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SEMICLASSICAL APPROACH TO THE LOW-LYING COLLECTIVE
EXCITATIONS IN NUCLEI

A. M. Gzhebinsky, A. G. Magner, S. N. Fedotkin

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

For low-lying collective excitations we derived the inertia within the semiclassical Gutzwiller approach to the one-
body Green’s function at lowest orders in 7 . The excitation energies, reduced probabilities and energy-weighted sum
rules are in agreement with main features of the experimental data.

Introduction

The collective dynamics of complex nuclei at low
excitation energies, such as the vibration modes, can
be described within several theoretical approaches
[1, 2]. One of the most powerful tools for its
description is based on the response function theory
[1, 3]. The collective variables are introduced
explicitly as deformation parameters of a mean
single-particle field. In [3], the nuclear collective
excitations are parametrized in terms of the transport
coefficients like the stiffness, the inertia, and the
friction parameters through the adequate collective
response functions.

The extended Gutzwiller path-integral approach
(EGA) [4 - 6], so successful for a semiclassical
description of the nuclear shell structure [5, 6], was
applied to the response functions of collective
dynamics in [7]. At a few lowest orders in 7 like the
extended Thomas - Fermi approach (ETF), it would
be worth to exploit also the Strutinsky procedure of
averaging of the shell correction method (SCM) for
calculations of the smooth transport coefficients for
slow collective motion.

The main scope of this paper is to derive the
explicit analytical expressions of a smooth inertia at
leading orders in 7 for the low-lying nuclear
collective excitations within the EGA by using more
traditional way than in [8] in order to study also their
reduced transition probabilities and contributions
into the energy-weighted sum rule (EWSR) [1]. The
basic key point of these derivations is to show
analytically a significant enhancement of the ETF
inertia with respect to that of the hydrodynamical
(irrotational-flow liquid drop) model.

Nuclear response and transport coefficients

Many-body collective excitations are
conveniently described in terms of the nuclear

response to an external

V., =QqXe™, where g2 s

perturbation
a vibration

amplitude of the frequency w, and Q is one-body

operator. Its quantal average variations O ((A))t at
time t can be calculated through the Fourier

transform & (Q)w within the linear response theory

[31,

5(Q), =~ Zen(@ A, Q=r"Y,, (1)

where y_, (@) is the collective response function.

For the axially symmetric multipole vibrations of the
nuclear surface with the radius R(#) near the

spherical shape in the spherical coordinates r,8,¢,
one writes R(8) =R[1+q(t)Y ()], q(t)=q, gt
is the time-dependent deformation parameter. The
consistency condition,

5(Q), =x 44, 2)

relates the variations of nuclear potential and particle
density, 0V o« § p, k is the coupling constant, 5Q,

is the variation of deformation parameter [1, 3, 9].
For one dominating separate peak in the strength
function, Imy, (@), in the low energy region, we

can approximate the collective response function by
the harmonic oscillator form [3, 9, 10]:

K
Mo’ —iyo+C’

Zean (@) = )

with transport coefficients, such as the inertia M,
the friction y, and the stiffness C . The inertia M

is expressed in terms of the one-body Green function
G,

)
R R e
M oc 72? jd5n(5)jdr1jdr2 Q,(r) Q,(r,) ImG(r;, 1y, &) ERCG(I}, r, &), “)
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where Nn(g) is the Fermi occupation numbers at the
n(e)=

chemical

energy ¢  for
={l+exp[(¢-A)/T]}"', A is the
potential. Finally, with the strength function
S, (w) for the first lowest peak, we may evaluate the

temperature T,

contribution of the low-lying collective state into the
sum rule

, 1
S, =h"|do o' S (w), SL(a))z—;Im;(m”(a)),

O —y 8

1=0,1, ... (5)
Semiclassical approach

We use now in Eq.(4) the semiclassical
expansion of Green’s function G derived by
Gutzwiller [4, 5] from the quantum path-integral
propagator,

G(r, 1, €) :ZGa(rl’ r, &)=

i iz
=2Aa(r1, r,, £)exp ESa(rl, r,, 5)—7 U, |. (6)

The index « covers all classical paths inside the
potential well, which connect the two spatial points
r, and r, for a given energy ¢ (Fig. 1). The S, is
the classical action along a trajectory o, and g, is
related to the Maslov index of the path «. The
oscillation amplitude A, in Eq. (6) is determined by
the classical trajectory stability.

Fig. 1. The trajectory ¢, from the initial r, to the final
r, point; the spherical coordinate system with the polar

axis z and the center O is shown; dashed line denotes
another trajectory ¢, with one mirror reflection from the

spherical boundary.

