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In the last three decades, all efforts in bone tissue engineering were driven by the
dogma that the ideal pore size in bone substitutes lies between 0.3 and 0.5 mm in
diameter. Newly developed additive manufacturing methodologies for ceramics facilitate
the total control over pore size, pore distribution, bottleneck size, and bottleneck
distribution. Therefore, this appears to be the method of choice with which to test the
aforementioned characteristics of an ideal bone substitute. To this end, we produced a
library of 15 scaffolds with diverse defined pore/bottleneck dimensions and distributions,
tested them in vivo in a calvarial bone defect model in rabbits, and assessed the
clinically most relevant parameters: defect bridging and bony regenerated area. Our
in vivo data revealed that the ideal pore/bottleneck dimension for bone substitutes is
in the range of 0.7–1.2 mm, and appears therefore to be twofold to fourfold more
extended than previously thought. Pore/bottleneck dimensions of 1.5 and 1.7 mm
perform significantly worse and appear unsuitable in bone substitutes. Thus, our results
set the ideal range of pore/bottleneck dimensions and are likely to have a significant
impact on the microarchitectural design of future bone substitutes for use in orthopedic,
trauma, cranio-maxillofacial and oral surgery.

Keywords: osteoconduction, pore, bone substitute material, additive manufacturing, lithography, micro
architecture, bone regeneration, scaffold

INTRODUCTION

Bones have the natural ability to heal due to the presence of osteoinductive proteins in the
bone matrix (Urist, 1965) and mesenchymal progenitor and stem cells in the bone marrow, the
periost and other surrounding tissues (Owen and Friedenstein, 1988; Bianco et al., 2008). If bone
defects surpass a critical size, however, transplantation of autologous tissue is often a necessary
requirement to aid the regenerative process. Bone is the second most frequently transplanted tissue
in Europe after blood, with around one million procedures performed annually. The worldwide
market of bone replacement material is currently estimated at five billion € and is increasing by
10% every year (Medical Press, 2017). Importantly, the outcome of bone transplantation is not only
dependent on the osteoinductive nature of the implanted material, but also on its osteoconductive
properties.

Osteoconduction defines a three dimensional process observed when porous structures are
implanted in or adjacent to bone. The porous spaces are initially infiltrated by capillaries,
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perivascular tissues, and osteoprogenitor cells, followed by
incorporation of the porous structure within the newly formed
bone (Cornell and Lane, 1998). Osteoconduction was first
described by Barth (1893) following the histological analysis
of the fate of transplanted autologous bone. Findings revealed
that the transplanted bone was degraded and replaced by newly
formed bone through a process termed creeping substitution
(Axhausen, 1909). It has since been demonstrated that during the
latter phases of this process, the degradation of the autologous
bone liberates calcium phosphates and osteoinductive proteins
(Cornell and Lane, 1998), which further serve to enhance bone
regeneration Although considered the gold standard for bone
repair, the harvesting of autologous bone carries with it the risk
of donor site morbidity. This, together with limitations in its
availability, have led investigators to seek out alternative bone
substitutes, with the aim to developing off-the-shelf products
for treating bone defects (Burchardt, 1983). In designing bone
substitute, great emphasis is placed on material type, porosity
and surface, all of which influence the efficiency of bone
ingrowth. The influence of material surface in particular has
been a primary focus in the development of dental implants
where efficient osseointegration is critical (Buser et al., 1991).
For titanium implants, the best surface appeared to be a
moderately rough one (Schwartz et al., 1999; Wennerberg and
Albrektsson, 2010), whereas for calcium phosphate-based bone
substitutes, submicron surface structures outperformed larger
micron scaled surfaces in terms of their ability to stimulate the
osteogenic differentiation of multipotent stromal cells (Zhang
et al., 2017a,b).

