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Rising interest in inverse Compton sources has increased the need for efficient models that properly
quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-
art simulations rely on Monte Carlo–based methods, which, while properly expressing scattering behavior
in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-
probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for
the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression
describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and
vertical emittance on the properties of the scattered radiation. We also present an improved version of the
code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016)], that can perform
the same simulations as those present in CAIN and give accurate results in low-probability regions by
integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that
closely verify the behavior predicted by the analytically derived scaling law.
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I. INTRODUCTION

The increasing demand for efficient production of high-
energy photons has resulted in interest in the construction
of inverse Compton sources. In particular, the desire to
create hard x rays from compact devices has propelled
many groups worldwide to construct and improve such
sources [1–10]. The primary attraction of these sources is
that they are capable of yielding emissions with low
bandwidths, which are desirable in various applications.
It is thus necessary to study how certain interaction
parameters of inverse Compton sources—the most impor-
tant being the properties of the colliding electrons, the
incident laser, and the aperture—affect the linewidth of
scattered radiation. In the regime where electron recoil is
negligible (Thomson regime), numerous studies provide
analytical estimates of the dependence of the scattered
linewidth (see [11–13], and references therein). In the same
regime, an innovative scheme of laser chirping has been

devised to substantially decrease the linewidth of scattered
radiation [14–17]. However, the regime where electron
recoil is important (Compton regime) has not been scruti-
nized as closely, and, therefore, the effects of properties of
the electron and photon beams on the scattering linewidth
have so far remained largely unexplored [18]. In this paper,
we analytically derive a scaling law for the linewidth of
scattered radiation in the large electron recoil, low laser
intensity (linear Compton) regime. We also present a
numerical tool for the computation of scattered radiation
spectra which is more accurate than the existing methods.
These scaling results and the numerical tool may be
instrumental when designing and optimizing Compton
sources of many MeVs or GeVs, such as that described
in Ref. [10].
Numerical simulations have been developed to study the

performance of inverse Compton sources. The current
standard used for such investigations is CAIN, a collection
of codes used to model beam-to-beam interaction [19]. The
main algorithm employed is MonteCarlo integration, for
which rare events in nature will be as rare in the simulation.
This means that the statistics in situations where low
scattered photon counts are expected—for example, in
the tails of the distribution or at very narrow apertures—
will suffer from poor statistics. Our proposed code, the
improved codes for Compton simulation (ICCS), will
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overcome this problem by the nature of its formalism: The
computed spectra of each individual electron-laser inter-
action will reflect the probabilities of photon scattering
over the entire allowed range, providing statistics in the
tails at the same level as in the peaks. ICCS can be used to
simulate and verify the analytically derived radiation line-
width scaling laws, improving the estimates presented
in Ref. [18].
The minimization of the bandwidth of scattered radiation

is of key importance in all light sources. In Compton
sources, it is necessary to consider the effects of all of the
interaction parameters—the properties of the colliding
electrons, the incident laser, and the aperture—on the
bandwidth of scattered radiation in all regimes. By con-
sidering the behavior of the Compton formula (itself
dependent on the electron recoil of the interaction, quanti-
fied by a unitless recoil factor X), we confirm analytically
that the influence of the laser bandwidth and aperture is
suppressed in regimes where electron recoil is substantial,
as discussed in Ref. [18]. Therefore, it is only the properties
of the electron beam that dominate the bandwidth of
scattered radiation at high electron energies. An important
consequence then arises, as first reported in Ref. [18]:
When the electron recoil is substantial, the quality of the
laser beam and the electron beam emittance is not as
important as when the recoil can be neglected. However,
electron beam energy spread remains important in all
regimes of the recoil parameter.
The paper is organized as follows. In Sec. II, the scaling

of scattered radiation bandwidth is discussed. The sub-
sections describe, in order, mathematical derivations of a
resultant scaling law, verification of the derived relation
using numerical simulations of Gaussian laser beams when
the electron recoil is negligible, moderate and substantial,
and a discussion of applications, consequences, and lim-
itations. In Sec. III, the computation of low-intensity
Compton spectra using ICCS is outlined, and its intricacies
are described in greater detail. In the subsections, we
describe implementation improvements applied to the code
and benchmark it against CAIN [19]. Finally, a discussion
and summary of conclusions is provided in Sec. IV.

II. SCALING OF SCATTERED
RADIATION LINEWIDTH

Understanding the scaling of scattered radiation band-
width in Compton sources at high electron energies is a key
goal of this investigation. In this section, we present a
derivation of an analytic scaling law, test it against results
from numerical simulations with ICCS, and consider its
applicability and limitations. The key assumption is that the
individual sources of linewidth are statistically indepen-
dent, so the total spread of scattered energies can be
expressed as a simple rms value.

