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Abstract: In this paper we present a simple stand-alone system performing the autonomous
acquisition of multiple pictures all around large objects, i.e., objects that are too big to be photographed
from any side just with a camera held by hand. In this approach, a camera carried by a drone
(an off-the-shelf quadcopter) is employed to carry out the acquisition of an image sequence
representing a valid dataset for the 3D reconstruction of the captured scene. Both the drone flight
and the choice of the viewpoints for shooting a picture are automatically controlled by the developed
application, which runs on a tablet wirelessly connected to the drone, and controls the entire process
in real time. The system and the acquisition workflow have been conceived with the aim to keep
the user intervention minimal and as simple as possible, requiring no particular skill to the user.
The system has been experimentally tested on several subjects of different shapes and sizes, showing
the ability to follow the requested trajectory with good robustness against any flight perturbations.
The collected images are provided to a scene reconstruction software, which generates a 3D model of
the acquired subject. The quality of the obtained reconstructions, in terms of accuracy and richness of
details, have proved the reliability and efficacy of the proposed system.

Keywords: 3D reconstruction; automatic UAV flight; self-localization

1. Introduction

The deployment of lightweight radio-controlled flying vehicles (UAV) is now widely spread
in a large variety of application fields, like rescue or emergency operation in critical environments,
professional video production, or precision agriculture. In particular, the use of UAV’s to acquire
images for purposes of photogrammetry and, in general, three-dimensional reconstruction from
images, represents a widely spreading application field [1-5]. Among the main reasons for this wide
diffusion, there are the low cost and extreme versatility of modern micro-UAVs, able to fly along
precise trajectories and to keep a fixed position steadily, as well as the simultaneous decreasing cost
and increasing resolution of image sensors.

This paper describes the design and the implementation of a technique for autonomous mission
control of a quadcopter, which carries out an autonomous acquisition of the proper image sequence for
3D reconstruction, while processing the acquired video in real time for self-localization and consequent
navigation, according to the mission control. This technique has been tested on several different real
objects, showing its robustness and effectiveness, as witnessed by the accuracy of the finally obtained
3D models.
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1.1. Related Work

The research literature proposing drones for 3D reconstruction of objects and terrains considers
several different sensing techniques, like high-resolution cameras [6], or a combination of cameras and
laser scanners [7]. There are several state-of-the-art works [3,6,8—10], in which a camera is mounted
on a drone which carries out its mission autonomously, exploiting the images acquired on flight
both for navigation (SLAM) and for 3D reconstruction. In particular, refs. [8,9] propose quite
similar applications, where there is even no need for known-shape markers previously placed in
the scene. However, to achieve such powerful tasks in real time, these systems need the support of
remote high-performance computing facilities, connected with the drone through a high-bandwidth,
low-latency wireless link, and running remotely the SLAM and 3D reconstruction algorithms on the
image stream acquired by the drone.

Conversely, the purpose of this work was to develop a stand-alone system for automatic image
acquisition of a subject to reconstruct in 3D, where the only computing facility is the mobile device
(an Android-running tablet or smartphone) normally connected to the remote controller of the
drone and used as display of the drone camera. Aiming at developing a low-cost and easy-to-use
system, the proposed technique has been designed to keep the workflow requested to the human
operator as simple as possible. Therefore, the novelties of the proposed technique, with respect to the
state-of-the-art, lie mainly in two aspects:

®  The system has been designed to keep the workflow simple and the practical setup of the scene
as less invasive as possible;

e The algorithm performing the UAV self-location and navigation in real time has been designed
for high computational efficiency, so that it can run on the same Android device employed for
UAV flight supervision.

1.2. Article Outline

The article is organized as follows: Section 2 discusses possible approaches and describes the
proposed procedure workflow; Section 3 describes the developed algorithm; Section 4 presents some
significant experimentally obtained results, and Section 5 reports some final consideration and ideas
for further research.

