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The Suv420h histone methyltransferases regulate 
PPAR- and energy expenditure in response to 
environmental stimuli
Simona Pedrotti1, Roberta Caccia1*, Maria Victoria Neguembor1*†, Jose Manuel Garcia-Manteiga2, 
Giulia Ferri1, Clara de Palma3, Tamara Canu4, Matteo Giovarelli5, Paolo Marra4, Amleto Fiocchi6, 
Ivan Molineris2, Michele Raso6, Francesca Sanvito7, Claudio Doglioni7, Antonio Esposito4, 
Emilio Clementi5,8, Davide Gabellini1‡

Obesity and its associated metabolic abnormalities have become a global emergency with considerable morbidity 
and mortality. Epidemiologic and animal model data suggest an epigenetic contribution to obesity. Nevertheless, 
the cellular and molecular mechanisms through which epigenetics contributes to the development of obesity 
remain to be elucidated. Suv420h1 and Suv420h2 are histone methyltransferases responsible for chromatin 
compaction and gene repression. Through in vivo, ex vivo, and in vitro studies, we found that Suv420h1 and 
Suv420h2 respond to environmental stimuli and regulate metabolism by down-regulating peroxisome proliferator–
activated receptor gamma (PPAR-), a master transcriptional regulator of lipid storage and glucose metabo-
lism. Accordingly, mice lacking Suv420h proteins activate PPAR- target genes in brown adipose tissue to increase 
mitochondria respiration, improve glucose tolerance, and reduce adipose tissue to fight obesity. We conclude 
that Suv420h proteins are key epigenetic regulators of PPAR- and the pathways controlling metabolism and 
weight balance in response to environmental stimuli.

INTRODUCTION
Obesity is a pandemic disorder with serious health concerns for af-
fected individuals (1), raising the risks of diabetes, hypertension, 
atherosclerosis, and cancer (2). Since obesity develops when energy 
intake exceeds energy expenditure (1), current therapeutic strategies 
aim at restricting energy uptake and absorption. However, these 
approaches show limited efficacy and alternative strategies are urgently 
needed to increase energy dissipation.

Obesity, diabetes, and metabolic diseases are complex disorders 
with only partial genetic heritability, indicating important roles for 
environmental programming and epigenetic effects (3). It has been 
argued that the epigenome may represent the mechanistic link be-
tween genetic variants and environmental factors in determining 
the obesity risk (3).

Adipose tissue is critical for the maintenance of metabolic ho-
meostasis through its effects on energy balance and its endocrine 
function. It fulfills important roles in whole-body lipid handling, 
serves as the body’s major energy storage compartment, and secretes 
numerous endocrine mediators (4). The adipose organ can be 
divided into two main types of adipose tissues, white adipose tissue 
(WAT) and brown adipose tissue (BAT). While WAT mainly stores 

energy and is increased in obesity, BAT dissipates energy by generat-
ing heat through non-shivering thermogenesis. This activity is 
allowed via specific expression of uncoupling protein 1 (Ucp1), 
which diminishes the proton gradient by uncoupling cellular respi-
ration and mitochondrial adenosine triphosphate synthesis (5). Adult 
humans have active BAT deposits (6), which display substantial 
metabolic activity also during warm conditions when thermogenesis 
is not required (7). Moreover, very recently, it was shown that a meal 
elevates human BAT glucose uptake and thermogenesis to the same 
extent as cold stress (7). The amount of BAT inversely correlates 
with adiposity and body mass index in humans (6). In addition to 
“classic BAT,” various environmental stimuli including cold expo-
sure (8) induce the emergence of brown adipocyte-like cells (beige/
brite adipocytes) within WAT. Activated human brown/beige fat 
improves whole-body glucose homeostasis and insulin sensitivity 
and can lead to reduced body weight (9), indicating that it plays an 
important role in energy homeostasis in adult humans. Hence, a 
better understanding of the molecular control of BAT function may 
allow one to address of obesity and metabolic disorders (9).

Peroxisome proliferator–activated receptor gamma (PPAR-) is 
highly expressed in BAT and is a master transcriptional regulator of 
glycemic metabolism, adipogenesis, energy balance, and lipid bio-
synthesis (10, 11). PPAR- displays decreased expression in obese 
subjects with diabetes. Moreover, dominant negative mutations in 
PPAR- are associated with severe insulin resistance, diabetes, and 
hypertension (12, 13). Thiazolidinediones (TZDs), synthetic lig
ands of PPAR-, are the only current antidiabetic agents that func-
tion primarily by increasing insulin sensitivity (14, 15). The adipose 
tissue is the major site of action for the insulin-sensitizing actions of 
PPAR- (14). However, despite clear benefits in glycemic control, 
TZDs have recently fallen into disuse due to concern over side 
effects and adverse reactions. A number of TZD side effects are 
PPAR-–independent off-target effects (16). Notably, recent evidence 
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indicates that a better understanding of PPAR- regulation in the 
adipose tissue could help develop safer and more effective diabetes 
therapeutics (17, 18).

The histone methyltransferases Suv420h1 (KMT5B) and Suv420h2 
(KMT5C) catalyze the di- and trimethylation of lysine 20 in histone 
H4 (H4K20me2 and H4K20me3), leading to chromatin compaction 
and gene repression (19–21). Several studies link Suv420h enzymes to 
metabolism regulation, suggesting an evolutionarily conserved role in 
obesity. The human SUV420H1 gene maps on chromosome 11q13 
(22) to a 400-kb candidate region for diabetes, and diabetes can be 
part of the disorders associated to SUV420H1 mutation (23). H4K20me3 
is altered in experimental diabetes (24) and in a mouse model of 
Prader-Willi syndrome (25, 26), characterized by obesity in children. 
H4K20me3 correlates with Agouti gene expression, associated with 
obesity in mice (27, 28). An increase in H4K20me3 at the insulin gene 
promoter in undernourished rat models correlates with decreased in-
sulin expression and higher susceptibility to streptozotocin-induced 
diabetes (29). The increase in Suv420h2 and H4K20me3 has been 
linked to the repression of sod2 and the development and progression 
of diabetic retinopathy (24). In Caenorhabditis elegans, Suv420h and 
H4K20me3 are regulated by the mTORC2 subunit Rictor (30), essen-
tial for normal BAT growth and lipogenic metabolic state (31). Last, 
Suv420h proteins have been lately implicated in intergenerational 
metabolic programming in Drosophila melanogaster, mice, and 
humans (32). While these results suggest that Suv420h could constitute 
a nexus between environmental stimuli and metabolism, a direct link 
between Suv420h epigenetic activity and metabolism is still lacking.