Among all classical trajectories «, we may
single out the straight line path ¢, from r, to r,
without reflections from the potential well edge. For
the Green’s function G [Eq. (6)] one has then a
separation, G=G,_, + G which leads to the

corresponding splitting of the slightly averaged level
density, g(¢), into a smooth part of the extended

osc 2

Thomas - Fermi model ¢..(¢), and its shell
structure correction g, (&), 0(&) =0y (&) +
+ 0. (&) [5, 6]. The ETF level density gg.:(&)

includes the surface and curvature 7% corrections to
the volume part of the Thomas - Fermi model
0 (€) . The periodic orbit theory (POT) sum over

the periodic orbits, g (&), describes the shell

effects in the single-particle spectrum.
The averaging over phase-space variables of the
inertia, which includes Strutinsky averaging over

energy spectrum, leads to the nearly local
approximation S, (v, v, e)h=k. L, 1,
& =hk2/2m, in which the only short

trajectories & with small lengths L, alive, as shown
in [9, 11]. The Fermi momentum K. in units of 7% is

determined approximately by the well-known ETF
particle number conservation for the edge-like
potentials [6]

8(ke R’

(e 0]
A=4[dege(e) ~ >

0

Sk R

~(k: R)* + (7

In that approach, the diffuseness parameter for
mean field potential is small with respect to the
nuclear radius as A’ at large enough particle
numbers A in nucleus. Shell fluctuations are owing
to longer trajectories (see ¢, as example in Fig. 1)
of periodic orbits for smaller Gaussian averaging
parameter /7, I' < h2 ~ & /A" in the case of

non-local contributions, k- L, > 1, see [9, 12].

Within the nearly local approximation, the
contribution into the smooth transport coefficients
is coming from the first component of Green’s
function G_,, corresponding to the short trajectory

a0
a, (see Fig. 1) with a small relatively action
S,(r,r, &), which can be reduced approxi-

mately to a simple analytical form for free particle
motion,
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m .
G,,(r, 1, &) ~G,(r, 1, &) = — s exp(iks),

2me
s=ln-nh k== (8)

Finally, for the leading term in # in the
semiclassical inertia in units of that for irrotational
flow of the hydrodynamical model, by using (4) and
(8) one obtains

2 4
imp[b_v@j ke R A
g b,

M A

irr

6b,

P=Po(1+Wj- )

Here, p is the particle density accounting for a

semiclassical surface correction to the value p, =

=0.16 fm~ of the infinite nuclear matter. Other
notations are used for standard nuclear parameters,
namely, the energy of particle separation from nuclear

matter b, =16 MeV, the incompressibility modulus

K =220 MeV, the energy surface constant b, =
=18 MeV, t, =(3/4zp,)" . We found that the

inertia value is much larger than the irrotational flow
one by factor of about M/M, =4 —7 for the

quadrupole vibrations and similarly, for octupole
modes, M/M, ~4-9 for particle numbers

A=100-200.

quadrupole excitations was found in [13] within the
stohastic response function approach [14] without
account for the consistency condition (2). Notice that
the collective-consistent inertia parameter M , see
(9), depends on the diffuseness of the mean-field
potential edge through the phenomenological energy
surface constant b, see [9] and [25, 26] therein.

Other contributions of the finite nuclear diffuseness
are expected to be negligibly small for heavy enough
nuclei within our approach because of the double
integration over the nuclear volume in (4). The
stiffness is approximated by the standard sum of the
liquid drop surface value and Coulomb correction [1]

Smaller enhancement for the

~ (S (coul)
C=Cyp +CL",

b
Cy =—5(L-1)(L+2)R’,
B =ge (LD (L)
C(coul) - _ 3(L B 1) 22 e2 (10)
b 27z2L+1) R’

where Z e is the nuclear charge.
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Energies, transition probabilities and sum rules

The collective vibration energies were calculated
as poles of the response function (3). The main term
of the excitation energies differs essentially from the
well-known results of the hydrodynamical model,

cC D 23 1.3
=i =1+ )
5 s cE”
D =D, [l+=2%-, L=23. (1
LD

The surface (oc A”S) and curvature (oc Am)

corrections are mainly coming from the ETF relation
(7) between particle number and semiclassical

parameter. Parameter D, does not depend on

particle number, D, o (b, &.)"*/b, K, D, =
~ 100 MeV; D, ~ 180 MeV.