2. The Acquisition Procedure

2.1. Scene Setup

According to the laws of multiple-view geometry [11], it is necessary to collect images of a subject
from all possible viewing directions, to reconstruct its 3D shape. In general, this could be achieved by
acquiring a video, or several still images (the number of images depending on the object properties and
on the desired level of detail in the reconstruction), while moving around the subject, approximately
following a circumference, as shown in Figure 1. For objects whose footprint is very different from a
circumference (for irregular or long-and-thin footprints, for instance), a circular trajectory would be far
from optimal.

The definition of the optimal fight trajectory for image acquisition, given an approximate
volumetric extent of the subject, is a well-studied problem in the literature [4,10]. However, the
constraint on the optimal location of the image viewpoints is not so strict; in fact, a simple and safe
rule-of-thumb to obtain accurate 3D reconstructions is to maintain approximately the same distance
from the local front surface of the subject.
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Figure 1. The acquisition setup. The drone has to fly at least one round along the trajectory surrounding
the object to reconstruct.

Our aim was therefore to have the drone automatically flying at least one round along this
trajectory, while (a) keeping an approximately constant distance from the floor and from the object,
and (b) keeping the on-board camera always pointed toward the object. This navigation problem can
be actually considered a typical “line following” problem [12], where the line to follow represents
the desired closed trajectory around the object, with the horizontal projection of the camera axis kept
orthogonal to the trajectory. Besides this necessary requirement, our goal in designing the acquisition
procedure was to keep the practical setup of the scene as simple as possible (that is, with minimal
geometric constraints on the scene). A simple solution would be to trace a line on the ground around the
object, which could be tracked and followed by the drone during the acquisition procedure. However,
in order to keep the operative workflow maximally simple, we propose a scene setup in which the
trajectory is defined by trajectory markers, in form of uniform-color spheres, that are properly placed
along the desired trajectory, as represented in Figure 1. The line to follow is therefore represented by
the ideal line connecting adjacent trajectory markers. This choice presents some advantages, compared
to tracing a line: placing spheres (e.g., common plain-color balls) on the ground around an object,
with no other geometrical constraints but keeping approximately the same distance from the object
itself, is significantly simpler and less invasive than tracing a line around it. Moreover, the proper
choice of the marker color makes the image processing procedure for their detection and localization
significantly robust against detection errors, thus improving the reliability of the whole procedure.
Finally, although spherical objects are imaged as ellipses, with eccentricity raising with their distance
from the optical image center [13], for the size of the imaged markers and the angular amplitude of
the camera’s frustum in our case, this perspective distortion can be neglected for the sake of marker
localization, assuming that the visual ray going through the centroid of the imaged ellipse coincides
with the visual ray through the corresponding sphere center. This assumption is fundamental to
achieve the necessary accuracy in the localization of the spherical markers, which is fundamental for
the final accuracy of the reconstructed 3D model. The validity of this assumption is confirmed by the
reconstruction quality of the models presented in the experimental results.

The total number of markers is arbitrary, as it depends on the particular trajectory around the
subject. The size of the markers is also not critical, as it is just necessary for the markers to be clearly
visible in the acquired images. Consequently, the size of the markers should be adapted to the average
subject-camera distance, which in turn, depends on the size of the subject being reconstructed. In other
words, it is possible to reconstruct arbitrarily large objects, provided we use correspondingly large
markers, big enough to be seen from the camera. The only necessary constraint in this procedure is
that at least two markers must be visible in each image, as explained in Section 3.
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2.2. Procedure Workflow

The idea behind this work is to conceive a procedure that is as simple to carry out as possible,
with minimal user intervention. The proposed image acquisition workflow consists therefore of the
following steps.

2.2.1. Scene Setup

The operator places a set of spheres all around the object or scene to be reconstructed. The size
of the spheres should be approximately adapted to the scene’s overall size: the bigger the scene,
the bigger the spheres. However their size is not critical at all: they just have to appear in the images
as uniform-color circles. The color of the spheres can be arbitrarily chosen, as long as it contrasts
with their background, as the marker detection procedure is adapted to the chosen color. The proper
number of deployed spheres depends on the size and shape of the object, but also this choice is not
critical: the spheres should be just many enough to ensure that each view sees at least two of them.
A greater number of visible spheres generally increases the robustness of the procedure but does not
affect the final 3D accuracy.