Here, we demonstrate that Suv420h proteins directly inhibit the 
expression of PPAR- and regulate metabolism and body weight. 
We found that mice lacking Suv420h proteins display a strong 
PPAR- activation signature, increased BAT mitochondria respira-
tion, improved glucose tolerance, reduction in adipose tissue, WAT 
browning, and resistance to obesity. Collectively, our results promote 
Suv420h proteins as epigenetic regulators of energy balance that 
could be targeted for the treatment of obesity.

RESULTS
Suv420h dKO mice display enhanced brown adipocyte 
metabolic activity
Lineage-tracing studies indicate that early mesenchymal precursor 
cells expressing the transcription factor Myf5 give rise to muscle cells 
and brown adipocytes (33, 34). Consequently, several recent studies 
have used the Myf5-Cre knock-in allele to investigate BAT develop-
ment and function (33, 35–39). Because a whole-body knockout (KO) 
of Suv420h1 causes lethality and Suv420h1 and Suv420h2 share func-
tional redundancy (20), to investigate the role of Suv420h proteins in 
metabolism regulation, we generated double-KO mice lacking Suv420h1 
and Suv420h2 in the Myf5 lineage (henceforth referred to as dKO 
mice) (fig. S1, A and B). Suv420h1+/+, Suv420h+/+, and Myf5-Cre were 
used as controls. No developmental abnormalities were observed in 
dKO mice compared to controls. We found that only the deletion of 
both genes resulted in an almost complete absence of H4K20me3 in 
BAT, while single-KO mice for either Suv420h1 or Suv420h2 showed 
significant residual levels of the histone mark (fig. S1C), further support-
ing the redundancy of Suv420h enzymes in BAT.

We observed almost 30% reduction of interscapular BAT (iBAT) 
mass in dKO mice compared to controls (Fig. 1A), while the weight 

of other metabolic tissues was not affected (fig. S1D). Accordingly, 
microscopic analysis on hematoxylin and eosin (H&E)–stained sec-
tions revealed that brown adipocytes are smaller in dKO compared 
to controls (Fig. 1A). Instead, no obvious muscle phenotype was 
observed in dKO mice (fig. S1, D and E), possibly due to the partial 
reduction of Suv420h1 (fig. S1, A and B) or to compensation by 
Myf5-independent muscle cells (40–42).

We used high-resolution respirometry to evaluate the metabolic 
activity of equal amounts of mitochondria isolated from dKO and 
control iBAT (Fig. 1B). While there was no significant difference in 
oxygen consumption after the addition of glutamate-malate (state 2), 
compared to controls, dKO mice displayed a significant increase in 
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Fig. 1. Characterization of Suv420h dKO mice. (A) Top: H&E stains (20×) of paraffin-
embedded sections representative of iBAT. Scale bar, 100 mm. Bottom: Quantification 
of the mass of iBAT and cross-sectional area (CSA) of brown adipocytes (n = 3, males, 
4 weeks old). (B) Mitochondria respiratory rates of isolated mitochondria. BAT from 
controls and dKO mice was dissected and brown adipocytes were isolated. Then, 
mitochondria were extracted and used into the O2K oxygraph chambers [mean ± 
SEM; one-way analysis of variance (ANOVA); *P < 0.05] (n = 6 per genotype). (C) Top: 
H&E stains (20×) of pgWAT (n = 3, males, 4 weeks old). Scale bar, 100 mm. Bottom: 
Quantification of the mass of pgWAT (left) and quantification of the cross-sectional 
area of white adipocytes (right) (n = 3, males, 4 weeks old). (D) Top: Immunohisto-
chemistry for Ucp1 on pgWAT of control and dKO mice. Scale bar, 100 mm. Bot-
tom: Quantification of the percentage of Ucp1-stained area (left) and RT-qPCR 
analysis of Ucp1 expression levels in control and dKO mice (right) (n = 3, males, 
4 weeks old). Values are expressed as mean ± SEM; t test; *P < 0.05; **P < 0.01.
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maximal mitochondrial oxygen consumption after the addition of 
saturating concentrations of adenosine diphosphate (ADP) (state 3), 
and this increase persisted after the consecutive addition of succi-
nate alone (state 3 + Succ) or succinate and rotenone (state 3 + Succ + 
Rot) and in resting respiration (state 4) (Fig. 1B). These data indi-
cate that the entire respiratory chain is significantly increased in iBAT 
mitochondria adipocytes of dKO mice compared to controls, in line 
with an enhanced metabolic activity of dKO brown adipocytes.

Suv420h dKO mice have reduced white fat mass and 
increased browning
Histological analyses of WAT revealed significantly smaller adipo-
cytes and a significant reduction of weight in perigonadal WAT 
(pgWAT) from dKO compared to control mice (Fig. 1C). Noticeably, 
pgWAT adipocytes of dKO mice showed clustered populations of 
cells with smaller multilocular lipid droplets (Fig. 1C), a characteristic 
of WAT browning (8). Immunohistochemistry and reverse tran-
scriptase quantitative polymerase chain reaction (RT-qPCR) demon-
strated significantly higher areas of Ucp1-positive adipocytes and a 
significant increase in Ucp1 expression in pgWAT from dKO com-
pared to control mice (Fig. 1D), supporting increased browning of 
pgWAT in dKO mice.

Suv420h dKO mice have increased metabolic parameters
Given that activated brown/beige fat affects whole-body glucose 
homeostasis, we measured blood glucose levels. We found that dKO 
mice have significantly lower basal glycemia compared to controls 
(Fig. 2A). In glucose tolerance tests (GTTs), when challenged with 
intraperitoneal glucose injection, dKO mice tolerate the glucose 
overload significantly better than control mice (Fig. 2B).

To assess whether lack of Suv420h also resulted in an altered 
thermogenic response, we conducted acute cold challenge experiments. 
We found that the expression of Suv420h1 and Suv420h2 in iBAT is 
significantly reduced by cold exposure (Fig. 2C). This is associated 
to a significant decrease of H4K20me3 in iBAT of cold-exposed 
animals compared to controls (fig. S2). Notably, compared to con-
trols, dKO mice exposed to cold display a significantly higher increase 
in iBAT expression of key genes for non-shivering thermogenesis 
such as Ucp1, Pgc1a, and Dio2 (Fig. 2D) (43) and have no difficulty 
in maintaining their body temperature (Fig. 2, E and F). Collectively, 
our results indicate that Suv420h1 and Suv420h2 respond to 
temperature exposure and control BAT thermogenic and glucose-
modulatory activities.