A. Derivation of scaling law

The general Compton formula relating frequencies after
scattering at some angle 0 ≤ θ ≤ θmax and energies of the
incident electrons and photons, as given in Eq. (49) of
Ref. [12], is

ω0ðθÞ ¼ ωð1þ βÞ
1 − β cosðθÞ þ fℏω=ðγmec2Þg½1þ cosðθÞ� ; ð1Þ

where ω is the incident laser frequency, ω0ðθÞ is the
scattered radiation frequency, c is the speed of light,
β is the ratio of electron speed and the speed of light c:
ve=c, θ is the scattering angle, me is the rest mass of
an electron, and γ ¼ Ee=ðmec2Þ. At relativistic and ultra-
relativistic energies (as is the case in Refs. [12,18]),
β ≈ 1.
It is also important to recall the definition of X, a

representation of electron recoil in the collision [18]:

X ¼ 4EeEL

ðmec2Þ2
; ð2Þ

where Ee is the energy of the electron, EL is the lab-frame
energy of a counterpropagating photon, and mec2 ≈
511 keV is the rest energy of an electron.
In order to obtain an expression in terms of X from

Eq. (1), some algebraic manipulation is required using the
identity 1=γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, and

ω0ðθÞ ¼ ωð1þ βÞ2γ2
γ2ð1 − β cos θÞð1þ βÞ þ X

4
ð1þ cos θÞð1þ βÞ :

ð3Þ

Using the first-order expansion cosðθÞ ≈ 1 − θ2=2, we
obtain

ω0ðθÞ ¼ ωð1þ βÞ2γ2
1þ βð1þβÞγ2θ2

2
þ Xð1þβÞð2−θ2=2Þ

4

: ð4Þ

For β ≈ 1, the expression reduces to

ω0ðθÞ ≈ 4ωγ2

1þ X þ θ2γ2
; ð5Þ

since γ2 ≫ X=4. Expressing Eq. (5) in terms of energy
rather than frequency yields

E0
ph ¼

4ELγ
2

1þ X þ θ2γ2
; ð6Þ

where E0
ph is the scattered photon energy. We use this

equation to derive the scattered energy spread from the
aperture, electron beam energy spread, and photon energy
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spread terms of the scaling law. The expression for the
maximum scattered energy at the Compton edge can be
obtained by setting θ ¼ 0:

E0
ph;max ¼

4γ2EL

1þ X
; ð7Þ

which is consistent with Eq. (7) presented in Ref. [18].

1. Dependence of linewidth on electron
and photon beam bandwidth

The scattered energy spread generated by energy spreads
in the electron beam and laser can be derived in a similar
way. Taking the total derivative of Eq. (7) yields

dE0
ph ¼

8γELdγ
1þ X

þ 4γ2dEL

1þ X
−
4γ2ELdX
ð1þ XÞ2 : ð8Þ

Dividing by the result of Eq. (6) leads to

dE0
ph

E0
ph

¼ 2þ X
1þ X

dγ
γ
þ 1

1þ X
dEL

EL
: ð9Þ

This expression is valid only if γ and EL are distributed
as independent random variables, and for θ ¼ 0. A more
general expression is obtained when taking the total
derivative of Eq. (6) and evaluating the relative error:

dE0
ph

E0
ph

¼ σγ
Eγ

þ σL
EL

−
2ðγθÞ2

1þ X þ ðγθÞ2
dθ
θ
; ð10Þ

where

σγ
Eγ

¼ 2þ X
1þ X þ ψ2

dγ
γ
;

σL
EL

¼ 1þ ψ2

1þ X þ ψ2

dEL

EL
: ð11Þ

These expressions introduce a modification to Eq. (9) on
the order of ðγθÞ2. While the modification may be negli-
gible at small scattering angles, it becomes appreciable
at larger angles. It should be cautioned that dθ=θ is not
the aperture term. This is because the dependence of the
scattered linewidth on the aperture encompasses a wide
range of scattering angles and is not dependent on the error
of a single scattering event.

2. Dependence of linewidth on small apertures

To calculate the energy spread of the photons
passing through an aperture, we must use the electron
distribution function dN=dΩðθÞ as a function of some
scattering angle.
For small apertures, γθmax ≪ 1, the distribution can be

approximated as uniform: dN=dΩð0Þ ≈ dN=dΩðθmaxÞ

(see Fig. 2 in Ref. [12]). There is a one-to-one correspon-
dence between scattering angle θ and scattered frequency
ω, so the relative spread of one distribution is equivalent
to the other. The variance σ2θmax

of a uniform distribution
with bounds ωmin and ωmax is

σ2θmax
¼ ðωmax − ωminÞ2

12
: ð12Þ

In order to calculate the relative spread, we must
consider σ2θmax

and divide by a normalizing value ωmid ¼
ðωmax þ ωminÞ=2. This leads to Eq. (48) from [12]:

σθmax

Eθmax

¼ ωmax − ωminffiffiffiffiffi
12

p
ωmid

; ð13Þ

where σθmax
=Eθmax

is the aperture relative energy spread
[12]. Because ωmax ¼ ω0ð0Þ ¼ 4ωγ2=ð1þ XÞ and ωmin ¼
ω0ðθmaxÞ ¼ 4ωγ2=ð1þ X þ ψ2Þ, we can simplify the
expression:

σθmax

Eθmax

¼ 1ffiffiffiffiffi
12

p ψ2

1þ X þ ψ2=2
; ð14Þ

where ψ ¼ γθmax. This expression is different (there is a
factor of 1=2 attached to ψ2 in the denominator) from the
analogous term reported in Ref. [18]. At small apertures
(ψ2 ≪ X), the difference is negligible, as can be seen in
Fig. 1. However, as the aperture grows, the scaling law
reported in Ref. [18] becomes increasingly inaccurate.
The agreement between our new analytical scaling law
and the numerical simulations is excellent at all apertures.
A second-order correction to the aperture linewidth in

Eq. (14) is given in the Appendix.

FIG. 1. The comparison between the scattering linewidth given
by Eq. (14) of Ref. [18] (green line) and Eqs. (14) and (23) of this
paper (red line), compared to the simulations with ICCS (blue
dots). The simulation parameters are those given for case Aa in
Sec. II B 3.
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3. Dependence of linewidth on emittance
at small apertures

Consider the generalized Compton formula in Eq. (6) in
a backscattering arrangement for an electron that is not
aligned with the observation angle of the beam. (The z axis
in this case is the direction of the average beam velocity, so
the mean nonaligned momentum should remain zero.)

Consider some θr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2x þ θ2y

q
by which an electron is

misaligned. Then Eq. (6) becomes

E0
phðθx; θyÞ ¼

4ELγ
2

1þ X þ γ2ðθ2x þ θ2yÞ
ð15Þ

for the energy of the photon radiated to the center of the
aperture. It is also reasonable to assume that the distribution
ρ of horizontal and vertical angles follows a bivariate
normal distribution with no cross-correlation:

ρðθx; θyÞ ¼
1

2πσθxσθy
exp

�
−

θ2x
2σ2θx

−
θ2y
2σ2θy

�
: ð16Þ

So, in addition to the electron beam energy spread σE=Ee,
the linewidth is impacted by some σϵ=Eϵ that is obtained by
solving for the second moment of the emittance angle-
dependent function, given in Eq. (15), and collecting the
terms up to the fourth order. Recalling that the fourth
moment of a standard normal distribution is 3σ4, we obtain

hE0
phi ¼

ZZ
∞

−∞
E0
phðθx; θyÞρðθx; θyÞdθxdθy

≈ E0
ph;max

�
1 −

γ2ðσ2θx þ σ2θyÞ
1þ X

þ
γ4ð3σ4θx þ 2σ2θxσ

2
θy
þ 3σ4θyÞ2

ð1þ XÞ2
�
; ð17Þ

hE02
phi ¼

ZZ
∞

−∞
E02

phðθx; θyÞρðθx; θyÞdθxdθy

≈ E02
ph;max

�
1 −

2γ2ðσ2θx þ σ2θyÞ
1þ X

þ
3γ4ð3σ4θx þ 2σ2θxσ

2
θy
þ 3σ4θyÞ

ð1þ XÞ2
�
: ð18Þ

Using the results of Eqs. (17) and (18) in the definition of
variance yields

σ2ϵ
E2
ϵ
¼ hE02

phi − hE0
phi2

hE0
phi

¼
2γ4ðσ4θx þ σ4θyÞ

ð1þ XÞ2 : ð19Þ

Noting σθx ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵx=β�x

p
and σθy ¼

ffiffiffiffiffiffiffiffiffiffiffi
ϵy=β�y

p
, we obtain

σϵ
Eϵ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σϵx
Eϵx

�
2

þ
�
σϵy
Eϵy

�
2

s

¼
ffiffiffi
2

p
γ2

1þ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2x
β�2x

þ ϵ2y
β�2y

s
: ð20Þ

Therefore, for small apertures, the bandwidth due to
emittance becomes increasingly negligible as electron
recoil becomes more important. However, in regimes
where the recoil is negligible (X ≈ 0), the bandwidth of
scattered radiation could very well be dominated by
emittances. This expression is a generalization of the
expressions given in Refs. [1,12,18]. For symmetric dis-
tributions, ϵx ¼ ϵy ≡ ϵ and β�x ¼ β�y ≡ β�, and for the
negligible values of the recoil parameter X, the above
equation reduces to the unnumbered equation in Ref. [1],
Eq. (50) in Ref. [12], and Eq. (13) in Ref. [18]:

σϵ
Eϵ

¼ 2γ2ϵ

β�
: ð21Þ

4. Revised scaling law

As the terms for electron energy spread, photon energy
spread, and aperture energy spread are independent, a
simple rms value can be used to calculate the relative
bandwidth of radiation [12,18]. The final expression is
given by