Over the last two decades, the field of bone regeneration
advanced by the introduction of advanced medical technology
and surgical procedures (Rullo et al., 2013), bone morphogenetic
proteins and osteoinduction (Urist, 1965; Carragee et al.,
2011; Martin et al., 2015) and by the application of research
results from the mesenchymal stem cell field (Cancedda et al.,
2003; Bianco et al., 2008; Mehrkens et al., 2012; Brennan
et al., 2014; Paino et al., 2017) or the neural-crest derived
stem cell field (d’Aquino et al., 2011; Spina et al., 2016;
Gazarian and Ramírez-García, 2017). In exception of the
application of more advanced medical technology or surgical
procedures these strategies, however, are costly and associated
with increased risks for the patient (Carragee et al., 2011). For
the application of bone morphogenetic proteins and stem cells,
a carrier system is needed. Ideally, such a delivery system is
osteoconductive. In terms of osteoconductive microarchitecture
it was shown that bone substitutes containing concave pits
induce significantly more bone tissue formation than smooth
surfaces (Graziano et al., 2007) and that bone formation
benefits from concavities on the surface of calcium phosphate
based bone substitutes (Ripamonti, 2017). Another important
microarchitectural feature studied for a long time was the optimal
pore diameter. As a result of these studies a bone substitute
pore diameter of 0.3–0.5 mm has long been regarded as the
optimal size for osteoconduction, enabling efficient Haversian-
type (Kuboki et al., 2001) and trabecular (LeGeros, 2002) bone
formation. There is also the suggestion that bone substitutes
with pore sizes in excess of 0.4 mm are less conducive to new

bone formation as evidenced by the accumulation of adipocytes
and bone marrow (Tsuruga et al., 1997) and reduced mechanical
properties (Kuboki et al., 2001). Optimal pore dimension of 0.2–
0.5 mm were also supported by several in vitro studies (reviewed
in Perez and Mestres, 2016). Studies that are more recent reported
on bone ingrowth and the presence of cells in micropores, well
below 0.1 mm in diameter (Bernstein et al., 2013; Polak et al.,
2013). There is only one in vivo study with random pore locations
and undefined connections between pores suggesting that bone
ingrowth is similar in pores from 0.5 mm up to 1.2 mm (von
Doernberg et al., 2006). An upper limit in pore diameter for
optimal bone ingrowth has not been determined yet.

The old dogma of the optimal mean pore size is mainly
based on observations using scaffolds with single channels,
or randomly distributed pores (Figure 1A). The emergence
of additive manufacturing has since added a new dimension
to the production of scaffolds, where pore size, as well
as other microarchitectural constraints such as bottleneck
dimensions can be accurately defined (Figures 1B,C). The
term bottleneck dimension in this context is defined as the
uniform diameter of the connections between pores and can
be exactly tuned by additive manufacturing. In random pore
distribution processes, however, the term percolation diameter
was introduced (Ashworth et al., 2015) defined as the diameter
of the largest tracer sphere able to move through a scaffold of
interconnected pores and reflects the smallest diameter of a single
connection in an interconnected pore system.

The effectiveness of 3D printing as an additive manufacturing
technique in regenerative medicine, particularly bone tissue
engineering, has been well reviewed (Hutmacher, 2000; Jariwala
et al., 2015). Using this technology to define bone substitute
microarchitecture is, however, still in its infancy (Seitz et al.,
2005; Carrel et al., 2016), although the production of fine open
structures composed of calcium phosphates is now possible
using for example lithography-based additive manufacturing
(CeraFab 7500, Lithoz, Vienna, Austria). The aim of this
project was to design and produce a library of tricalcium
phosphate-based scaffolds with defined pore sizes and bottleneck
dimensions using lithography-based additive manufacturing, and
to identify the most osteoconductive microarchitecture based on
its potential to support defect bridging and new bone formation
in vivo.