2.2.2. Drone Lift

The user, who can control the flight seeing from the camera viewpoint in real time (by means of
the control application running on the device connected to the drone), lifts the drone to the starting
position, an arbitrary point of the desired trajectory. With the camera pointing towards the object,
the camera should “see” the spheres lying on the ground in front of the subject, which through
the perspective projection, will be normally located in the image below the object to reconstruct
(as schematized in Figure 1).

2.2.3. Automatic Acquisition Procedure

Once the user has placed the drone in a valid starting position, he can start the automatic
acquisition procedure by giving a command to the Mission Control application running on the device,
which takes control of the whole flight and image acquisition process. The user can monitor the
ongoing process through the user interface of the application.

2.2.4. Termination

During the acquisition process, the application continuously updates an estimation of the
camera attitude (the direction of the camera axis). When, according to this estimation, the drone
has completed the round along the closed trajectory, the application automatically drives the drone to
land, thus completing the procedure.

3. The Real-Time Navigation Algorithm

3.1. High-Level Flight Control Strategy

Aim of the mission control algorithm is to drive the drone approximately one round along
the closed trajectory, as it is defined by the markers, while: (a) keeping the object to reconstruct
approximately in the image center, and (b) keeping approximately the same horizontal distance from
the trajectory. Due to the constraints imposed by the drone’s flight control interface [14], the most
efficient solution was to split the control into two separate correction phases. This is accomplished by
the proposed algorithm, whose high-level structure is shown in the flowchart of Figure 2. The structure
of the algorithm is a control loop, aimed at controlling the drone flight and the image acquisition in real
time. As Figure 2 shows, the loop alternates image analysis tasks, in which the acquired photograph is
analyzed by the application and all visible markers are localized, and flight control tasks, in which
the application, according to the measured marker positions, issues motion commands to the drone
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(through the functions of the drone API [14]). A loop iteration takes approximately 6s; on average,
half of this time is taken by the image analysis tasks, and the remaining time is taken by the drone to
adjust its position (when necessary) and move to the next viewpoint. Considering the average lifetime
of a battery pack on the adopted drone (a DJI Phantom 4), the proposed procedure enables therefore to
carry out acquisitions of up to 250 images with a single flight.

| drone commands | ( START )

| analysis tasks | €

image acquisition
and
marker localization

fly to new attitude attitude
" p >
position ok? correction
no yes
yes round yes distance distance | |
complete? ok? correction

Figure 2. High-level flow diagram of the mission control algorithm. The blue block corresponds to
image analysis tasks computed by the application in real time; the red blocks correspond to flight
commands issued by the application to the drone.

3.1.1. Attitude Correction

After the acquisition of a camera frame, the system performs the attitude analysis of the acquired
image, consisting of the estimation of the camera attitude from the positions of the localized trajectory
markers. The details of this task are described in Section 3.1.1. If the attitude relative to the subject needs
a correction, a corresponding command is given to the flight controller (a yaw rotation, corresponding
to a rotation around the vertical axis) and the test is carried out again (see Figure 3). This cycle is
repeated until the correct attitude is reached (corresponding to a centered subject in the image).
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Figure 3. Schematization of the acquisition geometry, for the estimation of the actual camera attitude.
The angle « (defined in the images as the angle between the tangent to the trajectory in C and the
horizontal) is a measure of the deviation from the correct attitude: (a) « = 0: correct attitude; (b) « > 0:
drone should rotate to the left (counter-clockwise yaw rotation).