Suv420h depletion results in BAT transcriptional changes 
consistent with increased metabolic activity
To gain insight into the pathways affected by Suv420h deletion, we 
compared dKO to control iBAT using RNA sequencing (RNA-seq). 
Among the 10,731 genes detected by the RNA-seq as being “expressed,” 
a total of 1049 (9.7%) were significantly altered in dKO compared to 
control mice (table S1 under the sheet “RNA-seq Young”). In line 
with the repressor activity of Suv420h proteins, Suv420h ablation 
resulted in a significant majority of up-regulated genes (618 up-
regulated, 431 down-regulated, binomial P = 9 × 10−9) (Fig. 3A). 
Functional enrichment analysis for the up-regulated genes returned 
significant enrichment for oxidative metabolism and mitochondrial 
function pathways (Fig. 3B and table S2). We also found significant 
enrichment of genes related to proteasomal activity, which was re-
cently shown to be required for BAT thermogenic function (Fig. 3B) 

(44). Up-regulation of representative genes in iBAT of dKO mice 
compared to controls (Fig. 3C) was confirmed by RT-qPCR (fig. S3A). 
Functional enrichment analysis for the down-regulated genes failed 
to return relevant pathways (fig. S3B).

Suv420h dKO mice are less susceptible to obesity
Our results support increased metabolic activity in Suv420h dKO 
mice. We thus evaluated how dKO mice respond to obesity induced 
by high-fat diet (HFD). Over 14 weeks of eating an HFD, control 
mice gained 48.5% more weight when eating HFD versus normal 
diet compared to dKO mice (Fig. 4A), despite dKO mice consuming 
significantly more energy compared to controls (Fig. 4B). At the end 
of the HFD treatment, controls were significantly heavier compared 
to dKO mice (Fig. 4C). This indicates that dKO mice eating an HFD 
are less metabolically efficient than control mice, which is indeed 
the case (Fig. 4D). Live-animal magnetic resonance imaging (MRI) 
quantification revealed smaller posterior subcutaneous WAT 
(psWAT) and pgWAT depots in HFD dKO compared to control 
mice (Fig. 4E). Histological analyses showed significantly reduced 
adipocyte size in both iBAT and pgWAT of dKO mice compared 
to controls (Fig. 4, F and G). Together, these results demonstrate 
that dKO mice are less affected by diet-induced obesity (DIO).

To identify gene expression changes that might account for dKO 
protection from DIO, we compared the transcriptomes of Suv420h-
deficient to control iBAT in the different diet regimens. RNA-seq 
revealed 1011 genes significantly altered in the dKO compared to 
the control genotype regardless of the diet (table S1 under the sheet 
“RNA-seq Diet”), of which the significant majority was up-regulated 
(558 up-regulated, 453 down-regulated, binomal P = 0.001) (Fig. 5A). 
Functional enrichment analysis of the up-regulated genes uncov-
ered significant enrichment for metabolism, fatty acid oxidation, 
branched chain amino acid (BCAA) catabolism, and secretion of 
protein pathways (Fig. 5B and table S2). The expression of genes 
encoding for BCAA catabolic enzymes is significantly decreased in 
the adipose tissue of patients with obesity and diabetes (45). The 
subsequent increased plasma level of BCAA and toxic intermediates 
has been suggested to cause insulin resistance (45). Up-regulation 
of representative genes for the identified pathways in iBAT of dKO 
compared to control mice (Fig. 5C) was confirmed by RT-qPCR at 
the end of both feeding regimens (fig. S4). Functional enrichment 
analysis for the down-regulated genes returned cholesterol biosyn-
thesis as a relevant pathway, which is in line with the phenotype of 
dKO mice (fig. S5).

Correlation analysis reported a significant overlap between the 
gene expression changes detected in RNA-seq Young and RNA-seq 
Diet (fig. S6, A to C). Together, our observations suggest that Suv420h 
proteins are involved in repression of genes, which, when up-
regulated, confer protection from obesity.

PPAR- is a direct Suv420h target
Genes up-regulated in Suv420h dKO BAT show significant enrich-
ment for PPAR signaling pathway (table S2). In addition, chromatin 
immunoprecipitation sequencing (ChIP-Seq) enrichment analysis 
(ChEA) indicates a significant enrichment in PPAR- target genes 
for up-regulated genes in Suv420h dKO BAT (table S3). We fur-
ther tested the functional correlation of the genes up-regulated in 
dKO mice with PPAR- target genes by using GSEA (Gene Set 
Enrichment Analysis). Figure 6A shows that PPAR- targets are 
significantly correlated to genes up-regulated in dKO mice in both 
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RNA-seq Young (ND) and RNA-seq Diet (HFD). Moreover, we 
calculated the overlap of up-regulated genes in Suv420h dKO in 
both RNA-seq Young and RNA-seq Diet, with a comprehensive 
dataset of PPAR- targets generated considering (i) genes identified 
in PPAR- ChIP experiments, (ii) genes up-regulated after PPAR- 
overexpression, (iii) genes up-regulated upon PPAR- agonist stim-
ulation, (iv) PPAR- signaling pathway genes, and (v) genes coex-
pressed with PPAR- (table S3). Using this comprehensive list of 
PPAR- targets generated using different empirical sources for the 

RNA-seq Young, we found that 61% of up-regulated genes in 
Suv420h dKO overlap with PPAR- targets representing an odds 
ratio of enrichment of 2.1 [95% confidence interval (CI), 1.75 to 
2.45; Fisher P < 2.2 ×10−16]. For the RNA-seq Diet, we again found 
a highly significant overlap with 52% of up-regulated genes in 
Suv420h dKO overlapping with PPAR- targets (odds ratio, 1.6; 
95%  CI, 1.37 to 1.93; Fisher P = 3.1 × 10−8). These results strongly 
support the enrichment for PPAR- targets in genes up-regulated 
in Suv420h dKO iBAT.
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Fig. 3. Transcriptional changes in dKO mice. (A) Volcano plot showing the significance of differentially expressed genes in iBAT of dKO versus control mice in RNA-seq 
Young. The total number of up-regulated (red) and down-regulated (black) genes is shown above the plot. Red dots are considered significant with an adjusted P < 0.1. 
(B) Network representation of functional enriched biological processes and pathways. Up-regulated genes in dKO were found enriched in several pathways [Enrichr, Fisher 
Test; false discovery rate (FDR) < 0.05, table S2] and grouped on the basis of the pathways they belong to. Pathways and processes were further grouped into four higher 
hierarchy super pathways after visually inspecting the clusters. The number of genes contained in each super pathway is shown in parentheses next to the pathway name. 
(C) Heatmap of normalized (Z score on samples) levels of expression of RT-qPCR–validated genes (in fig. S3) grouped by the three super clusters of interest in (B).
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Supporting the above findings, we found that PPAR- is signifi-
cantly up-regulated compared to controls in all conditions showing 
decreased Suv420h (Fig. 6, C to L). PPAR- is augmented signifi-
cantly in iBAT of young dKO compared to control mice (Fig. 6C) 
and in both diet regimens (Fig. 6D). Moreover, PPAR- levels sig-
nificantly increase upon cold exposure (Fig. 6E), concomitant with 

