supports the prognostic 
impact of the new groups namely that IFN response due to viral 
infections worsens prognosis in severe forms of sepsis.

The prognostic map in Figure  9B visualizes the 28-day 
survival rate with pixel-resolution. It shows that some of the 
spots associate with poor outcome while others associate with 
good prognosis. For example, patients referring to samples that 
overexpress spot A, B, or G were almost all alive after 28 days 
while activated genes near spot L associate with a survival 
rate of about 50% only. Accordingly, the 28-day survival rate 
changes nearly by a factor of two in dependence on the region 
of the map. Note that areas of worst prognosis (see red arrows in 
Figure 9B) are slightly shifted compared with the spot regions of 
maximum variation of GE (compare Figure 9B and Figure 1B). 
In other words, genes with largest prognostic impact do not 
necessarily show largest effect of differential expression between 
the groups.

The composition flow diagram in Figure  9A illustrates that 
original and new groups largely mix where, however, cases of 
group 1 and group 2 accumulate cases of the novel HS and LS 
groups, respectively (Figures 9C,D) and cases of the discovery 
cohort accumulate in the two IFN-groups. This again illustrates 
the asymmetry of the two cohorts with respect to their IFN-
response. Taken together, stratification of CAP cases according 
to the level of severity, IFN-response, and BDs results in a novel 
stratification scheme with prognostic impact. Prognosis is further 
specified using a novel type of prognostic map that links the 
transcriptome landscape with clinical information.

Transcriptional Dynamics
Next, we analyzed the transcriptome dynamics of CAP patients 
who sequentially provided blood at days 1, 3, and 5 after admis-
sion into ICU. Individual SOM portraits of selected patients 
indicate typically the improvement of their health status in terms 
of the continuous decay of the severity score during these 5 days 
while the erythrocyte score seems to increase (Figure S20A in 
Supplementary Material). The mean SOM portraits for each 
time point support this observation: at day 1, spots L and D that 
are indicative for high severity and IFN-response, respectively, 
are highly expressed while during days 3 and 5, the expression 
shifts toward spots A (immune response) and J (erythrocytes and 
platelets), respectively (Figure S20B in Supplementary Material). 
Trivially, these patterns agree with the signature genes for days 1 
and 5 extracted in Ref. (10) accumulating in the respective areas of 
the SOM (see the gene maps “day 1-versus-5_UP” and “day 1- 
versus-5_DN” in Figure  6). The composition flow diagram in 
Figure S20C in Supplementary Material confirms these changes, 
namely, that the amount of samples in the low severity groups 
LS and IFN-LS gains at day 5 compared with days 3 and 1. 
Interestingly, the BD- and IFN-groups seem to get involved more 
strongly at day 3 and partly at day 5 that suggests the delayed 
response to viral infections and of BDs compared with the sep-
sis score, which shows maximum effect at day 1. The dynamic 
information can serve only as a first glimpse on the course of 
the disease in the first days after admission into ICU because the 
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FigUre 9 | Re-classification of community-acquired pneumonia samples into six novel groups and their prognostic impact. (a) The sankey diagram (R-program “riverplot”) 
illustrates the composition flow between the original and novel classes [low, medium and high severity, LS, MS, HS, respectively; blood disturbances (BDs); IFN high and low 
or middle severity, IFN LS and IFN HS, respectively], while the class-averaged mean portraits visualize the respective expression landscapes. The new subtypes differ with 
regard to severity levels (low, medium, high, spots A, H, and L) and the expression of spots J and D being assigned to BDs and interferon response, respectively (see also 
Table S4 in Supplementary Material). (B) The prognostic map links the expression level with the 28-day survival rate where the latter is calculated as the percentage of patients 
expressing the respective metagene and surviving 28-days after admission in intensive care unit. (c) Re-coloring of the correlation net according to new classification illustrates 
the asymmetrical distribution of the novel groups with respect to the discovery and verification cohorts (compare with the similarity net in Figure 1a). (D) The pie charts show 
the composition of the original groups with respect to the new ones. Note that about 65% of group 1 cases are collected in the novel HS group, while the remaining cases are 
mainly assigned to IFN HS. In contrast, about 50% of group 2 cases consist of LS and MS cases, while the remaining half of the cases distribute over the remaining groups.
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number of patients with three serial blood samples for which 
temporal information is available is relatively small (N = 15).