Sensors 2019, 19, 2333 6 of 15

3.1.2. Distance Correction

Once the drone has reached the correct attitude, a distance analysis is performed on the last acquired
image, in order to evaluate the horizontal distance from the defined trajectory. The details of this
task are described in Section 3.1.2. If the estimated distance is outside the validity range, a correction
command is given, consisting of a horizontal translation of the drone along the same direction of the
camera axis, in order to reach the desired distance (see Figure 4), then the distance test is repeated.
Also this cycle is repeated as long as a valid distance is reached. Each of the two above correction tasks
is composed of three subsequent steps:

1. A new image is acquired and a sphere detection algorithm detects the visible spherical markers and
localizes them accurately by estimating the centroids of the circular marker images.
2. Using the centroid coordinates as input data, the attitude analysis and distance analysis algorithms,

respectively, compute the necessary corrections.
3. The system gives the computed attitude/distance flight correction command to the drone and

waits for command execution.
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Figure 4. Schematization of the acquisition geometry, regarding the estimation and control of the

subject-camera distance. Aim of the flight control procedure is to keep the horizontal camera-trajectory
distance Dt constant.

These detection and analysis algorithms are now described in details.

3.2. Efficient Spherical Marker Localization

There is plenty of algorithms for circle detection and accurate localization in literature [15,16].
In this particular application, however, the most crucial aspect is the computational efficiency, as the
algorithm runs in real time on a platform with limited computing power (a tablet running Android),
so longer computation times necessarily lead to longer idle times during the drone flight. For this
reason, a fast algorithm is of primary importance in this application.

Each time the drone acquires an image and the Android device receives it through the radio
link, the application starts the marker detection algorithm, which is composed of the following three
processing steps: color segmentation, shape selection, and centroid localization.

3.2.1. Color Segmentation

This step is carried out by thresholding the image in the RGB color space. Different color spaces,
like YUV and HSV, have been also considered for this thresholding and tested on the real images,
but RGB has been finally chosen for its robustness against the high variance of the illumination,



Sensors 2019, 19, 2333 7 of 15

typically occurring in daylight-illuminated images. The HSV space is really not well suited for
clustering constant-color regions in outdoor scenes because, rather counter-intuitively, the imaged hue
of a constant color changes significantly going from sunlight to shadow, as demonstrated in [17].
Moreover, the strongly varying illumination, typical in outdoor scenes, makes it difficult to achieve
a correct clustering by thresholding with an a-priori fixed threshold. For this reason, we developed an
adaptive approach in which the threshold values are adapted to the current acquisition session. In order
also to account for the ease-of-use design requirement, the application asks the user to take a picture of
one of the deployed trajectory markers just before starting the acquisition flight. The application then
extracts from this image all the pixels belonging to the well visible marker and their color coordinates
are averaged, thus yielding a robust estimate of the mean marker color Cy = <?m,§m,5m>, defined
as vector in the RGB space. The color segmentation criterion, applied to all subsequently acquired
images, is then defined as follows: each pixel i of color C; = (r;, g;, b;) belongs to the color subspace of
the markers if
Ormin - ém < Ci < Omax 'Em . (1)

The threshold factors d,,;, and 6,y have been determined experimentally, aiming at the most
accurate color segmentation results in daylight illumination conditions. The segmentation produces
a binary image, in which the ‘white” pixels denote pixels whose color satisfies the color similarity
criterion defined in (1).

3.2.2. Shape Selection

In the binary image resulting from segmentation, all white connected regions are localized using
a computationally efficient region-growing algorithm. All regions then undergo a shape selection
process in which a region is recognized as a valid marker if all the following criteria are satisfied:

*  The area of the considered region 5; (i.e., the total number of pixels) lies within the empirically
measured likelihood interval: S,,;,, < S; < Spax;

¢ The shape of the considered region is approximately circular. The similarity to a circle is evaluated
by computing its circularity index

5i

(g
1

Cl; =

where ¢!"** denotes the maximal distance between any two points of region i. Considering that

r?
(2r)?

considered valid if CI; > CI’ZW = 7t/8. This fixed-threshold, despite its simplicity, has proved its
reliability through extensive experimental tests.

for a perfectly circular shape, CI would be CI"** = CI(circle) = = /4, a region i is

3.2.3. Centroid Localization

For each region recognized in the previous step as the image of a spherical marker, the circle
center is estimated by simply computing the geometrical barycenter of the region. More sophisticated
estimation techniques, like the estimation of the least-squares circumference on the region perimeter,
have been also tested, but they did not provided significant accuracy improvements, while requiring
significantly more computation time compared to the computationally efficient barycenter estimation.
Due to the prioritary processing speed requirements, we therefore stuck to the more efficient technique.