Suv420h down-regulation (Fig. 2C). ChIP followed by quantitative 
real-time PCR (ChIP-qPCR), showed that the Suv420h-associated 
histone mark H4K20me3 decreases at the PPAR- gene in iBAT 
upon cold exposure (Fig. 6F). ChIP-qPCR also showed that 
H4K20me3 is enriched at the PPAR- gene in proliferating brown 
pre-adipocytes (Fig. 6G), in which PPAR- is normally repressed 
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Fig. 4. Suv420h dKO mice are resistant to diet-induced obesity. (A) Weight gain of control and dKO mice during 14 weeks of normal diet (ND) or HFD (n = 6 for both 
genotypes in both diets). Body weight was measured weekly for 14 weeks of treatment. Weight gain is represented as percentage of initial weight. (B) Total energy intake (MJ) 
during the feeding regimen in (A) (n = 6 for both genotypes in both diets). Food intake was measured weekly during both feeding regimens. At the end of the experiment, 
total energy intake was calculated on the basis of the energy content of the two diets. (C) Final weight of the mice at the end of the feeding regimen in (A) (n = 6 for both 
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Pedrotti et al., Sci. Adv. 2019; 5 : eaav1472     17 April 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 14

(46). Treatment with the Suv420h-specific inhibitor A-196 (47) sig-
nificantly abrogates H4K20me3 at the PPAR- gene (Fig. 6G) and 
leads to a significant increase in PPAR- expression level compared 
to vehicle-treated cells [dimethyl sulfoxide (DMSO)] (Fig. 6H). 
These results suggest that PPAR- is a direct Suv420h target, which 
could play an important role in Suv420h metabolic regulation. 
Accordingly, treatment of proliferating brown pre-adipocytes with 
A-196 is sufficient to significantly activate the expression of PPAR- 
direct target genes (Fig. 6I), which is blocked by concomitant treat-
ment with a specific PPAR- inhibitor. Moreover, A-196 treatment 
leads to a significant increase of the respiratory rate of brown 
pre-adipocytes (Fig. 6L), and this effect depends on PPAR- since it 
is blocked by treatment with the PPAR- inhibitor (Fig. 6L). In 
summary, our results indicate that Suv420h proteins respond to 
environmental stimuli by regulating PPAR- expression and path-
ways important for energy expenditure and obesity.

DISCUSSION
There is increasing interest in understanding the mechanisms regu-
lating BAT function, with the goal of controlling energy expenditure 

to fight obesity and comorbidities. Since the discovery of appreciable 
amounts of BAT in human adults (6), major attention has been 
focused toward developing ways to manipulate BAT activity for the 
treatment of metabolic syndrome. Elucidation of these regulatory 
mechanisms may provide novel targets for therapeutics. Epigenetics 
has emerged as an exciting area for drug development because 
epigenetic enzymes have the capacity to integrate gene expression 
with the metabolic state of the cell and are often aberrantly 
expressed in human disease (48, 49).

Here, we have demonstrated that Suv420h ablation activates 
BAT metabolism, resulting in improved metabolic parameters and 
systemic protection against obesity. Previous studies also provided 
indirect evidence supporting a possible role for Suv420h enzymes in 
metabolism regulation and in intergenerational transmission of 
metabolic programming (22). Nevertheless, a direct evaluation of 
the role of Suv420h in adipose tissue was not available thus far. To 
our knowledge, our study provides the first demonstration of a 
direct role for Suv420h enzymes in the regulation of metabolism. 
While there are likely other direct Suv420h targets that could con-
tribute to the phenotype of dKO mice, our data strongly suggest 
that PPAR- is a key mediator of Suv420h metabolic activity. 

Fig. 5. Transcriptional changes in dKO mice after HFD regimen. (A) Volcano plot showing the significance of differentially expressed genes in iBAT of dKO versus WT 
in RNA-seq Diet. The total number of up-regulated (red) and down-regulated (black) genes is shown above the plot. Red dots are considered significant with an adjusted 
P < 0.1. (B) Network representation of functional enriched biological processes and pathways. Up-regulated genes in dKO were found enriched in several pathways 
(Enrichr, Fisher Test; FDR < 0.05, table S2) and grouped on the basis of the pathways they belong to. Pathways and processes were further grouped into five higher hier-
archy super pathways after visually inspecting the clusters. The number of genes contained in each super pathway is shown in parentheses next to the pathway name. 
(C) Heatmap of normalized (Z score on samples) levels of expression of RT-qPCR–validated genes (in fig. S5) grouped by the three super clusters of interest in (B).
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PPAR- is a nuclear receptor that regulates lipid metabolism, glu-
cose homeostasis, and energy balance (50). Synthetic PPAR- 
ligands of the TZD class are used as insulin sensitizers in the treatment 
of diabetes (51, 52). Yet, their use has been limited by adverse 
effects, such as heart failure, weight gain, fluid retention, and bone 
fragility (53). Notably, there are several mechanisms contributing to 