DiscUssiOn

As for cancers, the concept of using high-throughput omics data 
to analyze the multidimensional character of the transcriptome 

landscape of sepsis and to disentangle the molecular heterogene-
ity of this disease into molecular subtypes is expected to become 
clinically useful (22). In the first part of the paper, we discovered the 
data structure by means of the expression portraits of all samples, 
summarized them into an expression landscape, extracted expres-
sion (“spot”-) modules, and analyzed functional signatures where 
we kept the group labels as taken from the original study (10).  
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Based on these results, we propose a novel stratification scheme 
of six CAP subtypes of prognostic impact.

Our analysis of the CAP-transcriptome confirmed previous 
results, namely that immune suppression and ET constitute 
the major footprints of this disease in the blood transcriptome  
(9, 10). Consistently with previous findings, differential analysis of 
the transcriptome provided a set of marker genes distinguishing 
between cases of low and high severity (SRS groups 2 and 1) that 
associate with better and worse prognosis for survival, respec-
tively. However, our analysis methodology using self-organizing 
maps allowed us to significantly widen the interpretation of 
the pathobiology of CAP and associated sepsis and suggested 
new transcriptomic footprints related to disease development. 
Particularly, we found that:

– the epigenetic machinery (DNA-methylation and histone 
modification) plays an important role in the pathophysiology 
and correlates with activation of transcriptomic modules 
defining CAP severity and survival;

– interferon response and mRNA originating from erythrocytes 
and platelets constitute two additional major dimensions of 
variations of the blood transcriptome closely related to disease 
pathogenesis;

– these additional dimensions relate, at least partly, to viral infec-
tions and BDs and/or respiratory problems, respectively;

– the additional dimensions were found also in other forms of 
sepsis what makes them relevant in a more general context  
(10, 11);

– marker genes taken from previous sepsis and blood-tran-
scriptome studies are applicable to CAP to quantify the major 
dimensions of this disease.

expression Portrayal Disentangles the 
Multiple Dimensions of the Transcriptome
We here applied the self-organizing map (SOM) portrayal 
method to characterize the CAP blood transcriptome. It 
provides information on three major levels, first, in terms of 
“personalized” transcriptomic portraits of each case, second, 
in terms of an expression landscape indicating a collection of 
so-called spot modules, and third, the diversity landscape of 
cases studied (Figure  10A). For a holistic view on the CAP-
expression landscape, we trained all samples of the original 
study (9, 10) together in one SOM and decomposed overall 
transcriptomic landscape into one dozen spots A–L of co-
regulated genes. Their functional context has been annotated 
using a collection of gene signatures covering a wide range of 
functional categories. We also mapped a battery of previously 
generated signatures related to CAP, sepsis, the type of infec-
tion, and different blood cells to disentangle the expression 
landscape of CAP. This way it enables to assign the functional 
context of a signature and to judge its heterogeneity. It also 
enables to “read” the individual portraits and evaluate the 
contribution of disturbed modules (for example, indicate high 
or low levels of platelet mRNA, activated or deactivated IFN-
response or immune suppression) for each individual case, and 
thus a personalized combinatorics of different features with 
potential diagnostic impact (see the portraits in Figure 10A). 

Thus, the advantage of using SOM machine learning here is 
that it identifies hidden multidimensional structures in com-
plex transcriptomic data, which can be assigned to the major 
dimensions of the CAP transcriptome in terms of distinct 
“spot”-clusters of co-regulated and functionally related genes. 
Such multidimensional transcriptional response patterns typi-
cally cannot be extracted with sufficient resolution using super-
vised comparisons, e.g., between CAP and healthy controls. The 
multidimensional expression landscape transforms into a series 
of substrata of CAP cases according to the activated spots as 
indicated in diversity maps in Figure 10A. Mapping of marker 
signatures for different forms and endo-types of sepsis into the 
CAP transcriptional landscape reveals correspondence with the 
three major dimensions identified here where they, however, 
can combine with different weights. Reductionist sets of (only 
a few) marker genes, e.g., for CAP and FP, are usually restricted 
to one of the dimensions, which makes them prone to overlook 
other important dimensions of the disease. The prognostic map 
provides a novel option of linking the transcriptomic landscape 
with clinical data with potential impact for marker selection.  
In summary, SOM analysis disentangles the multidimensiona lity 
of the CAP transcriptome and extracts modules of co-regulated 
genes with potential impact for the selection of candidates for 
molecular markers.

