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Eccentric distribution of stiffness, damping, and mass of a structure, and spatially

non-uniform ground motion input to a long or large base mat of a structure are

well-known causes of torsional response. We have discovered that the torque generated

by horizontal displacement and perpendicular inertial force, which we call the Q-∆ effect,

can be a cause of torsional response. We formulated the equation of motion of a single

finite-size mass-linear elastic shear and torsion spring model and clarified the resonance

condition of the torsional response to sinusoidal ground acceleration. Time-history

response analysis verified that the torsional response forms beat and the maximum

torsional response of the simulation result agrees with that theoretically predicted. Further

time-history response analysis conducted of white noise ground acceleration showed

that even one-directional white noise ground acceleration can induce torsional response

in a linear elastic system without any structural eccentricity.

Keywords: torsional response, Q-∆ effect, geometric nonlinearity, large displacement, lateral force, high-rise

building

INTRODUCTION

Although torsional response induced by seismic ground motion has been investigated for more
than 60 years, several factors still remain unclarified (Anagnostopoulos et al., 2015). As causes
of the torsional response of buildings, researchers have studied eccentric distribution of stiffness
(Georgoussis, 2009; Stathi et al., 2015), damping (Goel, 2000; Lin and Tsai, 2007), and the
mass of a structure (Chandler and Hutchinson, 1986), in addition to spatially non-uniform or
torsional groundmotion input (De la Llera and Chopra, 1994; Heredia-Zavoni and Barranco, 1996;
Basu and Giri, 2015; Falamarz-Sheikhabadi and Ghafory-Ashtiany, 2015; Gičev et al., 2015). A
comprehensive review article has also been written by Anagnostopoulos et al. (2015). Therefore,
their target buildings in general have an irregular, asymmetric structural property for the former
perspective, which includes accidental eccentricity due to non-structural component or structural
damage, and a long or large base mat that can incur phase difference of input ground motion for
the latter. A few studies have also been conducted on the torsional response of symmetric buildings.
For example, Tso (1975), Antonelli et al. (1981), and Pekau and Syamal (1984) studied the induction
of torsional motion in symmetric structures with nonlinearity in the force-displacement relation of
the lateral resisting elements. Cao et al. (2016, 2017) investigated the effects of near-fault pulse-like
ground motions using a soil-foundation-structure system. Karayannis and Naoum (2018) studied
an exceptional cause, asymmetric pounding with an adjacent building.
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On the other hand, there are different powerful streams of
studies on the P-∆ effect and rocking vibration (e.g., Wynhoven
and Adams, 1972; Jennings and Bielak, 1973; Veletsos and
Meek, 1974; Rutenberg, 1982; Akiyama, 1984; Bernal, 1987;
Wilson and Habibullah, 1987; Uetani and Tagawa, 1992; MacRae,
1994; Tremblay et al., 1999; Aschheim and Hernández-Montes,
2003; Moghadam and Aziminejad, 2004; Humar et al., 2006;
Deierlein et al., 2010; Yu et al., 2015). The P-∆ effect is a non-
negligible overturning moment generated by dead loads and
large lateral displacement. Rocking vibration is also induced by
the overturning moment owing to the horizontal seismic force
(inertial force) and the large height from the foundation to
the point where the force is applied, in addition to foundation
rocking caused by soil–structure interaction and/or incoherent
ground motion. Flores et al. (2018) studied the amplification of
torsional response due to the geometric nonlinearity effect of the
gravity load.

From this moment-generating mechanism, we can infer
torsional moment induction due to large lateral displacement
and perpendicular inertial force (Figure 1). Although it has never
been given significant focus, this effect might cause serious
response amplification for high-rise buildings, which have large
displacement under seismic excitation. In particular, as Japan
has a high risk of large-magnitude earthquakes, which tend to
generate broadband long-duration ground motion, it is crucial
that the resonance of high-rise buildings be considered.

In this paper, we investigate this overlooked phenomenon,
namely the Q-∆ effect, using a single-mass elastic model.
The Q represents lateral force, which is querkraft in German,
as conventionally used in mechanics. First, we formulate the
equation of motion to model this phenomenon. Then, we derive
the theoretical solution of response under sinusoidal wave input
and clarify the condition that large torsional response appears.
Finally, based on the condition, we demonstrate that single-
directional white noise ground motion causes resonance of
torsional mode using time-history response analysis.

FIGURE 1 | Torque induced by lateral displacement and perpendicular inertial

force.