weight gain associated to systemic PPAR- activation. Weight gain 
may result from increased body fat. This is adipose depot specific, 
since TZDs have been shown to induce reduction of visceral fat but 
to increase subcutaneous fat. An additional mechanism influencing 
body weight gain upon systemic PPAR- activation is increased 
body fluid volume due to water retention. In addition, this process 
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Fig. 6. PPAR- is a direct target of Suv420h. (A) GSEA of PPAR- targets in the ChIP-PET (pair end-tagging) experiment in mouse from the ChEA database for RNA-seq Young (left) 
and RNA-seq Diet (right). (B) Venn diagram showing the overlap of genes up-regulated in Suv420h dKO with a comprehensive dataset of PPAR- targets as defined in Materials 
and Methods. (C to E) RT-qPCR for PPAR- expression in the indicated experimental condition [n = 3 controls and n = 7 dKO in (C); n = 6 for both genotypes and feeding 
conditions in (D); n = 6 for both conditions in (E)]. (C) RT-qPCR for PPAR- expression in iBAT from control and dKO mice. (D) RT-qPCR for PPAR- expression in iBAT from 
mice used in the DIO (see Fig. 4) experiment, after 14 weeks of HFD regimen. Control mice were fed with standard chow (ND, normal diet). (E) RT-qPCR for PPAR- expression 
in iBAT from mice with or without cold exposure (see Fig. 2, E and F). (F and G) ChIP assays using the indicated antibodies analyzed by qPCR using primers located on the 
PPAR- and glyceraldehyde phosphate dehydrogenase (GAPDH) (used as negative control) genomic regions as shown by the scheme above each graph (n = 3). 
(F) ChIP-qPCR performed in iBAT dissected from mice with or without cold exposure. The day before the experiment, mice were grouped in cages with water and bedding, 
and starved overnight. On the day of the experiment, mice were placed either at room temperature or at 4°C for 6 hours. At the end of the treatment, mice were eutha-
nized, and iBAT was isolated. Chromatin was extracted from iBAT as described in Materials and Methods and used for ChIP. (G) ChIP-qPCR performed in proliferating brown 
pre-adipocytes treated for 7 days with either the Suv420h inhibitor A-196 (10 mM) or DMSO, as control. IgG, immunoglobulin G. (H) RT-qPCR for PPAR- expression in 
brown pre-adipocytes treated for 7 days with the Suv420h-specific inhibitor A-196 (10 mM) (n = 4) (left). Representative Western blot showing decrease of H4K20me3 
upon treatment (right). (I) RT-qPCR expression analysis of the indicated PPAR- target genes in brown pre-adipocytes treated with A-196 (10 mM) alone or in combination 
with the iPPAR- (10 M) (n = 3). For A to I, values are expressed as mean ± SEM; t test. (L) Oxygen Consumption Rate (OCR) measurement in proliferating brown pre-adipo-
cytes treated with A-196 (10 M) alone or in combination with the iPPAR- (10 mM) (mean ± SEM; one-way ANOVA) (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001, ++P < 0.01 relative 
to A-196; +++P < 0.001 relative to A-196.
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is tissue and cell type specific, given that PPAR- deletion selectively 
in kidney or in endothelial cells blocks TZD-induced weight gain in 
animal models (54–56). TZD-mediated activation of PPAR- also 
leads to increased feeding due to a tissue-specific activity mediated 
by PPAR- in the central nervous system (57). Hence, it is tempting 
to speculate that we did not observe weight gain in Suv420h dKO 
mice due to the tissue-restricted PPAR- activation supporting the 
notion that targeting Suv420h could help dissociate the benefit of 
PPAR- activation from its side effect. Suv420h dKO mice display 
transcriptomic changes with a strong PPAR- signature, resulting 
in the up-regulation of several PPAR- target genes relevant for 
BAT metabolic functions. Pharmacological Suv420h inhibition is 
not toxic to brown adipocytes and is sufficient to activate PPAR- 
expression and mitochondria respiration. However, systemic inhi-
bition of Suv420h activity in vivo might be unfeasible due to the 
embryonic lethality of Suv420h1 KO mice (20). Future work devoted 
to developing ways to target Suv420h specifically in BAT could help 
overcome this issue. Alternatively, direct Suv420h epigenetic 
targets important for bioenergetics and metabolism selectively 
expressed in BAT could be targeted to achieve safe and effective 
therapeutics. In this respect, it is important to notice that Suv420h 
depletion is associated with several systemic effects including WAT 
browning. Among the genes significantly up-regulated in Suv420h 
dKO mice, we found several genes encoding for secreted proteins 
with endocrine function known to act on other tissues to stimulate 
energy expenditure, such as lpl (58), mup1 (59), and gdf5 (60). 
Based on this, it is tempting to speculate that increased production 
of a number of BAT-derived secreted molecules could have a 
systemic effect on other tissues contributing to the consequences of 
Suv420h ablation.

We found that the expression of both Suv420h1 and Suv420h2 is 
significantly down-regulated in BAT by cold exposure, which has been 
confirmed by a very recent publication (61). Suv420h2 and H4K20me3 
have been found to be up-regulated by hyperglycemia (24). Together, 
these results suggest that Suv420h expression and/or activity could 
constitute a nexus between environmental stimuli and the epigenetic 
regulation of metabolism.

Our results indicate that only by deleting both Suv420h1 and 
Suv420h2 can we completely abrogate H4K20me3 in BAT. Nev-
ertheless, we cannot exclude the idea that single KO for either 
Suv420h1 or Suv420h2 genes might be sufficient to observe al-
terations of metabolic features. Future work might evaluate the 
individual contribution of Suv420h1 and Suv420h2 to metabo-
lism regulation and obesity susceptibility. In summary, our re-
sults support a key role for Suv420h enzymes in the epigenetic 
regulation of the pathways controlling metabolism in response 
to environmental stimuli and as new potential targets for meta-
bolic disorders.

MATERIALS AND METHODS
Generation of Suv420h dKO mice
All animal procedures were approved by the Institutional Animal Care 
and Use Committee of IRCCS (Istituto di Ricerca e Cura a Carattere 
Scientifico) San Raffaele Scientific Institute and were communicated 
to the Italian Ministry of Health and local authorities according to 
Italian law. Mice were housed and maintained on a 12-hour light/ 
12-hour dark cycle at constant temperature (23°C). Food and water 
were available ad libitum. To obtain Suv420h1−/−_Suv420h2−/− dKO 

mice, Suv420h1flox/flox and Suv420h2−/− mice (20) were bred with Myf5-
Cre mice (JAX stock 007893), in which the cre recombinase gene was 
driven by the Myf5 promoter. All animals were of the C57Bl/6J genetic 
background. Unless differently stated, age-matched female mice be-
tween 4 and 8 months were used for experiments.

Metabolic studies
For DIO studies, 7-week-old mice were fed either regular chow (ND) 
or an HFD (E15744-34, 45 kJ% fat, Charles River) for 14 weeks. Body 
weight and food intake were measured weekly. For the glucose toler-
ance test experiment, mice fasted for 16 hours were injected intraper-
itoneally with d-glucose (2 g/kg). Blood glucose levels were measured 
from the tail vein at the indicated times using a standard glucometer.