MATERIALS AND METHODS

Design and Fabrication of Scaffolds
We used the computer aided design software tool SolidWorks
(Dassault Systèmes SolidWorks Corporation, Waltham, MA,
United States) to design a library of 20 different stepped scaffolds
with a diameter of 6 mm in the lower three levels, and 7.5 mm
in the upper level as previously reported (de Wild et al., 2013)
and illustrated in Figures 1C,D. The unit cells (Figure 1C) to
design the scaffolds are cubes of 1.0–2.0 mm length. We have
chosen this design and adjusted it to the needs of the material
and production methodology, since it resembles the design with
the highest mechanical performance and high anisotropy, as
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FIGURE 1 | Schematics and examples of bone substitute design, and in vivo testing of tri-calcium phosphate based scaffolds. Pore distribution and bottleneck
dimension (B) are shown for porosogen based porous scaffolds. Scaffold in dark blue, and pores in gray (A). Pore distribution and bottleneck dimension (B) are
shown for scaffolds produced by additive manufacturing. Scaffold in dark blue, and pores in gray (B). Example of unit cells as building block of the scaffolds with fixed
cube and pore dimension but increase in bottleneck diameter from left to right. The unit cells views are provided in pairs: left: view on the unit cell, right: view on the
halved unit cell (C). Design of one scaffold from the library (D). Scaffolds diverse in pore size and bottleneck dimension are displayed on a Swiss five-franc coin with
a diameter of 32 mm (E). Intra operative view of scaffolds placed into four non-critical size defects of 6 mm in diameter created in the calvarial bone of a rabbit (F).

previously reported for titanium scaffolds (de Wild et al., 2016,
2018; Rüegg et al., 2017). In the center of each unit cell a pore
of 0.5–1.7 mm is located. The pore of each unit cell is connected
to all six sides of the cube with a central located cylinder with
a diameter between 0.5 and 1.5 mm. The latter diameter is
equal to the bottleneck diameter. By the assembly of unit cells
to form the scaffold the cylinders are connected and form an
open path throughout the entire scaffold. All these parameters
from scaffolds of our library are listed in Table 1. The fabrication
of tri-calcium phosphate based scaffolds was performed using
a CeraFab 7500 (Lithoz, Vienna, Austria). We used LithaBone
TCP 200 [Ca3(PO4)2] as photosensitive slurry, consisting of
tri-calcium phosphate powder of particle size in the range of 5–
30 µm, and other undisclosed components like acrylate-based
monomer, organic solvent, light absorber and photoinitiator. The
CeraFab 7500 (Lithoz, Vienna, Austria) was used to solidify the
slurry in a layer-by-layer fashion resulting in a green part with
a resolution of 25 µm in layer thickness, and 50 µm in the x/y-
plane. In the green part, the TCP particles are hold together by the
polymer. Following its production, the green parts were removed
from the building platform, cleaned from undetached slurry, and
underwent a thermal treatment process to remove the solvent,
to decompose the polymeric binder, and to sinter (densify) the

samples. The program for thermal treatment was provided by the
manufacturer, and included a final sintering step of 3 h at 1100◦C.

Scaffold Characterization
The numbers to describe the diverse scaffolds are displayed in
Table 1. The porosity is the relative free volume describing the
ratio of the material free volume inside the unit cell defined by
the pore diameter and the diameter of the connections and the
volume of the unit cell. The maximal transparency is the material
free area in the projection of the unit cell in the spatial direction
yielding the maximal value.

Animal Experiments
All animal procedures were approved by the Animal Ethics
Committee of the local authorities (Canton Zurich, 108/2012
and 115/2015) and performed in accordance with the ethics
criteria contained in the bylaws of the Institutional Animal Care
and Use Committee. After the acclimatization period, implants
were inserted into calvarial defects of 40 rabbits (female, 26-
week-old, New Zealand white rabbit), and bone regeneration
determined after 4 weeks as previously described (Karfeld-
Sulzer et al., 2014). In brief, animals were anesthetized by
injection of 65 mg/kg ketamine and 4 mg/kg xylazine and
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TABLE 1 | Structural values for the different scaffolds.

Acronym Length of unit Pore diameter Bottleneck Porosity Maximal Surface area per

cell (mm) (mm) diameter (mm) (Vol %) transparency Vol (1/mm)

(surface %)