σE0
ph

E0
ph

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σθmax

Eθmax

�
2

þ
�
σγ
Eγ

�
2

þ
�
σL
EL

�
2

þ
�
σϵ
Eϵ

�
2

s
; ð22Þ

where the individual terms are given in Eqs. (14), (11), and
(20). The scaling law in Ref. [18] also features two
additional terms—one that measures the beam quality
and the other the ponderomotive broadening in the photon
field. Those two terms are beyond the scope of this paper.
In the limit ψ ≪ 1, the electron and photon beam terms are
in agreement with the more general Eq. (14) of Ref. [18],
which is valid for all ψ . However, a modification to the
aperture term (an added factor of 1=2 in the denominator) is
required to accurately model the energy spread in regimes
at larger apertures. Finally, a term containing the emittance
models the change in the energy spread for Gaussian
spectra.
For non-Gaussian spectra skewed by emittance effects, it

has been suggested that covariance between the aperture
and emittance must be accounted for. Equation (14) of
Ref. [18] suggests that instead the emittance and aperture
are combined before squaring:

σE0
ph

E0
ph

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σθmax

Eθmax

þ σϵ
Eϵ

�
2

þ
�
σL
EL

�
2

þ
�
σγ
Eγ

�
2

s
: ð23Þ
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An intuitive reason for doing so can be arrived at when
considering the misaligned electrons that are accelerated
through the aperture. If the emittances become too large,
the small aperture in these simulations can result in radiated
energy possessing different scattering angles (and thus
energies) that skew the spectrum. In this way, there is
demonstrated a dependence between the aperture and
emittances as the probabilistic frequency of certain energies
is greatly reduced. The few photons emitted with those
corresponding energies make the characteristic tail
observed. This reasoning also demonstrates why spectra
of scattered radiation are always skewed toward smaller
energies, since any deviation in the direction of the mean
electron energy will result in a lower scattered frequency.
For lower emittances, however, there is a smaller likelihood
for the aperture to change the behavior of the incident
electron, which makes them nearly independent. The
numerical verification of the covariance in the scaling
law is reported in Sec. II B 4.

B. Computational validation of the scaling law

To verify the accuracy of the derived terms, Eq. (23) was
compared to the calculated bandwidth from a spectrum
produced using the ICCS code described in detail in Sec. III.
The energies of cases D, E, and F of Ref. [18] (shown in
Table I) are used in the simulations, only with differing
interaction parameters. They are distinguished with appro-
priate subscripts for photon beam bandwidth, electron
beam bandwidth, aperture, and emittance (given in
Tables II–VI). Additional cases with either very small or
very large X were used to highlight the modification to the
scaling law made in Sec. II. Both Eqs. (22) and (23) were
considered in the context of emittances.

1. Dependence of linewidth on photon beam bandwidth

Cases D, E, and F from Ref. [18] were directly used to
verify the scaling of Eq. (23) and here are referred to as

cases Dla, Ela, and Fla, respectively, and shown in Table II.
The energy spread of the incident radiation diminishes
and is eventually removed at large electron recoil regimes
[since the prefactor 1=ð1þ XÞ → 0 as X becomes large].
In other publications, energy spread may have been

given by the width of the laser. It has been shown [12] that
in a Gaussian model, for some width σ, the relative energy
spread of the laser pulse is

σL
EL

¼ 1

2
ffiffiffi
2

p
πσ

: ð24Þ

TABLE I. Electron energies, laser beam wavelengths, and the
resulting recoil parameters for cases D, E, and F from Ref. [18].

Case Ee [GeV] λ [nm] X

D 7 103 0.133
E 7 10 13.3
F 7 0.1 1330

TABLE II. Parameters used to verify the scaling of photon
energy, separated by case.

Case Ee [GeV] λ [nm] X
σγ
Eγ θmax

Dla 7 103 0.133 0 5 × 10−6

Ela 7 10 13.3 0 1.33 × 10−5

Fla 7 0.1 1330 0 2.67 × 10−5

TABLE III. Parameters used to verify the scaling of electron
energy, separated by case.

Case Ee [GeV] λ [nm] X
σL
EL θmax

Del 7 103 0.133 2 × 10−4 5 × 10−6

Eel 7 10 13.3 2 × 10−4 1.33 × 10−5

Fel 7 0.1 1330 2 × 10−4 2.67 × 10−5

TABLE IV. Parameters used to verify the scaling of the
aperture, separated by case.

Case Ee [GeV] λ [nm] X
σγ
Eγ

σL
EL

Aa 7 104 0.0133 0 2 × 10−2

Da 7 103 0.133 0 2 × 10−2

Ea 7 10 13.3 0 2 × 10−2

Fa 7 0.1 1330 0 2 × 10−2

TABLE V. Parameters used to verify the scaling of the
emittance, separated by case.