3.3. Estimation and Control of the Camera Attitude

The image coordinates of the detected marker centers are the input for the module computing the
drone camera attitude, that is, the direction of the camera axis with respect to the current trajectory
and, consequently, to the subject to reconstruct. The geometrical schematization of the problem is
represented in Figure 3. If we consider the projection of the camera’s optical axis on the trajectory plane
(assumed to be horizontal), the camera attitude is considered correct if the axis projection is orthogonal
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to the trajectory curve in their intersection point C, the one closer to the camera. The image of this point
of intersection, in the acquired frame, corresponds to the intersection of the imaged trajectory, which
can be defined as the smooth curve passing through the visible markers, with the vertical mid-line v
passing through the image of the optical center. In fact, v corresponds to the intersection of the image
plane with the vertical plane containing the optical axis, as the image’s horizontal axis is parallel to the
horizontal plane (the camera is held horizontal by the drone active gimbal).

Under the described geometric assumptions, the local direction of the imaged trajectory in its
intersection with v gives a direct measure of the angular deviation from the correct attitude. Referring
to Figure 3, calling « the angle formed by the tangent ¢ to the trajectory in the intersection point,
with the image horizontal axis, « = 0 (¢ is horizontal) in case of correct attitude, whereas « > 0 (line ¢
rising, from left to right) when the camera should be rotated to the left and, vice versa, rotated to the
right for & < 0 (line ¢ falling).

The estimation of @ would require the estimation of the interpolating curve passing through all
the visible markers, whose number is significantly variable from image to image. Experiments with
different interpolation models have shown that the varying number of interpolation points leads
to position instabilities in case of higher-order fitting curves. For this reason, and also considering
the need for fast and efficient algorithms, we adopted the simplest interpolation model, consisting
of a trajectory curve defined as the piece-wise line connecting adjacent markers. According to this
simplified model, « is simply and efficiently computed as the slope of the linear segment connecting
the two nearest markers to the middle line v, on the bottom part of the trajectory, as schematized in
Figure 5.

ideal trajectory piecewise trajectory

Figure 5. Efficient estimation of the angle a from the position of the trajectory markers: « is simply the
slope of the linear segment connecting the two markers lying nearest and on opposite sides of v.

Based on the estimated value of &, the algorithm issues a yaw rotation command to the drone,
in order to reach the correct attitude. For & > 0, a counter-clockwise yaw rotation of the drone is
necessary, clockwise for « < 0. The amplitude of the yaw angle is computed as a function of «.
An experimental search for the best function relating the determined deviation angle « to the requested
yaw rotation angle ¢ resulted in the observation that a simple proportional action, despite its simplicity,
is one of the most effective correction strategies. Moreover, for low values of « there is no need to apply
a correction, as the measured attitude allows anyway a valid image acquisition. For these reasons we
adopted the following correction strategy:

0 |DL| < Kpmin,
kP “ |“| > Kmins

Yaw rotation ¢ = { 2)
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where a,,;, therefore represents the threshold angle for a correcting action: an attitude correction is
triggered only when || exceeds &,,;,,. The best value for ,,;, has been also determined experimentally,
by searching for the value giving the minimum occurrence of corrections (and therefore the shortest
overall acquisition time) without affecting the quality of the final 3D point cloud. For the adopted
drone/camera setup, the best value resulted in being a,,,;;, = 2°. The best value for kp has been obtained
experimentally as well, searching for the value giving the quickest correction without incurring into
oscillating behaviors in the flight dynamics due to overcorrections of the yaw angle. For this drone,
the best results were obtained with kp = 0.8.