Adipose tissue measurement by magnetic resonance
MRI was performed with a dedicated horizontal 7-T scanner 
(Bruker, BioSpec 70/30 USR, Paravision 5.1; Germany). High-
resolution T1-weighted sequences with and without fat saturation 
were acquired covering a body region from the hepatic dome to the 
inguinal canal. By means of image subtraction (T1 − T1 fat), a “pure 
fat” result stack was obtained, on which a mask definition of adipose 
tissue along the abdominal fascia was manually drawn to separately 
segment the intraperitoneal/retroperitoneal perigonadal fat 
compartment and the subcutaneous one. After abdominal adipose 
tissue segmentation, volume quantification was semi-automatically 
performed using a region growing function. Image processing and 
all the analyses were performed by a radiologist with experience in 
preclinical imaging, using MIPAV Open Source Software v.5.3.4 
(https://mipav.cit.nih.gov/index.php).

Cold exposure experiment
For cold exposure experiments, mice fasted overnight (16 hours) 
were kept in a cold room (4°C). The core body temperature was 
recorded hourly for 6 hours using a rectal probe (RET-3, ThermoWorks). 
At the end of the experiment, mice were euthanized for subsequent 
biochemical experiments.

Histology analysis
For H&E staining, iBAT and pgWAT were fixed in 10% neutral-
buffered formalin. Samples were then embedded and processed for 
staining by the San Raffaele Mouse Clinic according to standard 
procedures. Section images were acquired with an Aperio Digital 
Pathology Slide Scanner, and the cross-sectional area (CSA) of adi-
pocytes was evaluated using ImageScope software.

For immunohistochemistry, pgWAT sections were rehydrated 
at room temperature, and antigen retrieval was performed using 
10 mM Na-citrate (pH 6; S1804, Sigma-Aldrich). Endogenous 
peroxidase was inhibited by incubation for 10 min at room tem-
perature with methanol and 0.03% hydrogen peroxide. Then, 
sections were incubated overnight at 4°C with anti-Ucp1 anti-
body (1:500 dilution; ab10983, Abcam). Then, samples were in-
cubated with 1:500 dilution of a secondary antibody conjugated 
with biotin (E0432, Dako). An avidin-biotin-peroxidase complex 
was added (Vector Lab, Burlingame, CA), and sections were 
incubated for 5 to 10 min with a DAB (3,3′-diaminobenzidine) 
substrate (Dako, Glostrup, Denmark).

Gomori trichrome staining on skeletal muscle was performed as 
previously described (62). CSA analysis was performed using ImageJ 
software.

https://mipav.cit.nih.gov/index.php
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Cell culture and treatment
Immortalized brown pre-adipocytes (47) were cultured in DMEM/
F12 supplemented with 10% fetal bovine serum. For inhibitor treat-
ment, cells were plated at 50% confluence. The A-196 inhibitor was 
dissolved in DMSO and added to the culture medium (final con-
centration of 10 M) for 7 days. For double treatment, iPPAR- 
(Selleckchem T0070907) was added to A-196–treated cells at day 5 
at a final concentration of 10 M. Control cells were treated with 
DMSO alone. At day 7, cells were collected and used for Western 
blot, RNA extraction, and RT-qPCR analysis (see below). For respi-
rometry assays, cells were collected and processed as described below.

Western blot
For analysis of the Suv420h histone mark in fig. S1C, BAT was dis-
sected from wild-type C57/Bl6, Myf5-Cre, Suv420h1 single-KO 
(sKO1), Suv420h2 single-KO (sKO2), and dKO mice (fig. S1C, 
three per genotype). To analyze the Suv420h histone mark after 
cold challenge (fig. S2), wild-type C57/Bl6 mice were placed at 
either room temperature or 4°C for 6 hours before they were eutha
nized. For both experiments, BAT was lysed using a dounce homog-
enizer in Triton extraction buffer [TEB: PBS (phosphate-buffered 
saline) containing 0.5% Triton X-100 (v/v)] and kept for 10 min on ice. 
Samples were centrifuged at 6500g for 10 min at 4°C. The pellets 
were then washed in half of TEB and centrifuged as before. Acid 
extraction was carried out overnight at 4°C by resuspending the pel-
let in 0.2 N HCl. The day after, samples were centrifuged at 6500g 
and the supernatant was collected and neutralized with 2 M NaOH 
at 1/10 of the volume of the supernatant.

Samples were separated on 15% acrylamide gel, and the membrane 
was decorated using anti-H4 and anti-H4K20me3 antibodies (table 
S4). IRDye 800CW secondary antibody was used in combination with 
Odyssey Imaging Systems. Quantification of the ratio H4K20me3 over 
H4 total was performed using Odyssey Imaging Systems software.

Oxygen consumption measurement
Mitochondria respiratory rates were measured into the O2K oxy-
graph chambers (Oroboros, Instruments Oroboros, Innsbruck, Austria) 
at 37°C in the respiration medium MiR06 [0.5 mM EGTA, 3 mM 
MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM 
Hepes, 110 mM sucrose, fatty acid–free bovine serum albumin 
(1 g/liter), and catalase (280 U/ml) (pH 7.1)]. To detect the electron 
flow through respiratory chain complexes, titrations of all of sub-
strates, uncouplers, and inhibitors were added in series as previously 
reported (63, 64).

Briefly, we added pyruvate (10 mM) and malate (2 mM) to 
obtain state 2 respiration. Then, we injected ADP (2.5 mM) to eval-
uate state 3 respiration, and the further addition of succinate (10 mM) 
allowed the measurement of complex I (CI)– and CII-driven respi-
ration (state3 + Succ). Then, CI was inhibited by injecting rotenone 
(0.5 M) (state3 + Succ+ Rot) and state 4 was measured by adminis-
tration of oligomycin (2 g/ml). Last, we added antimycin A (2.5 M) 
to inhibit CIII obtaining a residual oxygen consumption. Cyto-
chrome c (10 M) was added to test the integrity of the outer mito-
chondrial membrane. Oxygen fluxes were corrected by subtracting 
residual oxygen consumption from each steady state.

For experiments with cell culture, 1 × 106 viable cells were trans-
ferred into oxygraph chambers. When oxygen consumption reached 
a plateau, a steady-state level was obtained displaying routine respi-
ration. The addition of oligomycin (0.5 M) resulted in leak 

respiration. Subsequently, the proton gradient was released by 
stepwise titration (0.5 M each step) of the uncoupler carbonyl 
cyanide-4-(trifluoromethoxyphenylhydrazone) until the maximum 
respiration was achieved. The addition of 0.5 M rotenone and 2.5 M 
antimycin A blocked mitochondrial respiration, showing residual ox-
ygen consumption. Initial addition of pyruvate (10 mM) and ma-
late (2 mM) was performed to test the integrity of the plasma 
membrane. Oxygen fluxes were corrected by subtracting residual 
oxygen consumption from each steady state.