Three Major Dimensions of caP  
in the Blood Transcriptome
Transcriptional profiling of peripheral blood reflects phy sio-
logical and pathological events occurring in the course of sep-
sis framed within CAP. It allowed us to identify footprints of 
immune suppression, of specific host responses to infections, of 
BDs, and of epigenetic effects. Immune suppression constitutes 
the main dimension of transcriptional alterations in the CAP 
blood transcriptome. It associates with T-cell exhaustion and 
HLA and chemokine receptor deactivation paralleled by ET 
and macrophage polarization, activation of CD4 cells and of 
metabolic conversion from oxphos to glycolysis (Figure 10B). 
Elevated glycolysis is the metabolic basis for trained immunity, 
providing the energy and metabolic substrates for the increased 
activation of immune cells in analogy with the Warburg effect 
in cancer (34, 101). The major expression footprint reflects 
rather continuous alterations of microscopic states between 
the healthy controls and severe CAP cases than a stepwise 
change between healthy, moderate, and severe CAP. This major 
dimension of CAP severity associates with sepsis and a bad 
prognosis (9). Dynamic measurements further show that sep-
sis severity decays on the average during the first 5 days in ICU. 
The major severity dimension is modulated by two additional 
characteristics constituting a second and third dimension of 
variations of the CAP blood transcriptome. The first one is 
the IFN-response dimension partly related to hosts response 
to viruses. It is highly variable among the cases and suggests 
IFN exhaustion along the major severity axis. The second 
characteristic dimension reflects the level of mRNA originat-
ing from erythrocytes and platelets. It suggests disturbances 
in blood cellular profiles such as enhanced and reduced levels 
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FigUre 10 | Visualization of the transcriptome landscape on three levels (a), namely “personalized” expression portraits, a “feature” gene expression (GE) 
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direction of the arrows shown in the similarity nets.
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of mRNA from both cell types in less and more severe CAP, 
respectively, and also the increase of coagulation signatures 
suggesting coagulopathy. The association of increased expres-
sion within these modules and less severe CAP possibly reflects 
their delayed response at days 3 and 5 after admission into ICU 

due to viral infections and/or respiratory comorbidities and 
oxygen requirements.

We found systematic differences between the discovery and  
validation cohorts regarding the level of IFN-response (especially 
in low-severity group 2 samples) that is higher in the discovery 
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cohort and associates with a higher percentage of viral infec-
tions. The division of samples into these strata thus enables 
validation of the major severity-dimension but not of the second 
dimension related to IFN-response. In summary, our analysis 
confirms previous results (9–11) regarding the major dimension 
of tran scriptional changes in CAP severity, but it also identifies 
two additional, partly independent dimensions related to IFN 
response and BDs.

The impact of epigenetics
The blood transcriptome of CAP reveals footprints of chroma-
tin re-modeling compared with the healthy state where silent 
chromatin becomes transcriptionally activated and transcribed 
chromatin becomes repressed. Extensive transcriptional deregu-
lation of chromatin modifying enzymes seems to act as one of 
the driving forces of chromatin re-organization. It is known that 
chromosomal reprogramming via histone (de-)methylation 
indeed parallels immune response and re-structures cellular pro-
grams and plasticity, for example, to induce ET (34) and to train 
monocytes for immune response (102, 103). Hence, our results 
support the view that epigenetic effects constitute an important 
mechanism of genomic regulation in the course of sepsis, e.g., to 
transiently sensitize immune response and subsequently to sup-
press immune reactions (34). This result supports the recent find-
ing that expression-associated single nucleotide polymorphisms 
accumulate in regulatory elements of endotoxin tolerant genes 
and in histone marks for active promoters (9). Moreover, changes 
in DNA methylation are known to play a critical role in the divi-
sion of hematopoietic stem cells into the myeloid and lymphoid 
lineages and in the establishment of specific functionalities in 
terminally differentiated cell types (104). Based on our results, 
we predict extensive changes of DNA methylation in the course of 
sepsis with potential impact for marker selection and functional 
characterization, which presumably will complement and extend 
the information extracted from the footprints in the transcrip-
tome. Our study thus adds indications for an important role of 
epigenetic mechanisms in CAP with possible consequences for 
diagnostics and treatment (104).

novel stratification of caP Based  
on Functional Dimensions
The SOM-analysis of the CAP expression landscape suggests a 
modified stratification scheme that in addition to high and low 
levels of sepsis severity takes into account the level of interferon 
response, high levels of mRNA originating from erythrocytes and 
platelets, and also a class of medium sepsis severity. The six novel 
classes diversify the potential prognostic options as, for example, 
combination of IFN-response with high sepsis severity seems 
to worsen the 28-day survival prognosis. The novel stratifica-
tion also opens options for dynamic studies of the course of the 
disease. These data available suggest different dynamics of the 
responses of the major dimensions. Larger cohorts and more 
extended dynamic measurements are, however, required to verify 
these results. Overall, our analysis enhances the resolution of 
transcriptome footprints of CAP and it provides opportunities for 
selecting sets of transcriptomic markers that might be of interest 
for clinical applications.
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