DERIVATION OF CONDITIONS TO INDUCE
TORSIONAL RESPONSE

Model and Equation of Motion
To investigate the fundamental principle of torsional response
induction due to horizontal displacement and perpendicular
inertial force, we utilize a single finite-size mass-linear elastic
shear and torsion spring and dampermodel, which is an idealized
model of a building, and derive the equation of motion under
ground excitation. Here, we assume the linear elastic material
property of columns, which is represented by a shear and
torsion spring and damper, and geometric nonlinearity, i.e., large
displacement of a floor slab, which is represented by a finite-size
mass. Figure 2 shows the model and the displacement variables
used. Each rectangle represents a floor slab with a mass m and
moment of inertia I. The horizontal displacement of the floor
slab is represented by x and y in the x- and y-axis directions,
respectively, and the rotation angle θ around the z axis in the anti-
clockwise direction from the x axis. A column with horizontal
shear stiffness kx and ky in the x- and y-axis direction, and
kθ for rotation around the z axis, connects the centroid G of
the floor slab to the point O of the foundation on the ground

surface. Similarly, we consider damping cx, cy, and cθ between
the floor slab and ground. That is, we model the story stiffness
and damping with linear springs and viscous dampers of three
degrees of freedom. Without loss of generality, we assume kx ≥
ky. The system has the initial condition (x, y, θ) = (0, 0, 0) and
(ẋ, ẏ, θ̇) = (0, 0, 0) at time t = 0 and is subject to ground
acceleration (ẍ0, ÿ0, 0).

With respect to translational displacements, the equation of
motion is described as follows:

−m (ẍ0 + ẍ) − cxẋ− kxx = 0 (1)

and −m
(

ÿ0 + ÿ
)

− cyẏ− kyy = 0 (2)

An inertial force perpendicular to the horizontal displacement
generates a torsional moment M and its reaction moment −M
at ground (foundation of the structure) point O. We define M
taking a positive value counterclockwise around the z axis. M is
calculated as follows:

M = m (ẍ0 + ẍ) y−m
(

ÿ0 + ÿ
)

x (3)

Alternatively, we can calculate the moment M in another
manner. Horizontal reaction forces Nx and Ny in the x and y
direction, which are supporting the column at point O, satisfy
equilibrium with the restoring and damping forces of a column;

Nx = −cxẋ− kxx and Ny = −cyẏ− k
y
y (4a, b)

Note that these reaction forces are the sum of non-conservative
and conservative forces. These reaction forces at point O generate
torsional momentM around the centroid G of the slab:

M = Nxy− Nyx =
(

−cxẋ− kxx
)

y−
(

−cyẏ− kyy
)

x

= −cxẋy+ cyẏx−
(

kx − ky
)

xy
(5)

If Equations (1) and (2) are substituted into Equation (5), we can
confirm that Equation (5) is identical to Equation (3).
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FIGURE 2 | A single finite-size mass–linear elastic shear and torsion spring model. (A) Representative linear elastic shear and torsion spring, (B) Displacement

variables.

Using moment M, the equation of motion in the rotational
direction is given as follows:

− Iθ̈ − cθ θ̇ − kθθ +M = 0 (6)

We can summarize the equation of motion in matrices and
vectors:





m 0 0
0 m 0
0 0 I











ẍ
ÿ

θ̈







+





cx 0 0
0 cy 0
0 0 cθ











ẋ
ẏ

θ̇







+





kx 0 0
0 ky 0
0 0 kθ











x
y
θ







=







−mẍ0
−mÿ0
M







(7)

In the above equation, torsional moment (torque) generated by
the inertial force is in the right side and we can regard this
torque as an external moment of seismic force and perpendicular
displacement.

The equations of motion are transformed into the following
vibration equations:

ẍ+ 2ζxωxẋ+ ω2
xx = −ẍ0, (8)

ÿ+ 2ζyωyẏ+ ω2
yy = −ÿ0, (9)

and θ̈ + 2ζθωθ θ̇ + ω2
θθ

=
M

I

=
(ẍ0 + ẍ) y−

(

ÿ0 + ÿ
)

x

r2θ
(10)

=
−2ζxωxẋy+ 2ζyωy

ẏx−
(

ω2
x − ω2

y

)

xy

r2θ

where the natural circular frequencies

ωx =
√

kx

m
, ωy =

√

ky

m
, and ωθ =

√

kθ

m
(11a, b, c)

damping factors

ζx =
cx

2ωxm
=

cx

2
√
kxm

, ζ y =
cy

2ωym
=

cy

2
√

kym
,
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and ζθ =
cθ

2ωθ I
=

cθ

2
√
kθ I

(12a, b, c)

and radius of gyration

rθ =
√

I

m
=

√

L2x + L2y

12
(13)

Lx and Ly represent the length of the floor slab in the x and
y directions, respectively, and we assume the slab has uniform
density. Because we assume kx ≥ ky, natural frequencies in
translational modes have the relation ωx ≥ ωy.