RNA extraction and RT-qPCR analysis
Total RNA was extracted and treated with deoxyribonuclease I, using 
TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized 
using Invitrogen’s SuperScript III First-Strand Synthesis SuperMix. 
qPCRs were performed with SYBR GreenER qPCR SuperMix Uni-
versal (Invitrogen) using the CFX384 Real-Time PCR Detection 
System (Bio-Rad). Relative quantification was calculated with CFX 
Manager Software V.1.6. TATA-binding protein (Tbp) was used 
as housekeeping gene for sample normalization. The Student’s t 
test was used to evaluate statistical significance. Primers were de-
signed using Primer3 tool (http://primer3.ut.ee) and are listed in 
table S4.

Chromatin immunoprecipitation
For chromatin isolation from BAT, dissected tissues were pulled to-
gether, minced, and homogenized using a dounce. Cross-linking 
was performed by adding formaldehyde (Sigma-Aldrich) to a final 
concentration of 1% in PBS for 10 min at room temperature. After 
formaldehyde quenching with 125 mM glycine (Sigma-Aldrich) for 
5 min, isolated cells were centrifuged at 1350g for 10 min at 4°C. Pellet 
was lysed in Wash Buffer (WB) 1 solution [10 mM tris-HCl (pH 8), 
0.25% Triton, 1 mM EDTA, and 0.5 mM EGTA] for 10 min on ice. 
The samples were centrifuged at 1350g for 5 min at 4°C. The resulting 
pellet was washed in 1 ml of WB2 solution [10 mM tris-HCl (pH 8), 
200 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA] for 10 min at 4°C.
Next, samples were centrifuged at 1350g for 5 min at 4°C, and the 
resulting pellet was lysed in WB3 solution [15 mM tris-HCl (pH 8), 
10 mM EDTA, and 1% SDS]. WB1, WB2, and WB3 solutions were 
supplemented with protease inhibitor (Complete EDTA-free Protease 
Inhibitor Cocktail Tablets, Roche).

Brown pre-adipocytes were cross-linked by directly adding form-
aldehyde to the medium (Sigma-Aldrich) to a final concentration of 
1%. Cells were incubated with gentle swirl 10 min at room tempera-
ture. After formaldehyde quenching with 125 mM glycine (Sigma-
Aldrich) for 5 min, cells were washed with PBS and harvested by 
scraping and pelleted. Each cell pellet derived from one 15-cm dish 
was lysed in 1 ml of Lysis Buffer (LB) 1 solution [50 mM Hepes-KOH 
(pH 7.5), 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 
and 0.25% Triton X-100; all from Sigma-Aldrich] for 10 min on ice. 
The samples were centrifuged at 1350g for 5 min at 4°C. The resulting 
pellet was washed in 1 ml of LB2 solution [10 mM tris-HCl (pH 8), 
200 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA; all from Sigma-
Aldrich] with gentle swirl 10 min at 4°C. Next, samples were centrifuged 
at 1350g for 5 min at 4°C, and the resulting pellet was lysed in 1 ml of 
LB3 solution [10 mM tris-HCl (pH 8), 100 mM NaCl, 1 mM EDTA, 
0.5 mM EGTA, 0.1% Na-deoxycholate, and 0.5% N-lauroylsarcosine; 
all from Sigma-Aldrich]. LB1, LB2, and LB3 solutions were supplemented 
with protease inhibitor (cOmplete EDTA-free Protease Inhibitor 
Cocktail Tablets, Roche).

http://primer3.ut.ee
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Chromatin isolated from both BAT and brown pre-adipocyte 
was sonicated with Bioruptor (Diagenode). Briefly, 1-ml aliquots of 
either WB3 or LB3 lysates in 15-ml polystyrene tubes were sonicated 
for two rounds of 10 min each (high intensity, 30 s on/30 s off). 
Before the precipitation step, Triton X-100 (Sigma-Aldrich) was 
added to chromatin samples at a final concentration of 1%. For both 
histone and histone modification, 5 g of chromatin was diluted in 
a final volume of 1 ml in LB3 buffer and incubated with 5 g of 
antibody overnight at 4°C in rotation. The equivalent of 10% of 
single IP was collected as input fraction. The day after, Dynabeads 
Protein G (Thermo Fisher Scientific) were washed three times with 
0.5% BSA (Jackson ImmunoResearch) in PBS, and 50 l of washed 
beads was added to each sample and rotated for 3 hours at 4°C. 
Then, five washes with radioimmunoprecipitation assay buffer 
[1 mM EDTA, 50 mM Hepes-KOH (pH 7.6), 500 mM LiCl, 1% NP-40, 
and 0.7% Na-deoxycholate; all from Sigma-Aldrich] and one wash 
with TE buffer [10 mM tris-HCl (pH 8) and 1 mM EDTA; both 
from Sigma-Aldrich] containing 50 mM NaCl were performed. 
Next, samples were centrifuged for 3 min at 960g at 4°C. The super-
natant was discarded, and 250 l of elution buffer (TE buffer with 
2% SDS) was added to the beads-antibody-chromatin complex. 
Samples were incubated in a thermo mixer for 15 min at 65°C while 
shaking and then centrifuged for 1 min at room temperature at 
16,360g. The supernatant was transferred to a new tube, and samples, 
together with the input fractions to which 170 l of elution buffer 
was added (final volume, 250 l), were cross-link–reverted overnight 
at 65°C. The day after, samples were incubated for 1 hour at 55°C 
with 5 l of Proteinase K (stock, 20 mg/ml; Promega). For DNA 
purification, the QIAquick PCR Purification Kit was used (Qiagen), 
following the manufacturer’s recommendations. DNA was eluted 
in 50 l of TE buffer, and 1 l was analyzed in quantitative real-time 
PCR with the SYBR GreenER qPCR Kit (Thermo Fisher Scientific). 
Antibodies and primers used for ChIP-qPCR analysis are listed in 
table S4.