C_10_5_5 1.0 0.5 0.5 35.95 19.64 1.020

C_10_07_05 1.0 0.7 0.5 47.40 19.64 1.774

C_10_07_07 1.0 0.7 0.7 52.58 38.48 1.207

C_13_10_05 1.3 1.0 0.5 47.40 11.61 1.537

C_13_10_07 1.3 1.0 0.7 39.59 22.77 1.279

C_13_10_10 1.3 1.0 1.0 56.00 46.47 0.571

C_15_12_05 1.5 1.2 0.5 32.04 8.72 1.410

C_15_12_07 1.5 1.2 0.7 37.06 17.10 1.242

C_15_12_10 1.5 1.2 1.0 47.47 34.90 0.781

C_15_12_12 1.5 1.2 1.2 56,96 50.26 0.334

C_18_15_12 1.8 1.5 1.2 47.46 34.90 0.630

C_20_17_05 2.0 1.7 0.5 35.64 2.42 1.164

C_20_17_07 2.0 1.7 0.7 36.46 9.62 1.093

C_20_17_12 2.0 1.7 1.2 44.87 28.27 0.711

C_20_17_15 2.0 1.7 1.5 52.03 44.17 0.339

further anesthetized with isofluoran/O2. The surgical area was
disinfected and an incision was made from the nasal bone to
the midsagittal crest. Next, the soft tissues were reflected and the
periosteum was elevated from the site. In the area of the right
and left parietal and frontal bones, four evenly distributed 6 mm
diameter craniotomy defects were prepared with a trephine bur
under copious irrigation with sterile saline. For the completion
of the defect a rose burr (5 mm) was used to preserve the dura.
Before implant placement, bone debris were removed by flushing
with saline. Each of the animals received four different treatment
modalities. The treatment modalities were assigned at random
for the first animal and thereafter cyclic permuted clockwise for
the next three animals. Sample size was determined by power
analysis.

Histomorphometry
The evaluation of all implants was performed from the MMA-
embedded middle section using image analysis software (Image-
Pro Plus R©; Media Cybernetic, Silver Springs, MD, United States).
The area of interest (AOI) was defined by the 6 mm defect
dimension and the height of the implant, corrected for differences
in height between groups of different pore dimension. We
determined the area of new bone in the AOI as percent of bone
and bony integrated scaffold in the AOI (bony area, %). For the
empty control value, the average corrected area occupied by all
scaffolds was taken into account.

Bone Bridging
The determination of bone bridging was performed as previously
reported (Kruse et al., 2011; Schmidlin et al., 2013). In brief,
areas with bone tissue were projected onto the x-axis. Next, the
stretches of the x-axis where bone formation had occurred at any
level were summed up and related to the defect width of 6 mm.
Bone bridging is given in percentage of the defect width (6 mm)
where bone formation had occurred.

Statistical Analysis
The primary analysis unit was the animal. For all parameters
tested, treatment modalities were compared with a Kruskal–
Wallis test, followed by Mann–Whitney signed rank test for
independent data (IBM SPSS v.23). Significance was set at
P < 0.05. Values are reported as either mean ± standard error,
or displayed in box-plots ranging from the 25th (lower quartile)
to the 75th (upper quartile) percentile including the median and
whiskers showing the minimum and maximum values.

RESULTS

Scaffolds With Pores Between 0.7 and
1.2 mm Are Optimal for Calvarial Bone
Healing
A total of 20 different scaffolds were prepared using the computer
aided design software tool SolidWorks (Dassault Systèmes
SolidWorks Corporation, Waltham, MA, United States), and
their potential to support new bone growth assessed in a
rabbit calvarial defect model (de Wild et al., 2013) (Figure 1E).
Scaffolds were generated from the tri-calcium phosphate
substrate LithaboneTM (Lithoz, Vienna, Austria) using the
lithography-based additive manufacturing machine (CeraFab
7500, Lithoz, Vienna, Austria). Five scaffold designs failed
mechanically during production, or during the in vivo testing
stage, and are therefore not reported here. Following the
removal of the photoactive binder, and sintering to increase
mechanical stability all scaffolds exhibited a smooth surface
with micropores of 2–4 µm (Chen et al. accepted Tissue
Engineering). The so produced scaffolds, sterilized during
the sintering procedure (Figure 1E) were transferred to the
operation theater in a sterile fashion, implanted within the
calvarial defects (Figure 1F), and bone formation assessed after
4 weeks.
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FIGURE 2 | Toluidine-blue stained MMA sections of middle sections from scaffold treated calvarial bone defects. Upon a healing period of 4 weeks, the scaffolds
from tricalcium phosphate (TCP) are visible as blackish or dark blue areas. Bone ingrowth was most advanced in additively manufactured scaffolds with a pore
diameter of 1.2 mm and bottleneck diameter of 1.0 mm (A). In scaffolds with a pore diameter of 1.5 mm and bottleneck diameter of 1.0 mm (B) bone growth did not
extend far into the scaffolds. A scale bar, placed on top of the histologies is provided to show the 6 mm defect margins. In the lower panel, 2.5-fold higher
magnifications are shown from the area marked in (A,B) to visualize bone tissue formation. The light blue-stained bone tissue is lamellar bone (also new, but later
formed) on the initial woven bone structures stained dark blue and purple. Lacunae from osteocytes are visible.