Steady-State Response to Unit Complex
Ground Acceleration
We input the following unit complex ground acceleration into
the target system:

ẍ0 = eipxt and ÿ0 = eipyt (14a, b)

where i is an imaginary unit, and px and py are circular
frequencies of ground acceleration in the x and y directions,
respectively. The vibrations of equations in the translational
directions are mutually independent and we first focus on steady-
state response in the x direction. The solution to response x can
be assumed in the following form:

x = Xeipxt (15)

where X represents the complex amplitude of the steady-state
response in the x direction. By substituting this equation into
Equation (8), we obtain

(

−p2x + 2ipxζxωx + ω2
x

)

Xeipxt = −eipxt (16)

Therefore, complex amplitude X is given by

X =
−1

−p2x + 2ipxζxωx + ω2
x

= |X| eiφx (17)

where |X| and φx represent the absolute value and phase of X:

|X| =
1

p2x

(

px
ωx

)2

√

{

1−
(

px
ωx

)2
}2

+ 4ζ 2
x

(

px
ωx

)2

(18)

and φx = arg

[

−
{

1−
(

px

ωx

)2
}

+ 2iζ x

(

px

ωx

)

]

(19)

In the same manner, the steady-state response in the y direction
is obtained as follows:

y = Yeipyt , (20)

Y = |Y| eiφy , (21)

|Y| =
1

p2y

(

py
ωy

)2

√

{

1−
(

py
ωy

)2
}2

+ 4ζ 2
y

(

py
ωy

)2

, (22)

and φy = arg

[

−
{

1−
(

py

ωy

)2
}

+ 2iζ y

(

py

ωy

)

]

(23)

With respect to the rotational direction, we first calculate M/I in
Equation (10).

M

I
=

(ẍ0 + ẍ) y−
(

ÿ0 + ÿ
)

x

r2θ

=

(

−eipxt − p2xXe
ipxt

)

Yeipyt −
(

−eipyt−p2yYe
ipyt

)

Xeipxt

r2θ

=

{

−
(

1+ p2xX
)

Y +
(

1+ p2yY
)

X
}

e
i
(

px+py

)

t

r2θ

=

{

X − Y −
(

p2x − p2y

)

XY
}

e
i
(

px+py

)

t

r2θ
(24)

Alternatively, we can obtain a simpler expression using Equation
(10):

M

I
=

−2ζxωxẋy+ 2ζyωy
ẏx−

(

ω2
x − ω2

y

)

xy

r2θ

=
−2ζxωxipxXe

ipxtYeipyt+2ζyωy
ipyYe

ipytXeipxt−(ω2
x−ω2

y )Xe
ipxtYeipyt

r2θ

=

{

−2i(ζ xωxpx − ζyωy
py)− (ω2

x − ω2
y )

}

XYe
i
(

px+py

)

t

r2θ

=|A| eiφaXYe
i
(

px+py

)

t

=XYAe
i
(

px+py

)

t
(25)

where

|A| =

√

(

ω2
x − ω2

y

)2
+ 4

(

ζxωxpx − ζyωy
py

)2

r2θ
, (26)

φa = arg [−
(

ω2
x − ω2

y

)

− 2i(ζ xωxpx − ζyωy
py)],

and A = |A| eiφa , (27a, b)

By substituting this solution into the rotational vibration
Equation (10),

θ̈ + 2ζθωθ θ̇ + ω2
θθ = XYAe

i
(

px+py

)

t
(28)

Because the system is linear also in the rotational direction,
the steady-state rotational response under complex ground
acceleration with a circular frequency of px + py can be solved

as follows:

θ = XYAΘe
i
(

px+py

)

t = Se
i
(

px+py

)

t
(29)
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where

Θ = |Θ| eiφθ , (30)

|Θ| =
1

(

px + py
)2

(

px + py
ωθ

)2

√

{

1−
(

px + py
ωθ

)2
}2

+ 4ζ 2
θ

(

px + py
ωθ

)2

,

(31)