We may analytically evaluate also the
contribution of the first low-lying excitation into the
energy-weighted sum rule S_,, see (5), (9),

SL,1 _ th _ Mirr
SS¢ 2M M’
3Lep

AR, (12)

S  =—_>"%F _
S 4z (ke R)?

where S is the classical sum rule independent of

the model [1]. The enhancement of the inertia M
corresponds to a decrease of the sum rule
contribution as compared to that of the
hydrodynamic model. Similarly, as for the energies
(11), for the sum rules (12), one has the analytical
expression for the A-dependence with the surface
and curvature corrections,

S, S, 46 79

S _KI_A1/3+A2/3 >
L,cl

where S_L is the constant independent of the particle

number, S, « (g ke b, /b, K)', S, =7, S, ~6.

The semiclassical reduced transition probabilities
are expressed through the sum rule S, of (5) and (3),

(13)

B(EL) = B, (EL) = (2L + l)(%) Slo®

ez
~(2L+1)(Tj

hi?
2Ma,

(14)
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From comparison of the transition probability (14)
and the EWSR (12), one has the expected
approximate relationship between these quantities
and energies (11),

BSC,(EL)E(2L+1)(%J Su_ S“‘. (15)

ho, - hay,

The reduced probability in the single-particle units is
really large enough, as it must be for the collective
excitations,

B, (E2)

~50-170,
B, ,.(E2)

A=100-200, (16)

for quadrupole, and 50—-60 for octupole modes.

Comparison with experiment data

The local Thomas - Fermi approach (TF, dots) to

the low-lying collective quadrupole excitation

energies without surface and curvature corrections
are compared with the experimental data [15] for
almost spherical (even-even) nuclei in Fig. 2. The
TF results for smooth vibration energies are
respect to

A _ua AN 1 1t

the

(R EEVS B

significantly

1. 1. _ 1

improved with

/TTTN A 1

20 40 60 80 100 120 A 140 160 180 200 220

Fig. 2. Low-lying quadrupole vibration energies /i@, vs
particle number A. Heavy full dots are the experimental
data [15] for almost spherical nuclei with quadrupole
deformations g,<0.05, p,=0.16 fm~, b, =16 MeV,

b,=18 MeV, K=220 MeV, b =60 MeV, other

sym

notations are explained in the text.

More complete extended Thomas - Fermi
approach with accounting for the surface and
curvature corrections are shown as ETF solid curve.
Comparison with experimental data, except for
several doubly-closed-shell (magic) nuclei, is
essentially improved by these corrections mainly for
smaller particle numbers A. The reason of better

10

agreement of the ETF approach, as compared to the
HD model, vs experimental data for non-magic
nuclei can be explained by significantly larger ETF
inertia than that of the irrotational flow for enough
heavy nuclei. As seen from this Figure, the explicit
analytical asymptotics [ETFA, dashed, Eq. (11)]
with the surface and curvature corrections
originating from the ETF particle number
conservation relation (7) is good enough for larger
particle numbers.

Figs. 3 and 4 show the semiclassical reduced

probability (14) and the lifetime t, o 1/B(EL) @

as compared with experimental data versus particle
number for the quadrupole collective transitions
(L =2) in the low-lying energy region for the same

(almost spherical) nuclei. As displayed in these
Figures, one has a rather good agreement between
the averaged semiclassical reduced transition
probabilities (lifetimes) and a global behavior of
their experimental data (besides of magic nuclei).
The surface and the curvature correction effects
improve much our semiclassical smooth A -
systematic results toward the allowance data. The
agreement between the full ETF (thin solid) and the
analytical asymptotics ETFA (thick dashed) for
larger particle numbers with the dominating surface
and curvature corrections is really perfect. As seen

from comparison of the ETF" and ETF curves in
Fig.3, one may really neglect the friction

R, FU A N PR S PRSIV oAU S | Y Al

PR .

10 F—

A

\
Y

ETF = oo ETF*

C©°
20 40 60 80 100 120 o 140 160 180 200 220

Fig. 3. The B(E2) for

transition 0° — 2" in standart units of &> b’ ; full heavy

points are experimental data [15]; ETF* accounts for the
friction correction [9]; other notations are the same as in
Fig. 2.

reduced probabilities the

Fig. 5 shows agreement of the EWSR
contribution (12) of the low-lying quadrupole state
into the total value with experimental data [15] by
the same reason of enhancement of the inertia with
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respect to the irrotational flow value, especially
better with accounting for surface and curvature

F o _at ~ a1 TmYYrom - 1ot 1

100
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t25 ps

0,
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~
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120 A 140 160 180 200