Histological analysis of methyl methacrylate (MMA)-
embedded tissue sections revealed predominantly woven
bone formation in and around the scaffolds indicating
good biocompatibility by new bone formation in close
proximity to the scaffold material (Figure 2). Evaluation of
osteoconduction was based on the level of bony bridging
and bony regenerated area as determined by toluidine-blue
staining. As compared to untreated empty defects, defects
containing scaffolds with pore diameters of 1.2 mm and below
performed better in terms of bony bridging and/or bony
regeneration than scaffolds with a pore diameter of 1.5 mm or
1.7 mm.

Quantitative analysis of the middle sections further confirmed
that the percentage of bony bridging compared to untreated
control defects was significantly greater in animals treated with
scaffolds with pore diameters of 0.7, 1.0, 1.2, 1.5, and 1.7 mm.
Furthermore, scaffolds with pore sizes of 1.0 mm and bottlenecks
of 0.7 and 1.0 mm and pore size of 1.2 mm and bottlenecks of
0.7, 1.0, and 1.2 mm proved significantly better as compared to
scaffolds with pores sizes of 1.5 and 1.7 mm, and bottlenecks of
0.7 and 1.2 mm, respectively (Figure 3). Pore diameters of 1.5 and
1.7 mm were therefore considered the least beneficial for bony
bridging.

The optimal pore diameter and bottleneck dimension for an
osteoconductive scaffold is between 0.7 and 1.2 mm and below
1.5 mm.

We next evaluated bony bridging and bony regenerated
area dependency, grouped by pore diameter and bottleneck
dimension. We found bony bridging of the defect to be
significantly more complete in scaffolds with pores of 0.7 to
1.2 mm in diameter as compared to a pore diameter of 1.5 mm
or 1.7 mm (Figure 4A). For the percentage of bony regenerated
area in the defect, a pore diameter of 0.7–1.2 mm was significantly
superior to a pore diameter of 1.5 mm (Figure 4C).

The percentage of bony bridging of the defect and the
percentage of bony regenerated area of the defect of scaffolds
with 0.5 mm pores were always in the range of scaffolds with
1.5 mm diameter pores and below scaffolds with pores of 0.7,
1.0, or 1.2 mm in diameter. Therefore, optimal pore diameter
for both measures of osteoconductivity lies between 0.7 and
1.2 mm. If the bottleneck between pores is between 0.5 and
1.2 mm, bony bridging is significantly higher than for bottlenecks
of 1.5 mm in diameter (Figure 4B). For bony regenerated area,
only a bottleneck dimension of 1.2 mm was significant higher
than one of 1.5 mm (Figure 4D). Grouping defect bridging
according to porosity or transparency (Table 1) did not yield
in any significant differences. The same applies to surface area
per volume. Therefore, in this library of scaffolds from the
identical material and identical surface structure pore diameter
and bottleneck dimension were the key parameters of the
microarchitecture to affect bony bridging and bony regeneration
as measures for osteoconduction.
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FIGURE 3 | Percentage of bony bridging of the defect in relation to pore and bottleneck dimensions. In comparison to the empty control, scaffolds with pore
diameters from 0.7 to 1.7 mm and bottlenecks below 1.5 mm perform significantly better. Scaffolds with pores of 1.2 mm and bottlenecks between 0.7 and 1.2 mm
perform significantly better than scaffolds with a pore diameter of 1.5 mm and bottleneck of 1.2 mm and pore diameter of 1.7 mm and bottleneck of 0.7 mm.
Results of each group are displayed as box-plots ranging from the 25th (lower quartile) to the 75th (upper quartile) percentile including the median as black bars and
whiskers showing the minimum and maximum values. The number of samples for each group (N) is displayed on top of the figure.