φθ = arg

[

−
{

1−
(

px + py

ωθ

)2
}

+ 2iζ θ

(

px + py

ωθ

)

]

, (32)

S = |S| eiφ = XYAΘ , (33)

|S| = |X||Y||A||Θ|, (34)

and

φ = φx + φy + φa + φθ (35)

From this solution, it is clear that the torsional response has an
amplitude proportional to that of the translational responses in
two orthogonal directions and has a circular frequency of px + py;

i.e., the summation of circular frequencies of ground acceleration
in two orthogonal directions.

Derivation of Torsional Mode Resonance
Condition Under Unit Complex Ground
Acceleration
Suppose that the damping factors ζx and ζy are small, resonance
of translational responses occur when ground acceleration
circular frequency is identical to natural circular frequency:

px = ωx and py = ωy (36a, b)

In this case, the response amplitudes are approximated as follows:

|X| ≈
1

p2x

1

2ζx
and |Y| ≈

1

p2y

1

2ζy
(37a, b)

Equation (26) is transformed as follows:

|A| =

√

(

ω2
x − ω2

y

)2
+ 4

(

ζxω2
x − ζyω

2
y

)2

r2θ
(38)

Now, we introduce an assumption that damping factors are the
same ζ in three directions:

ζx = ζy = ζθ = ζ (39)

Then, Equation (38) is transformed into

|A| =

√

(

ω2
x − ω2

y

)2
+ 4ζ 2

(

ω2
x − ω2

y

)2

r2θ
=

√

1+ 4ζ 2 |ω2
x −ω2

y |
r2θ

(40)

With respect to torsional response, Equations (31), (36a,b) give
the resonance condition:

px + py = ωx + ωy = ω
θ

(41)

In this case, |Θ| is approximated as follows:

|Θ| ≈
1

(

px + py
)2

1

2ζθ

=
1

(

ωx + ωy

)2

1

2ζ
(42)

Finally, the torsional response amplitude |S| in the resonance
state is given by

|S| = |X| |Y| |A| |Θ|

=
1

8ζ 3ω2
xω

2
y

(

ωx + ωy

)2

√

1+ 4ζ 2
∣

∣

∣
ω2
x − ω2

y

∣

∣

∣

r2θ

=
1

8r2θ

√

1+ 4ζ 2

ζ 3

∣

∣ωx − ωy

∣

∣

ω2
xω

2
y(ωx + ωy)

(43)

It should be noted that, when a system has the same natural
circular frequency in two translational directions, i.e., ωx = ωy,
torsional response is not induced because |S| is zero.

If the resonance condition is rewritten by using system natural
periods Tx,Ty,Tθ and ground motion period T0x,T0y,

T0x = Tx and T0y = Ty (44a, b)

1

T0x
+

1

T0y
=

1

Tx
+

1

Ty
=

1

Tθ

(45)

where

Tx =
2π

ωx
, Ty =

2π

ωy
, Tθ =

2π

ωθ

, T0x =
2π

ω0x
, and T0y =

2π

ω0y

(46a–e)
From Equation (45), we obtain

Tθ =
TxTy

Tx + Ty
(47)

Steady-State Response to Unit Sinusoidal
Ground Acceleration
Next, we consider unit sinusoidal ground acceleration. The input
ground motions are defined as follows:

ẍ0 = sin pxt =
eipxt − e−ipxt

2i
(48)

ÿ0 = sin pyt =
eipyt − e−ipyt

2i
(49)

where px and py are the circular frequency of the input sine waves.
Steady-state translational responses are derived from the result of
the unit complex ground acceleration case:

x = Im
(

Xeipxt
)

= |X| sin (pxt + φx) = |X|
ei(pxt+φx) − e−i(pxt+φx)

2i
(50)

y = Im
(

Yeipyt
)

= |Y| sin (pyt + φy) = |Y|
e
i(pyt+φy) − e

−i(pyt+φy)

2i

(51)
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By taking the time derivatives of these equations, we obtain

ẋ = |X| ipx
ei(pxt+φx) + e−i(pxt+φx)

2i
(52)

ẏ = |Y| ipy
e
i(pyt+φy) + e

−i(pyt+φy)

2i
(53)

Using these equations, we can calculate the following products:

ẋy = −
|X| |Y| ipx

4

{

ei(pxt+φx) + e−i(pxt+φx)
} {

e
i(pyt+φy) − e

−i(pyt+φy)
}

=
|X| |Y| ipx

4

[

−ei{(px+py)t+(φx+φy)} + e−i{(px+py)t+(φx+φy)}

+ ei{(px−py)t+(φx−φy)} − e−i{(px−py)t+(φx−φy)}
]

(54)

ẏx =
|X| |Y| ipy

4

[

−ei{(px+py)t+(φx+φy)} + e−i{(px+py)t+(φx+φy)}

− ei{(px−py)t+(φx−φy)} + e−i{(px−py)t+(φx−φy)}
]

(55)

xy =
|X| |Y|

4

[

−ei{(px+py)t+(φx+φy)} − e−i{(px+py)t+(φx+φy)}

+ei{(px−py)t+(φx−φy)} + e−i{(px−py)t+(φx−φy)}
]

(56)

The right side of term M/I in Equation (10) is then calculated as
follows:

M

I
=

−2ζxωxẋy+ 2ζyωy
ẏx−

(

ω2
x − ω2

y

)

xy

r2θ

=
|X| |Y|
4r2θ

[{2i(ζ xωxpx − ζyωy
py)+

(

ω2
x − ω2

y

)

}ei{(px+py)t+(φx+φy)}

+
{

−2i(ζ xωxpx − ζyωy
py)+

(

ω2
x − ω2

y

)}

ei{(px+py)t+(φx+φy)}

+
{

−2i(ζ xωxpx + ζyωy
py)−

(

ω2
x − ω2

y

)}

ei{(px−py)t+(φx−φy)}

+
{

2i(ζ xωxpx + ζyωy
py)−

(

ω2
x − ω2

y

)}

ei{(px−py)t+(φx−φy)}]

=
|X| |Y|

4

[

|A1|
[

ei{(px+py)t+(φx+φy+φa1)} + ei{(px+py)t+(φx+φy+φa1)}
]

+ |A2|
[

ei{(px−py)t+(φx−φy+φa2)} + ei{(px−py)t+(φx−φy+φa2)}
]]

(57)

=
|X| |Y|

2

[

|A1| cos {(px + py)t + (φx + φy + φa1)}

+ |A2| cos {(px − py)t + (φx − φy + φa2)}
]

= Re

[

|X| |Y|
2

[

|A1| ei{(px+py)t+(φx+φy+φa1)}

+ |A2| ei{(px−py)t+(φx−φy+φa2)}
]]

= Re

[

XY

2

{

A1e
i (px+py)t+A2e

i (px−py)t
}

]

where

|A1| =

√

(

ω2
x − ω2

y

)2
+ 4

(

ζxωxpx − ζyωy
py

)2

r2θ
, (58)

φa1 = arg [−
(

ω2
x − ω2

y

)

− 2i(ζ xωxpx − ζyωy
py)], (59)

|A2| =

√

(

ω2
x − ω2

y

)2
+ 4

(

ζxωxpx + ζyωy
py

)2

r2θ
, (60)

φa2 = arg [
(

ω2
x − ω2

y

)

+ 2i(ζ xωxpx + ζyωy
py)], (61)

A1 = |A1| eiφa1 , (62)

and A2 = |A2| eiφa2 (63)

Therefore, the rotational vibration equation is given by

θ̈ + 2ζθωθ θ̇ + ω2
θθ

=
|X| |Y|

2

[

|A1| cos {(px + py)t + (φx + φy + φa1)}

+ |A2| cos {(px − py)t + (φx − φy + φa2)}
]

= Re

[

XY

2
(A1e

i (px+py)t+A2e
i (px−py)t)

]

(64)

Because the right side of Equation (64) is the real part of the
summation of the complex external forces with two different
circular frequencies, we can derive the torsional response in
the same manner as in section Steady-State Response to Unit
Complex Ground Acceleration:

θ = Re[S1e
i
(

px+py

)

t + S2e
i
(

px−py

)

t
]

= |S1| cos {
(

px + py
)

t + φ1} + |S2| cos {
(

px − py
)

t + φ2}
(65)

where

S1 = |S1| eiφ1 =
XYA1Θ1

2
, (66)

|S1| =
|X| |Y| |A1| |Θ1|

2
, (67)

φ1 = φx + φy + φa1 + φθ1, (68)