3.4. Estimation and Control of the Subject-Camera Distance

The correct camera attitude ensures that the subject is horizontally centered in the field of view,
but gives no guarantee that the vertical extent of the subject is entirely contained in the image.
A successful acquisition, for any vertical extent of the subject, is guaranteed as follows: the acquisition
procedure requires the user to place the drone in an initial position, in which the vertical extent of the
subject is entirely contained in the image field. After then, the automatic acquisition procedure keeps
the distance and the camera pitch (the angular vertical elevation of the optical axis, corresponding to 0
in Figure 4) constant, thereby ensuring that the vertical extent of the subject in the image will be kept
contained in the image field.

Operatively, the constancy of the camera pitch is automatically obtained by keeping the drone
in steady flight (also called hovering) when an image is shot. A constant distance from the subject,
conversely, is achieved by keeping the vertical height of the lowest trajectory point in the image plane
constant. As Figure 4 shows, if the camera pitch 6 is constant, then the distance of the drone from

the nearest point along the trajectory (and consequently from the subject) is Dy = ) where h

079
is the drone height with respect to the ground plane and ¢ is the vertical angular coordinate of the
visual ray corresponding to the nearest trajectory point, Pr. Since we need a constant value for Dr,
we need #, 6 and ¢ to be constant: the procedure holds / constant by commanding constant height to
the drone flight controller (the drone is equipped with sensors measuring the distance from ground);
6 corresponds to the vertical inclination of the camera gimbal, that is held fixed, so 6 is constant during
hovering; ¢ is constant as long as the vertical image coordinate yr (see Figure 6) of the lowest trajectory
point Pr is constant.

Referring to the acquisition geometry represented in Figures 4 and 6, it is possible to control
the value of yr without changing / and 6, by translating the drone along the distance control line |
(see Figure 4), defined as the intersection between the horizontal plane and the vertical plane containing
the optical axis of the camera. The distance estimation and control algorithm works therefore as follows:

®  The algorithm selects the two centermost markers among those provided by marker detection;
since this step occurs just after attitude correction, the two markers likely describe the bottommost
section of the imaged trajectory. As Figure 6 shows, yt is estimated as the y-coordinate of the
intersection of the segment connecting the two centermost markers with the y axis of the image
reference frame.

*  Depending on the amplitude of the deviation from the initial value, Ayt = y1 — yT0, the algorithm
decides, as correcting action, a translation S; along the distance control line /.

Similarly as for the attitude control, the implemented correction strategy is a function relating the
translation amplitude S; to the measured deviation Ayr:

S = { 0 |AyT| < AYmin
ks - Ayt |AyT| > AYmin

that is, a correcting action is undertaken when Ay,,;, is exceeded. Similarly as for the attitude,
the best values for Ay,,;, and kg have been determined experimentally, by finding the value giving the
minimum occurrence of corrections without affecting the quality of the final 3D point cloud. For the
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adopted drone/camera system, the best value for Ay,,;, was 5% of the total image height, while
ks ~ 2 cmpixel L.

AY
X
>
. Yr @
“"——-7_._\',——.” e
C Py

Figure 6. Acquisition geometry: estimation of the horizontal camera-trajectory distance D, from the
analysis of the camera view.

3.5. Drone Flight Control

As the flowchart in Figure 2 shows, there are three different situations in which commands are
issued to the drone for controlling its flight and its position: the correction of the attitude, the correction
of the subject-camera distance, and the move to the next viewpoint for a shoot. To accomplish these
tasks, it is necessary to access the flight control software interface, available to the application by
means of the drone’s API, provided by the drone manufacturer through a Software Development
Kit for mobile devices [14]. The main tool provided by the API for flight control is the function call:
sendVirtualStickFlightControlData(pitch, roll, yaw, throttle, time), which simulates the
corresponding actions on the controller sticks. The provided argument values (roll, pitch, yaw, and
throttle) define the entity of the actions on each virtual stick, while time defines the duration of these
actions. After that time, the actions are terminated and the drone returns to a steady hovering flight.
Having such API call as interface, it is necessary to define all the motion tasks requested by our
procedure, in terms of proper combination of arguments for the call.