Fig. 4. The lifetime t, vs particle number A. Notations
are the same as in Figs. 2 and 3.
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Fig. 5. The quadrupole EWSR S, in units of S, , see
(12); haw,B(E2) with the
experimental vibration energies %@, and reduced
B(E2) of [15] shown in Figs. 2 and 3,

respectively; ETFA is given by Eq. (13); other notations
are the same as in Fig. 2 - 4.

full heavy points are

probabilities

Conclusions

For low-lying nuclear collective excitations
within a few lowest orders of the EGA in #
corresponding to the extended Thomas - Fermi
approximation, we derived smooth inertia for the
vibrations near a spherical shape of a mean edge-like

field. The consistent collective ETF inertia is
significantly larger than that of irrotational flow.
Smooth low-lying collective vibration energies in
almost spherical (besides of doubly-closed-shell)
nuclei might roughly satisfy the A™' particle-number
dependence with the A’ surface and A"
curvature corrections for heavy enough nuclei, in
contrast to the mainly A™? behavior predicted by
the HD model and A" dependence obtained in [8].
The smooth ETF energies, transition probabilities
and EWSR differ from the statistically averaged
experimental data for quadrupole [15] and octupole
[16] low-lying states because of non-linear shell
effects in the transport coefficients and coupling
constants, see [11]. The quantum surface and
curvature 7 -corrections, coming mainly from the
ETF dependence of the semiclassical parameter
ke R on particle number A, are important in

comparison with experimental data for the
quadrupole and the octupole vibration energies and
their EWSR contributions [9]. As the ETF inertia

M is significantly larger than M,  for the

irrotational hydrodynamic flow, our vibration
energies, the reduced transition probabilities and
contributions into the EWSR are basically in much
better agreement with their experimental data than
those found in the HD approach for large enough
(non magic) particle numbers. We proved
semiclassically that the reduced transition
probabilities in Weisskopf units for the low-lying
vibration excitations are large sufficiently in order to
refer them to the collective states. We found simple
analytical asymptotics for the vibration energies
(11), the reduced probabilities (14) and the EWSR
(13) with explicit A-dependence for larger particle
numbers A in good agreement with more complete
ETF approach. As shown in [11], the shell
corrections to the inertia and the stiffness improve
agreement with the experimental data.
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KBA3IKJIACUYHE HABJWXEHHSA J1JIsd HA3BKOJEXAUYNX
KOJIEKTUBHHUX 3BYJ/XKEHb B SA/IPAX

A. M. I'kedincbkmii, O.I'. Marnep, C. M. ®eaoTkin

OTpuMaHO BHpa3 Ui MacoBOI'O IIapaMeTpa y BHIAAKY HU3bKOJEKAuMX KOJIEKTHBHUX 30Y/KEHb Yy paMKax
KBa3ikjacuuHoOro HaOmmkeHHs ['yTiBuuepa 1o oxHo4acTHHKOBOI (yHKHIl I'piHa B HaliHWXYOMY MOpSAKY HO 7.
IMopaxoBani eneprii 30ymIKeHb, MPHUBEICHI WMOBIPHOCTI €JIEKTPOMATHITHHX IEPEXOIIB 1 EHEpreTHYHO 3Ba)KCHE
HPaBUIIO CYM Y3TOJDKYIOTBCS 3 EKCIICPUMEHTAIbHUMU JaHUMH.

KBA3UKJ/IIACCUYECKOE NMPUBJIWXEHUE VIS HU3KOJIEXAIIXX
KOJUIEKTUBHBIX BO3BYKJIEHUI B SIJIPAX

A. H. I'keOnnckuii, A.I'. Marnep, C. H. ®enoTknn

[Moxy4deHo BbIpaxeHHE JUII MAacCOBOTO NapaMeTpa B Cilydae HU3KOJIEKAIINX KOJUIEKTHUBHBIX BO30YKAEHUH B paMKax
KBa3WKJIACCHUECKOTO MPHOMIDKeHHs [ yTUBWIIepa K OAHOYACTHYHON (QyHKIMK ['prHA B HIDKaiimem mopsake mo 7.
Paccunrannble SHEpPriuM BO30YKACHHS, IPUBEICHHBIE BEPOATHOCTU AJIECKTPOMArHUTHBIX MEPEXOJ0B U 3HEPreTHYECKU
B3BEIICHHOE MPABUJIO CYMM HAaXOIATCS B COTTIACHH C SKCHEPHUMEHTAIBHBIMH JAHHBIMH.
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