Case Ee [GeV] λ [nm] X
σL
EL

σγ
Eγ θmax

Dem;1 7 103 0.133 2.25 × 10−3 0 8.33 × 10−7

Dem;2 7 103 0.133 2.25 × 10−3 0.002 8.33 × 10−7

Eem;1 7 10 13.3 2.25 × 10−3 0 1.33 × 10−6

Eem;2 7 10 13.3 2.25 × 10−3 0.0002 1.33 × 10−6

TABLE VI. Parameters used to verify the scaling of the
emittance for non-Gaussian spectra for large apertures, separated
by case. Emittances in these cases are larger than those in
Table IVand thus skew the spectrum so that asymmetry is clearly
observable.

Case Ee [GeV] λ [nm] X
σL
EL

σγ
Eγ θmax

Dem;3 7 103 0.133 2.25 × 10−3 0 10−5

Dem;4 7 103 0.133 2.25 × 10−3 0 10−6
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Other parameters were chosen so that they would have
as small an effect on the scattered radiation bandwidth as
possible. This included the assumption of perfect accuracy
in the electron beam (which itself included the assumption
of zero emittances in any direction).
Figure 2 shows an excellent agreement in the scaling law

between the analytical expression given in Eq. (23) and the
simulations using the code outlined in Sec. III.

2. Dependence of linewidth on electron beam bandwidth

Cases D, E, and F from Ref. [18] were directly used to
verify the scaling of Eq. (23) and here are referred to as
casesDel, Eel, and Fel, respectively, and shown in Table III.
The electron beam spread will always be a non-negligible
factor in determining the scattered radiation bandwidth,
although its impact is lessened by a factor of 2 in large
electron recoil regimes [because ð2þ XÞ=ð1þ XÞ → 1 for
large X].
The photon beam bandwidth and the aperture were set

to minimal values so that electron beam effects could be
highlighted. Emittances in all directions were also set to
zero—though these two factors are independent. Excellent
agreement in the scaling law between the analytical
expression given in Eq. (23) and the simulations using
the code outlined in Sec. III is shown in Fig. 3.

3. Dependence of linewidth on aperture

A case where the recoil is negligible (X ¼ 0.013 28)—
referred to here as case A—is used to demonstrate more
pronounced deviations as γθ approaches 1, in addition to
cases D, E, and F from Ref. [18]. They are shown in
Table IV. As the electron recoil becomes large, the overall
effect of the aperture on the scattered linewidth is essen-
tially removed as the term ψ2=ð1þ XÞ approaches zero.
Figure 4 shows excellent agreement in the scaling law

between the analytical expression given in Eq. (23) and the
simulations using the ICCS code outlined in Sec. III. As
large electron recoil regimes are approached, the depend-
ence of the scattered radiation linewidth on the aperture
becomes more suppressed as X dominates. Unlike the
scaling of the photon energy spread, electron beam energy
spread, and emittance, the relationship is quadratic rather
than linear. When the electron recoil is taken into account,
the aperture must be increased to observe the resultant
spectra.

4. Dependence of linewidth on emittance
at small apertures

Cases D and E from Ref. [18] were used to consider the
scaling of the emittance against the scattered radiation
bandwidth and are given in Table V. Two cases for each
energy were then considered: one with zero mean incident
electron beam energy spread and one with nonzero mean
energy spread. In extremely large recoil regimes, the

emittance will approach zero as the increasing of γ is
surpassed by the increase in X. However, emittances
chosen for Fig. 5 do not approach this regime, as it would
require the frequencies to approach the Compton

FIG. 2. Relationship between the energy spread of photon beam
σL=EL and the resulting linewidth of scattered radiation. Electron
beam energy spread is held constant at σγ=Eγ ¼ 0 and emittance
at ϵx;y ¼ 0. Panels represent casesDla–Fla, given in Table II, from
top to bottom. Results given in Eq. (23) are labeled “analytical.”
Numerical simulations carried out with ICCS are labeled “simu-
lated.” Panels are not on the same scale.
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frequency, which is in the γ-ray range for electrons [20].
Emittances were selected so that the spectra of scattered
radiation were produced at small apertures, since the
scaling deviates by greater amounts as the spectra become
skewed half-Gaussian functions [11,12] and there is an
increasing dependence between the emittance and aperture.
Figure 5 shows excellent agreement in the scaling law
between the analytical expression given in Eq. (23) and the
simulations using the codes outlined in Sec. III.
Numerical simulations were carried out only with

horizontal emittances ϵx, but for vertical emittances ϵy
results were found to be very similar. The combination of
both horizontal and vertical emittances could also be
accounted for, as the emittance scaling factor is dependent
on total emittance rather than emittances in any direction.
It can be observed that the emittances do not scale as
accurately as the other factors. This is because the model
of emittance depends on a random variation in electron
momenta and that larger skews in the distribution cause the
bandwidth to be larger than predicted due to the increasing
covariance between the aperture and emittance.