Θ1 = |Θ1| eiφθ1 , (69)

|Θ1| =
1

(

px + py
)2

(

px + py
ωθ

)2

√

{

1−
(

px + py
ωθ

)2
}2

+ 4ζ 2
θ

(

px + py
ωθ

)2

,(70)

φθ1 = arg

[

−
{

1−
(

px + py

ωθ

)2
}

+ 2iζ θ

(

px + py

ωθ

)

]

, (71)

S2 = |S2| eiφ2 =
XYA2Θ2

2
, (72)

|S2| =
|X| |Y| |A2| |Θ2|

2
, (73)

φ2 = φx + φy + φa2 + φθ2, (74)

Θ2 = |Θ2| eiφθ2 , (75)

|Θ2| =
1

(

px − py
)2

(

px − py
ωθ

)2

√

{

1−
(

px − py
ωθ

)2
}2

+ 4ζ 2
θ

(

px − py
ωθ

)2

,(76)

and φθ2 = arg

[

−
{

1−
(

px − py

ωθ

)2
}

+ 2iζ θ

(

px − py

ωθ

)

]

(77)
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Equation (65) can be described in a different way:

θ = Re

[

XY

2

{

A1Θ1e
i
(

px+py

)

t + A2Θ2e
i
(

px−py

)

t
}]

=
|X| |Y|

2

[

|A1| |Θ1| cos{
(

px + py
)

t + φ1}

+ |A2| |Θ2| cos{
(

px − py
)

t + φ2}
]

(78)

We observe that torsional response is proportional to the
amplitude of the translational response in two orthogonal
directions and its form is the superposition of two sine waves
with circular frequencies px + py and px − py. This is easily
understood because the ground acceleration consists of complex
ground accelerations with circular frequencies of px and −px in
the x direction and py and −py in the y direction. Further, on
the basis of Equation (29), the torsional response is given by
the combination of two circular frequencies in the orthogonal
directions; i.e.,±(px + py) and±(px − py).

Derivation of Torsional Mode Resonance
Condition Under Sinusoidal Ground
Acceleration
To determine the condition of torsional mode resonance under
sinusoidal ground acceleration, we assume that the damping
factors are small and the translational mode resonance is
occurring in two directions owing to the ground acceleration
frequency being identical to the natural circular frequency:

px = ωx and py = ωy (79a, b)

The amplitudes of the translational responses can be
approximated as follows:

|X| ≈
1

p2x

1

2ζx
and |Y| ≈

1

p2y

1

2ζy
. (80a, b)

Using the following formula:

a1 cos (ω1t + φ1)+ a2 cos (ω2t + φ2)

= a1 cos (ω1t + φ1)

+a2 cos[(ω1t + φ1) − {(ω1t + φ1) − (ω2t + φ2)}]
= [a1 + a2 cos {(ω1t + φ1) − (ω2t + φ2)}] cos (ω1t + φ1)

+a2 sin {(ω1t + φ1) − (ω2t + φ2)} sin (ω1t + φ1)

=
√

a21 + a22 + 2a1a2 cos {(ω1 − ω2) t + φ1 − φ2}
× cos (ω1t + φ1 + α) (81)

where α is an additional phase introduced by calculation of
trigonometric functions, the right side of Equation (78) can be
transformed as follows:

|A1| |Θ1| cos {
(

px + py
)

t + φ1} + |A2| |Θ2| cos {
(

px − py
)

t + φ2}

=
√

|A1|2 |Θ1|2 + |A2|2 |Θ2|2 + 2 |A1| |A2| |Θ1| |Θ2| cos
(

2pyt + φ1 − φ2

)

× cos{
(

px + py
)

t + φ1 + α} (82)

The result implies that the torsional response is a beat, of which
amplitude changes periodically. The maximum amplitude is
estimated by

|θmax| = |S1| + |S2| =
|X| |Y|

2
(|A1| |Θ1| + |A2| |Θ2|) (83)

Here, we introduce another assumption that the damping factors
are identical:

ζx = ζy = ζθ = ζ (84)

Then, Equations (58) and (60) are simplified as follows:

|A1| =

√

(

ω2
x − ω2

y

)2
+ 4ζ 2

(

ω2
x − ω2

y

)2

r2θ

=

√

1+ 4ζ 2
∣

∣

∣
ω2
x − ω2

y

∣

∣

∣

r2θ
(85)

and |A2| =

√

(

ω2
x − ω2

y

)2
+ 4ζ 2

(

ω2
x + ω2

y

)2

r2θ
(86)

This result suggests that large torsional response occurs when
the difference between two natural frequencies of orthogonal
translational modes is large. In addition, |A1| < |A2| because
ωx > 0 and ωy > 0.