DISCUSSION

In the current report, we generated a structurally diverse
library of tri-calcium phosphate based scaffolds using 3D
printing, and assessed their potential to influence bone formation
in vivo. The osteoconductive capacity of bone implants is
reliant on a complex interplay between the material type,
surface and microarchitecture, which ultimately determines
the efficiency of new bone formation and its vascularization.
Here, we kept the material and surface characteristics constant
and varied only the microarchitecture. The primary focus
of our study was to challenge the long-held belief that
optimal osteoconduction is achieved using bone substitutes with
pore diameters of 0.3–0.5 mm (Tsuruga et al., 1997; Langer
and Vacanti, 1999; Hutmacher, 2000; Galois and Mainard,
2004; Hollister, 2005; Murphy et al., 2010; Hollister and
Murphy, 2011; Henkel et al., 2013) thereby opening up new
possibilities for the improvement of scaffold microarchitecture
design.

The results of our study demonstrated osteoconduction was
significantly improved in bone substitutes with a pore diameter
of 0.7–1.2 mm — an increase of up to fourfold above what the
majority of published studies and reviews recommend. These
findings are likely to pave the way for future developments in
scaffold design, leading to the generation of bone substitutes
with a more osteoconductive microarchitecture, and improved
bone-regenerative capability (Figures 4E,F). Importantly, a

pore size of 1.5 mm or greater had a detrimental effect on
the bone bridging capabilities of the tri-calcium phosphate
scaffolds used in this study; a notable diagnostic feature
of non-unions. Given the clinical and economic burden of
treating non-unions (Zura et al., 2016), there is an obvious
need to develop bone substitutes with high osteoconductive
properties.

Moreover, these data corroborate our previous observations
on the influence of pore size on osteoconduction of titanium
scaffolds (de Wild et al., 2013, 2016, 2018). Our results are in
line with an in vivo sheep study reporting on drill hole defects
in cancellous bone where scaffolds with random distributed
pore sizes of 0.15, 0.26, 0.51, and 1.22 mm but undefined pore
location and bottleneck dimension or percolation were tested
(von Doernberg et al., 2006). In terms of bone regeneration,
they did not see huge differences. It should be noted, however,
that due to technical restraints of our additive manufacturing
process, generating bone substitutes with pore sizes below
0.5 mm was not technically possible— n obvious limitation of
this system. Importantly, a pore size of 1.5 or 1.7 mm or a
bottleneck of 1.5 mm had a detrimental effect on the bone
bridging and bony regeneration capabilities of the tri-calcium
phosphate scaffolds used in our study. This sets a so far unknown
upper limit to osteoconductive pore sizes at 1.2 mm and below
1.5 mm.

For polycaprolactone based scaffolds, a more permeable
scaffold with regular architecture performed best for in vivo
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FIGURE 4 | Microarchitecture and osteoconduction. Bony bridging in relation to pore diameter of all groups (A). Bony bridging and bottleneck diameter. Bony
bridging in relation to bottleneck diameter of all groups (B). Bony regenerated area and pore diameter. Bony regenerated area in relation to bottleneck diameter of all
groups (C). Bony regenerated area and bottleneck diameter. Bony regenerated area in relation to bottleneck diameter of all groups (D). All graphs display the means
and the standard error of the means. P-values are displayed. Schematic drawing of conventional scaffold based on random distributed 0.5 mm diameter pores.
Scaffold in dark blue and pores in gray (E). Schematic drawing of additively manufactured scaffold based on 1.2 mm pores and bottlenecks of 0.7 mm Scaffold in
dark blue and pores in gray (F).