5. Dependence of linewidth on the covariance
between aperture and emittance

Figure 6 shows the scaling law given in Eq. (23), which
features a covariance between the aperture and emittance—
first introduced in Eq. (14) of Ref. [18]—is a more accurate
model for the rms spread of skewed spectra.
It appears that all four cases—modification of the photon

energy spread, electron energy spread, aperture, and
emittances—agree quite well in all energy regimes with
the scaling law described in Eq. (22) in the case of Gaussian
spectra, while they agree fairly well with Eq. (23) in the
case of skewed spectra. An important consequence arises
due to the presence of recoil factor X: The aperture and
laser precision need not be too great.

III. COMPUTATION OF LOW-INTENSITY
COMPTON SPECTRA

The current, state-of-the-art codes for the computation
of low-intensity Compton spectra is CAIN, described as a
“stand alone, Monte Carlo code for interaction involving
high-energy electrons, photons, and positrons” [19]. It is
able to compute high-energy interactions that involve
Coulomb fields, luminosity between beams, synchrotron
radiation, polarizations, and nonlinear effects of field
strength [19]. Using the appropriate Lorentz transforms,
simulations of random events over many trials can model
the behavior of scattered radiation.
In this section, we report on the improved version of the

code initially reported in Ref. [12], which we now call ICCS,
and benchmark it against CAIN.

FIG. 3. Relationship between the energy spread of electron
beam σγ=Eγ and the resulting linewidth of scattered radiation.
Photon beam energy spread is held constant at σL=EL ¼ 2 × 10−4

and emittance at ϵx;y ¼ 0. Panels correspond to cases Del–Fel,
given in Table III, from top to bottom. The impact of electron
beam spread is nearly halved in large electron recoil regimes.
Values were chosen so that electron beam bandwidth dominated
the linewidth of scattered radiation. Results given in Eq. (23)
are labeled analytical. Numerical simulations carried out
with ICCS are labeled simulated. Panels are not on the same
scale.
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A. ICCS: Improved code for Compton simulation

An earlier version of our code was described in detail in
Ref. [12]. The code models the effects of the electromag-
netic field through the normalized vector potential and uses
it as an input to the simulations. The finite pulse effects
possible in a real laser pulse are described properly within a
plane-wave approximation. The width and energy of the
laser are also given as input. To describe the properties of
the incident electrons, the program receives the relative
spread in energy σE=Ee, horizontal and vertical emittances
ϵx and ϵy, and the value of the electron βx and βy functions
evaluated at the interaction points (denoted by β�x and β�y).
Finally, the range and location of sampling can be altered to
consider various sections of the generated spectra. The
algorithm implemented by our code overcomes a serious
problem posed when using Monte Carlo integration: As the
rarity of low-probability scatterings is reflected exactly
in the code, results may suffer from poor statistics. Any
electron distribution can be input and easily integrated
according to Eq. (33) of Ref. [12]:

dU1

dω0 ¼
ϵ0c
2π

Z
2π

0

dϕ
Z

1

cosθmax

jẼ½ωðω0Þ�j2 dσ
dΩ

�
ω0

ω

dω
dω0

�
dðcosθÞ;

ð25Þ

where dU1=dω0 represents the differential scattered spec-
trum value, ϕ represents the solid scattering angle, and
Ẽ½ωðω0Þ� represents the time transform of the electron
field. After summing over many particles (Np > 2000), an
extremely precise spectral distribution is given.

1. Improvement in electron distribution sampling

In the initial version of the code, distributions of
electrons—horizontal, vertical, and longitudinal momenta
px, py, and pz, respectively—are generated as normally
distributed in transverse (horizontal px and vertical py) and
total momenta (p). In this approach, we specify as input
(i) the horizontal and vertical emittances ϵx and ϵy, which
determine the transverse momenta, and (ii) the magnitude

FIG. 4. Relationship between the aperture and resulting linewidth of scattered radiation. The electron beam energy spread is held
constant at σγ=Eγ ¼ 0 and emittance at ϵx;y ¼ 0, photon beam at σL=EL ¼ 2 × 10−2. Parameters for all cases are reported in Table IV.
Results given in Eq. (23) are labeled analytical. Numerical simulations carried out with ICCS are labeled simulated. Panels are not on the
same scale. Top row (left to right): Cases Aa and Da. Bottom row: Cases Ea and Fa.
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of the total momentum p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ p2
z

q
and the

associated standard deviation σp, which is used to obtain
the longitudinal momentum distribution:

px ¼ N

�
0;
ϵx
β�x

�
;

py ¼ N

�
0;
ϵy
β�y

�
;

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Nð0; σ2pÞ þ p�2 − p2

x − p2
y

q
:

Nð0; σ2Þ represents a normal random variable with mean 0
and variance σ2. The energy of individual electrons is found
from the relativistic energy-momentum relation

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

ec4
q

ð26Þ

and then averaged to obtain the mean energy of the electron
distribution E0. The relative energy spread σE=E can then
be computed either directly or from the relation