Equations (70) and (76) with respect to |Θ1| and |Θ2| give
alternative conditions of torsional mode resonance as follows:

ωθ = px + py = ωx + ωy = ω
θ+

or ωθ = px − py = ωx − ωy = ω
θ− (87a, b)

Equations (87a,b) correspond to the resonance conditions of
the first and second terms in Equation (83), respectively. To
distinguish these two natural circular frequencies to cause
resonance, we name the former and latter ωθ+ and ωθ−,
respectively.

If the condition is rewritten using natural periods,











T0x = Tx

T0y = Ty

Tθ = Tθ+ = TxTy
Tx+Ty

or Tθ = Tθ− = TxTy
−Tx+Ty

(88a–d)

where

Tx =
2π

ωx
, Ty =

2π

ωy
, Tθ =

2π

ωθ

, T0x =
2π

ω0x
, and T0y =

2π

ω0y

(89a–e)

VERIFICATION BASED ON NUMERICAL
SIMULATION

Simulation of Response to Sinusoidal
Ground Acceleration
Large torsional response due to resonance is predicted when
the natural period of torsional mode satisfies Equations (88c)
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FIGURE 3 | Relation between the maximum displacement of torsional

response |θmax| and the natural period of torsional mode Tθ .

or (88d) and two orthogonal translational modes also cause
resonance. We verify this prediction via numerical simulation
below.

We use a model with Tx = T0x = 3.00 s, Ty = T0y =
4.00 s, ζ = 2.00 × 10−2, and rθ = 20.0 m. The estimated
maximum torsional response of Equation (83) can be rewritten
as a function of Tθ = 2π/ωθ :

|θmax (Tθ ) | =
|X| |Y|

2
(|A1|

∣

∣Θ1(Tθ )
∣

∣ + |A2|
∣

∣Θ2(Tθ )
∣

∣) (90)

Because of the assumption that translational modes cause
resonance, the values of |X| and |Y| are calculated using
Equations (80a,b). Equations (85) and (86) indicate that
|A1| and |A2| are independent of ωθ ; i.e., Tθ . Therefore,
the relation between the estimated maximum displacement of
torsional response |θmax| and natural period of torsional mode
Tθ can be depicted as the green curve in Figure 3.

From Equations (88c,d), the torsional response causes
resonance when Tθ = Tθ+ = 1.71 s or Tθ− = 12.0 s. Therefore,
the condition Equation (88d) gives quite a larger response.
However, when looking at a database of natural periods of actual
existing buildings (Architectural Institute of Japan., 2000), the
natural period of torsional mode, Tθ , is generally smaller than
that of the translational modes, Tx and Ty. To check the detail
of the period range of 0 to 4 s, Figure 4 shows a zoomed-up
graph. At this range, condition (88c) gives the largest maximum
response.

The time-history analysis of vibration Equations (8–10) are
conducted by using the Newmark β method with the parameter
β = 1/6 and time step interval 1t = 0.01 s. We first
conduct time integration of Equations (8, 9). Then, the torsional
response is calculated by using the obtained translational
responses.

FIGURE 4 | Zoomed-up graph for the range 0 s ≤ Tθ ≤ 4 s.

TABLE 1 | Parameter values for numerical simulation.

Parameter Value Parameter Value

Tx 3.00 s A0x 1.00 m/s2

Ty 4.00 s A0y 1.00 m/s2

Tθ 1.71 s T0x 3.00 s

ζ 2.00× 10−2 T0y 4.00 s

rθ 20.0m

Input ground accelerations are given by the following sine
waves:

ẍ0 = A0x sin

(

2π

T0x
t

)

and ÿ0 = A0y sin

(

2π

T0y
t

)

(91a, b)

The parameters of the target model and ground accelerations
are shown in Table 1, in which Tθ is determined based on the
resonance condition of torsional mode, Equations (88a–c).

Figure 5A shows input ground motion and Figure 5B the
simulated displacement response. The response gradually shifts
to a steady state. We can verify that the torsional response (red
line in Figures 5B,C) shapes a beat and the maximum response
matches the theoretically predicted value of 15.4◦ shown in
Figure 4.