RNA sequencing
Total RNA was extracted using RNA spin columns (PureLink RNA 
Mini Kit, Ambion). For RNA-seq Young (Fig. 3 and table S1), total 
RNA was extracted from control- and Suv420h dKO–derived 
BAT. For RNA-seq Diet (Fig. 5 and table S1), total RNA was isolated 
from BAT collected from control and Suv420h dKO mice in both 
diet regimens. RNA quantification was carried out using Qubit 
Fluorometric Quantification (Life Technologies), and 500 ng of 
RNA was used to prepare the library. Library generation was 
performed using the QuantSeq 3′ mRNA-seq Library Prep Kit. The 
procedure was initiated by oligo(dT) priming, and then the first-
strand synthesis and RNA removal were followed by random-primed 
synthesis of the complementary strand. The resulting double-stranded 
cDNA was purified with magnetic beads to remove all reaction 
components. The adapter sequences were added by library PCR 
amplification, and the proper cycle number was previously deter-
mined by qPCR. The library was purified from PCR components 
using purification beads. Last, the quality of the samples was deter-
mined using Bioanalyzer (Agilent Technologies). Libraries were 
sequenced using an Illumina HiSeq 2500 System based on standard 
protocols (100-base-pair single-end reads). Raw sequencing reads 
(FASTQ) were processed individually and mapped to the mouse 
genome reference version GRCm38 (mm10) from Gencode (M13). 
The mapping was performed using STAR (v2.5.3a) (http://code.

google.com/p/rna-star/) using soft clipping and all other parameters 
set to default values according to recommended data analysis 
workflow by Lexogen. Gene abundance was determined using feature-
Counts (http://subread.sourceforge.net) and normalized using 
calcNormFactors function from edgeR R/Bioconductor package 
(http://bioconductor.org) followed by differential gene expression 
analysis using limma (http://www.bioconductor.org) for differences 
due to the genotype (KO versus control). In RNA-seq Diet, the 
treatment (ND/HFD) was added as a covariate. Genes were considered 
as expressed when showing more than 1 cpm and differentially 
expressed when showing a false discovery rate (FDR) < 0.1. RNA-
Seq data of both experiments have been uploaded to the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), 
with accession number GSE117482.

Functional enrichment
For functional enrichment analyses, Enrichr web tool was used 
(http://amp.pharm.mssm.edu/Enrichr/). Briefly, Enrichr performs 
a Fisher enrichment test, corrects for multiple comparisons, and 
applies an additional Z score on P values to provide additional infor-
mation on Fisher P value relevance (http://amp.pharm.mssm.edu/
Enrichr/). Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Biocarta, Reactome, and WikiPathways databases (2016) were used 
for pathway enrichment, and Gene Ontology biological processes, 
molecular function, and cellular components databases (2015) were 
used for ontologies. ChEA (ChIP-Seq enrichment experiments 
database, 2016) was used to explore enrichment in DNA binding 
factors. For pathway analysis (Figs. 3 and 5 and table S2), categories 
were considered enriched when shown an FDR < 0.05, a Z score 
< −1.75, and three or more genes in overlap.

ChEA of up-regulated targets in dKO mice, both in RNA-seq 
Young and in RNA-seq Diet, revealed that several PPAR- ChIP-Seq 
experiments were significantly enriched. Those results are cited and 
presented in table S3 under the sheet name “ChEA_Analysis (RNA-seq 
Young)” and “ChEA_Analysis (RNA-seq Diet).” Genes present in 
each of the datasets (DatasetID_PubMedID_ChIP-Seq_CellLine_
Species) and up-regulated in both experiments are present under 
the first and second sheets of table S3 under the name “PPAR-g 
targets UP (RNA-seq Young)” and “PPAR-g targets UP (RNA-seq 
Diet)” with their respective log2FC and P value for dKO RNA-seq 
experiments.

We have defined a very comprehensive set of PPAR- targets as the 
union of all genes present in PPAR- ChIP experiments (ChEA_2016, 
ENCODE_and_ChEA_Consensus_TFs_from:ChIP-X), genes up-
regulated after PPAR- perturbations (TF_Perturbations_Followd_
by_Expression), genes up-regulated upon PPAR- agonist stimulation 
(Drug_Perturbations_from _GEO_up) and PPAR- overexpression 
(Single_Gene_Perturbations_from:GEO_up), and PPAR- signaling 
pathway genes (KEGG, WikiPathways) for RNA-seq Young that 
were separately found enriched by Enrichr. In the RNA-seq Diet, 
we also included those for the transcription factor coexpression 
database (ARCHS4_TFs_Coexp) and an internal database of 
Enrichr (Enrichr_Submissions_TF-Gene_Coocurrence) (table S3). 
GSEA preranked analysis was performed using the Java version of 
the software (gsea2–2.2.3.jar; software.broadinstitute.org/gsea/), 
using the log2FC-obtained RNA-seq contrasts (RNA-seq Young 
genotype and RNA-seq Diet genotype contrast).

To generate Figs. 3B and 5B and figs. S3 and S5, the significant 
categories were grouped in clusters based on a higher hierarchy of 

http://code.google.com/p/rna-star/
http://code.google.com/p/rna-star/
http://subread.sourceforge.net
http://bioconductor.org
http://www.bioconductor.org
https://www.ncbi.nlm.nih.gov/geo/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://software.broadinstitute.org/gsea
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biological processes or components after careful visual inspection. 
This clustering of categories contributes to enhance the interpret-
ability of functional enrichment analyses. In the figures, a graph 
linking genes with each other when belonging to the same category 
was made using the R package FGNet (http://bioconductor.org/
packages/release/bioc/html/FGNet.html), and the clusters of the 
different significant categories were made visible by grouping the 
genes together using Cytoscape (https://cytoscape.org/). For a few 
genes belonging to categories included in different clusters, the 
gene was manually placed into one unique cluster after careful 
inspection of its literature and deciding to which high hierarchy 
biological process it belongs.

Statistics
Unless stated otherwise, statistical comparisons were two-tailed tests and 
performed using GraphPad Prism 6 (GraphPad Software). The type 
of statistical test and the number of independent experiments are 
provided for each dataset in the corresponding figure legend. The 
differences were considered statistically significant when P ≤ 0.05 
and was reported as follows: ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaav1472/DC1
Fig. S1. Suv420h analysis in different metabolic tissues.
Fig. S2. Suv420h epigenetic mark decreases upon cold exposure.
Fig. S3. Validation of up-regulated genes and clustering of down-regulated genes for  
RNA-seq Young.
Fig. S4. Validation of up-regulated genes for RNA-seq Diet.
Fig. S5. Clustering of down-regulated genes for RNA-seq Diet.
Fig. S6. Overlap of differentially expressed genes in RNA-seq Young and RNA-seq Diet.
Data file S1. RNA-seq data analysis, RNA-seq Young, and RNA-seq Diet.
Data file S2. Functional enrichment analysis, RNA-seq Young, and RNA-seq Diet.
Data file S3. PPAR- targets up-regulated in KO versus control (RNA-seq Young and RNA-seq Diet).
Data file S4. List of primers and antibodies.
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