σp ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E0

�
1þ σE

E

��
2

−m2c4

s
− p: ð27Þ

Equation (27) is obtained from a first degree approximation
to the σp given σE and using the relativistic energy-
momentum relationship. This method is advantageous,
as it allows for the user to dictate the relative energy
spread of the electron beam—as is usually the case in a
laboratory setting. Unfortunately, the assumptions made in
the derivation of Eq. (27) may mean that runs at high
emittances can deviate from theoretical predictions.
To combat this issue, ICCS uses another approach

in which distributions of electrons are generated as
normally distributed in horizontal, vertical, and longitudinal
momenta—px, py, and pz, respectively. In this approach,
we specify as input (i) the horizontal and vertical emittances
ϵx and ϵy, which determine the respective transverse
momenta, and (ii) the magnitude of the longitudinal momen-
tum pz and the associated standard deviation σpz

, which is
used to obtain the longitudinal momentum distribution:

FIG. 5. Relationship between the horizontal emittance of the electron beam ϵx and the resulting linewidth of scattered radiation.
Parameters for all cases are reported in Table V. Analytical results given in Eq. (23) are labeled analytical. Numerical simulations carried
out with ICCS are labeled simulated. Panels are not on the same scale. Top row (left to right): Cases Dem;1 and Dem;2. Bottom row: Cases
Eem;1 and Eem;2.
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px ¼ N
�
0;
ϵx
β�x

�
;

py ¼ N

�
0;
ϵy
β�y

�
;

pz ¼ Nðpz; σpz
Þ:

As in the first approach, the energy of individual electrons is
found from the relativistic energy-momentum relation given
inEq. (26) and then averaged to obtain themean energyof the
electron distribution Eγ . Then the relative energy spread
σγ=Eγ can be computed either directly or from the relation in
Eq. (27). In this way, the energy of the simulation can still be
indirectly controlled. The obvious drawback of this approach
is that the emittances and energy spread of the electron beam
cannot both be directly controlled.

Another feature of the code is its ability to read in an
arbitrary electron beam distribution as an input to the
simulation. This is of particular importance when a specific
electron beam distribution is given—for example, from a
start-to-end simulation of inverse Compton sources [12].
The resulting spectra are subject to the central limit

theorem (with the exception of high emittances that skew
the distribution), and, therefore, high-precision simulations
can be performed even with a relatively small number
of particles. One can use the rough rule of thumb that
accuracies of computed spectra vary inversely with the
square root of the number of particles. Thus, for instance,
only 400 particles would be needed for an average error of
5% in computed values [12].

2. Improvement in efficiency and implementation

The original version of the code, described in Ref. [12],
was originally written in the PYTHON programming lan-
guage [21]. PYTHON provides users with an easy and
straightforward means of formula-to-code conversion.
Unfortunately, the ease associated with its use translates
to significantly increased run times due to the dynamically
typed objects and convenient yet scattered memory allo-
cation system [22]. To alleviate this issue, two tasks were
undertaken. First, the program was parallelized using
PYTHON’s multiprocessing library to as many cores as
the host computer could provide. Second, the CYTHON

programming extension was used to provide the capabil-
ities of the C language while retaining the advantages
provided by PYTHON. The new version of the code
(compared to the original PYTHON version) is anywhere
from 8 to 30 times faster. Integration is still done with
SCIPY’s quad pack [23,24]. Unfortunately, this integrator
may prove not to be optimal in cases where extremely
precise integration is needed—it subsequently goes through
many iterations to guarantee accuracy and slows the
program down. Efforts for the new qag integrator with
such capabilities are underway [12,24]. The ICCS code
consists of a driver (through which all necessary parameters
are input) and a CYTHON class that stores all the compu-
tation-intensive routines.

B. Comparison of ICCS and CAIN

We compared the results of the two codes—our new
code ICCS and CAIN. Case D from Ref. [18], shown in
Table VII, was used for a comparison. ICCS was executed at
three different resolutions in terms of particles simulating

FIG. 6. Relationship between the emittance and resulting
linewidth of scattered radiation. Top: Case Dem;3. Bottom: Case
Dem;4. Including covariance, given in Eq. (23) and labeled
analytical, covariance, does predict better in the regime of
asymmetrical spectra than the case without covariance, given
in Eq. (22), and labeled analytical, no covariance. Apertures were
increased greatly to make the covariance more pronounced (top
panel). For small apertures (bottom panel), the curve with
covariance rises less sharply and closely follows the curve
without covariance. Parameters for all cases are reported in
Table VI.

TABLE VII. Case D from Ref. [18] used as the standard to
compare the two codes.

Ee [GeV] λ [nm] X σ ϵn;x ¼ ϵn;y [m]
σγ
Eγ θmax

7 103 0.133 50 4 × 10−7 0.0008 5 × 10−6
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electrons: 400, 4000, and 40 000. CAIN was also executed at
three different resolutions in terms of particles simulating
electrons. At the end, the scaling estimates were compared.
Figure 7 shows the results produced by the two codes. It

can be observed that the simulations with ICCS, compared
to those carried out with CAIN, are superior in two main
ways: (i) Continuous spectra are produced with accurate
probabilities; and (ii) low-probability regions (tails) are
modeled with a much higher accuracy, as can be seen by
comparing the top and bottom right panels in Fig. 7.