To examine the validity of Equation (90), other models
with a different Tθ value were simulated and the maximum
responses in a duration of 300 s recorded. The results for Tθ ∈
[0.5 s, 1 s, 1.5 s, . . . , 20 s] are shown by blue points in Figure 3.
Similarly, the results for Tθ ∈ [0.1 s, 0.2 s, 0.3 s, . . . , 4 s] are
shown in Figure 4. The numerical simulation results are virtually
identical to the predicted values.

Simulation of Response to White Noise
Ground Acceleration
Seismic ground motion is often modeled by filtered white
noise. White noise, which has a flat power spectrum over all
frequencies, can excite translational modes with any natural
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FIGURE 5 | Time-history analysis result of displacement response to sinusoidal ground acceleration. (A) Input ground motion, (B) Displacement response, (C)

Displacement response (zoomed-up graph).
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FIGURE 6 | Time-history analysis result of displacement response to uncorrelated two-directional white noise ground acceleration. (A) Input ground acceleration (B)

Displacement response.

frequency. Therefore, it could excite two orthogonal translational
modes with different natural frequencies and consequently could
induce torsional response. We first input uncorrelated white
noise ground accelerations in the x and y directions, as shown in
Figure 6A. The power spectrum density of both accelerations is
Sx0 = Sy0 = 1.00 m2/s3. Figure 6B shows the simulation results.
It can be seen that the torsional response (red line) is induced by
uncorrelated two-directional white noise ground acceleration.

Next, we input fully correlated white noise ground
accelerations in the x and y directions in the same manner,
as shown in Figure 7A. This is equivalent to inputting one-
directional white noise ground acceleration in the 45◦ direction
from the x axis. The power spectrum density of the accelerations
is Sx0 = Sy0 = 0.707 m2/s3; i.e., 1.00 m2/s3 in the excitation
direction. The result is shown in Figure 7B, where it can
be seen that the maximum torsional response exceeds 2.0◦

under the used input ground acceleration. We thus confirm
that even one-directional ground motion can induce the
torsional response of a symmetric structure without any
eccentricity.

CONCLUSIONS

In past studies, researchers hypothesized that torsional response
is induced by eccentric distribution of stiffness, damping, or mass
of a structure, or spatially non-uniform ground motion input
to the long or large base mat of a structure. In this paper, we
showed that the torque generated by horizontal displacement
and perpendicular inertial force, which we call the Q-∆ effect,
has an overlooked cause of torsional response. We formulated
the equation of motion of a single finite-size mass–linear elastic
shear and torsion spring and dampermodel, which is an idealized
model of a building and revealed the resonance condition of
torsional response to sinusoidal ground acceleration. Time-
history response analysis was conducted and we verified that
the torsional response forms a beat and the maximum torsional
response of the simulation result agrees with that theoretically
predicted. The model used had natural periods of 3.00 s and
4.00 s for the translational modes and 1.71 s for the torsional
mode, which was predicted to cause torsional resonance, with
2% damping. The maximum torsional response reached 15.4◦
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FIGURE 7 | Time-history analysis result of displacement response to one-directional (45◦ direction from the x axis) white noise ground acceleration. (A) Input ground

acceleration, (B) Displacement response.

under two-directional sinusoidal ground accelerations with an
amplitude of 1.00 m/s2 and periods identical to the natural
periods of the translational modes. We further conducted time-
history response analysis of white noise ground acceleration
and discovered that even one-directional white noise ground
acceleration can induce the torsional response of a linear elastic
system without any structural eccentricity. In this case, the
torsional response exceeded 2.0◦ under the input white noise
ground acceleration with a power spectrum density of 1.00m2/s3.

Our future tasks are as follows:

• We have to expand the theory to a multi-story system and a
system with structural eccentricity. In our theory, the natural
frequency difference in two translational modes is necessary
for induction of torsional response, and we have to check the
necessity in consideration of higher modes.

• The maximum response should be estimated in a probabilistic
manner and the prediction formula should be developed.

• We also have to expand the theory to a different input ground
motion model, such as colored noise and non-stationary
models.

• Further validation studies are also required, such as finite
element analysis considering geometric nonlinearity and
shaking table experiments.

• We also need to conduct a survey on the seismic damage risk
of existing structures due to torsional response induced by the
Q-∆ effect.

• The building code may need to be amended to consider theQ-
∆ effect properly, and in this case, effective revision has to be
studied.
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