bone regeneration (Mitsak et al., 2011). The microarchitecture
we have tested here is not only permeable but also transparent
from each plane of the cube of the unit cell throughout the
entire scaffold, since all empty cylinders connecting the pores
are aligned. As listed in Table 1, the transparency of unit cells
1.5 mm in length and a pore diameter of 1.2 mm increases
with the bottleneck diameter (0.5–1.2 mm) from 8.72 to 50.26%.
Bony bridging for those scaffolds follow the same trend, but
fail to differ significantly. The same applies to porosity, which
also increases from 32.04 to 56.96%. Scaffolds with pores of
1.5 mm perform significantly worse in terms of bony bridging,
despite the fact that with a transparency of 34.90% and a
porosity of 47.46% both characteristics are more at the higher
end. Moreover, the surface area per volume of scaffolds derived
from the unit cell of 1.5 mm in length and a pore diameter
of 1.2 mm decreases with the increase in bottleneck diameter
(0.5–1.2 mm from 1.41 to 0.33 1/mm (Table 1). Therefore,
bony bridging and surface area follow opposite trends. Taken
together, with our microarchitecture bony bridging follows
permeability and porosity in groups derived from the same
unit cell. The most important factor, however, appears to be
pore diameter. To fully understand all these relations, additional
research with more designs and additional model systems are
needed.

Interestingly, it was proposed that in the initial weeks bone
regeneration depends mainly on material aspects and that design
aspects come in play only at later stages (Kommareddy et al.,
2010; Tamjid et al., 2013). This is true for in vitro situations.
In vivo, however, we show that with a constant material and
surface structure, osteoconduction even during the first 4 weeks
depends heavily on pore size and bottleneck dimension and
therefore on microarchitectural features. That in vitro and in vivo
results on bone tissue engineering approaches can contradict each
other has been noted by others as well (Karageorgiou and Kaplan,
2005).

Autologous bone is still the bone substitute material of choice
for treating critical size defects (De Long et al., 2007). Since the
porosity of trabecular bone is between 0.2 and 0.4 mm (LeGeros,
2002), it was reasonable to assume that scaffolds with comparable
pore dimensions would provide a more physiologically relevant
bone substitute. In living bone, however, the microarchitecture
reflects the local mechanical needs (Keaveny et al., 2001) and
thus, no evolutionary pressure exists on osteoconduction in terms
of bone ingrowth into 3D-structures. One can speculate that
the optimal pore and bottleneck dimensions derived from this
study reflect the balance between the positive interactions of
directionally growing bone tissue with the scaffold as guiding cue,
and the restrictions imposed by the scaffold on directional bone
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growth. Clearly, this balance is tipped in favor of the scaffold’s
positive effects, as made evident by the significant improvement
in bony bridging when using bone substitutes with pore sizes
between 0.7 and 1.2 mm, and bottlenecks between 0.5 and 1.2 mm
instead of pores and bottlenecks of 1.5 mm and more (Figure 3).

Our scaffolds consisted of tri-calcium phosphate, which
is often used for scaffolds in bone tissue engineering as it
degrades faster than native hydroxyapatite, whilst remaining
biodegradable even after sintering at temperatures above 1,100◦C
(Goto et al., 2001). However, in the current study, scaffold
biodegradation was not taken into consideration based on the
fact that it takes several months for tri-calcium phosphate to
completely be removed from the defect site (Walsh et al., 2008).

Additive manufacturing of free form scaffolds alleviated
some of the constraints of extrusion-based techniques, such
as the filament dimension ruling the pore dimension in the
z-axis and the mechanics of the filament the pore dimension
in the x- to y-axis. In the past, porogens were considered a
necessary component of the porous bone substitute production
process, but led to random pore distribution, uncontrollable
bottleneck dimensions, and restricted research of scaffolds
microarchitecture (Figure 4E). We envisage that the use of
additively manufactured bone substitutes with pore diameters
in the range of 0.7–1.2 mm, and a bottleneck dimension of
0.5–1.2 mm, offer the best solution achieving optimal bone
regeneration, and have the potential to revolutionize the way we
treat bone defects.

CONCLUSION

The microarchitecture of bone substitutes based on pores
and bottlenecks is most osteoconductive with pore diameters

between 0.7 and 1.2 mm and bottlenecks between 0.5 and
1.2 mm. Pores and bottlenecks of 1.5 mm and beyond
are detrimental for osteoconduction. In order to generate
such microarchitecture, additive manufacturing is likely
to become a central player, enabling the production of
reproducible osteoconductive microarchitectures, which can be
adjusted according to mechanical needs. Furthermore, additive
manufacturing will be an invaluable tool in developing strategies
geared toward personalized treatment, where the generation of
scaffolds with patient specific bone defect dimensions is highly
desirable.
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