IV. SUMMARY AND DISCUSSION

This paper addresses two key issues: (i) the scaling of
the scattered radiation linewidth and (ii) the efficient and
accurate simulation of inverse Compton scattering spectra
in the low-intensity regime.
We have presented derivations of the terms of the scaling

law reported in Eq. (14) of Ref. [18]. These terms are
accurate approximations of a complete scaling law as given
in Eq. (23) for the linear-field (low laser intensity) regime.
We report a small correction to the aperture term which

becomes important at large apertures. We have also
proposed a model for low-to-moderate emittance levels
and have demonstrated computationally that there is a
dependence between apertures and emittances (at high
values). Finally, numerical simulations carried out with
many particles verify the greater degree of accuracy of the
altered scaling law.
We have also presented verification of certain aspects of

the scaling law, which was first derived in Ref. [18] using
simulations with a Monte Carlo code CAIN. While the
evaluations in the high-probability portions of the spectrum
of scattered radiation are generally accurate, those algo-
rithms suffer from poor statistics in low-probability regions
like the tails of the spectrum. The calculation of spectra
with CAIN is thus not as accurate overall. However, the
simulations carried out with our ICCS code provided us with
superior statistics by integrating across individual electron
spectra as those used in Ref. [12]. The corroboration of the
two codes has furthered demonstrated the validity in the
described scaling law.
These developments have led to the creation of an

alternative to the widely used CAIN code. Using a linear

FIG. 7. The numerically simulated spectrum for increasing resolutions for CAIN [19] and ICCS for the case given in Table VII. The
number of macroparticles Np samples the electron beam distribution. Top row: CAIN simulations on the linear (left) and log scale (right).
Bottom row: ICCS simulations on the linear (left) and log scale (right).
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plane-wave approximation, the resulting scattered spectra
can be modeled as a superposition of spectral values for
individual electrons [12]. These values are computed by
integrating the energy density per angle—given by the
product of the time transform of the incident pulse,
Compton formula, and cross section—over some defined
aperture. In comparison to the Monte Carlo method of
evaluating integrals at randomly chosen points, this method
proves more accurate. By including improvements in the
implementation, the code now runs with the speeds
comparable to those of C, yet still benefiting from the
clarity and conciseness of PYTHON. The code is still valid
only for the low-intensity Compton regime and for a plane-
wave approximation of the laser beam. However, the new
features of the code provide a foundation for future
generalizations to the high-intensity regime and for the
paraxial laser pulse approximation [17].
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APPENDIX: SECOND-ORDER CORRECTION
TO THE SCALING OF THE APERTURE

LINEWIDTH GIVEN IN EQ. (14)

For larger apertures, γθmax ≈ 1 and beyond, a uniform
distribution may not be an accurate approximation to the
spread of scattering angles. The distribution for θmax ≪ 1 is
closer to trapezoidal, with vertical bounds ωmin and ωmax.
The slope of the trapezoid matches the slope of distribution
at θ ¼ 0, since the range of scattering angles—as dictated
by the aperture—remains small. The normalized distribu-
tion of frequencies through the aperture ρðωÞ is thus

ρðωÞ ¼ 2

ðω2 − ω1Þðζ1 þ ζ2Þ
�
ζ1 þ

ζ2 − ζ1
ω2 − ω1

ðω − ω1Þ
�
;

ðA1Þ

where ω1 ¼ ωmin, ω2 ¼ ωmax, ζ1 ¼ dN=dΩðθmaxÞ, and
ζ2 ¼ dN=dΩð0Þ. For this distribution, the following prop-
erties are true of the moments of ρ:

hωi ¼ ζ2 − ζ1
ζ1 þ ζ2

ω2 − ω1

6
þ ω1 þ ω2

2
; ðA2Þ

hω2i ¼
�
ω1 þ ω2

2

�
2

þ ðω2 − ω1Þ2
12

þ ζ2 − ζ1
3ðζ1 þ ζ2Þ

ðω2 − ω1Þ
�
ω1 þ ω2

2

�
: ðA3Þ

Then the relative rms bandwidth due to the aperture,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2i − hωi2

p
, is

σθmax

Eθmax

¼ 1ffiffiffiffiffi
12

p ψ2

1þ X þ ψ2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

3

�
ζ2 − ζ1
ζ1 þ ζ2

�
2

s
: ðA4Þ

The variance tends to that of a uniform distribution as
ðζ2 − ζ1Þ=ðζ1 þ ζ2Þ approaches zero (as the aperture
becomes smaller). This second-order correction relies on
approximating the values of the electron distribution
function dN=dΩðθÞ at θ ¼ 0, and θ ¼ θmax, which may
not be readily available.
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