Actually, for a given requested motion, the set of arguments leading to that motion is not unique:
for instance, a change in the attitude A should be the result of the product A = yaw - time, as yaw
defines the angular velocity around the vertical axis. The preferred solution would then be the
fastest, i.e., (YawWay , time = A/yawpay), but we experienced that more intense actions lead to bigger
uncertainties in the resulting motion. For this reason we carried out “tuning” experiments, to find
the best combination of arguments for each of the motion tasks, leading to the best trade-off between
motion speed and motion accuracy. Each of the three motion tasks has been therefore implemented
as a call to sendVirtualStickFlightControlData, with the arguments specified in Table 1, where
rollopr, pitchopr, yawopr, and thropr are the optimal arguments and A, D and L represent the desired
attitude correction, the distance correction and the lateral shift, respectively.

Concerning the desired correction parameters, A, D, and L, it is important to notice that while
A and D result from the computation of the necessary correction, the amount of lateral motion L is
arbitrarily set by the user, according to the desired inter-distance between subsequent image shots.
The total amount of acquired images varies according to this parameter.
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Table 1. Arguments passed to the sendVirtualStickFlightControlData() call, for each motion

command.
Motion Roll Pitch Yaw Throttle Time
A
Attitude correction: 0 0 Yyawopr 0
yawopt
Distance correction: 0 itch, 0 thr #
) P orPT OPT pitChopT . th?’opT
L
Lateral shift to next position:  rollppr 0 0 thropr

rOllopT . th?’opT

3.6. User Interface

The most important role played by the user interface of this application is to provide the user
with exhaustive real-time information about the progress of the on-going acquisition procedure, thus
allowing the user to supervise the whole process. A screenshot of this interface is shown in Figure 7.
The interface presents a dashboard showing the video stream currently acquired by the camera and,
superimposed to the image frames: (a) a vertical line representing the position of the v axis, as shown in
Figures 3 and 5; (b) a horizontal line representing the line: y = yr in the image plane. As schematized
in Figure 6, this is the line defining the target “height” of the lowest trajectory marker Pr; (c) a red
segment connecting the two bottommost trajectory markers selected for attitude/distance correction;
(d) the list of the latest flight commands given by the control application to the drone.

Phantom_4 Connected

Reset Marker Faccio foto Exposure

Muovo a dx
Faccio Foto
Muovo a dx

Figure 7. A screenshot of the dashboard of our application, during an acquisition procedure.
The application dashboard shows the status of the acquisition process, like the localized markers
(colored in white), the geometrical parameters (see Figures 5 and 6), and the drone command history.

The provided information, updated in real time, allows the user to supervise the flight and to
evaluate the quality of the images taken during the whole acquisition process. Through this interface,
for instance, it is clearly visible how many corrections of the trajectory are needed, or whether a
trajectory marker is not visible or not recognized.
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4. Experimental Results

The purpose of the experiments and tests we carried out was to judge the obtained performance
in terms of the following aspects: (a) the accuracy of the flown trajectory and of the set of acquired
viewpoints, in terms of position, orientation and spacing regularity; (b) the overall duration of the
acquisition process; and (c) the final accuracy of the 3D model reconstructed with the acquired images.

4.1. Experimental Environment

The system was developed around a DJI Phantom 4 quadcopter; the application controls the
drone through the DJI API [14]. The on-board camera of this copter is equipped with a 1/2.3” CMOS
12.4 Mpixel sensor and a wide-angle (20mm (35mm format equivalent), f/2.8 lens. The camera
provides still color images with a resolution of 4000 x 3000 pixel. The Android device used for the
experiments is a 8" Samsung Tub S4 tablet, equipped with eight ARM Cortex-A73 cores (running at
1.9 GHz), 4 GB RAM memory and 64 GB flash memory. The tablet running our application is connected
to the USB port of the drone’s remote controller, in the same way as the usual device serving as visual
interface. Through this interface, the application receives the video stream and the high-resolution
images from the camera, and transmits the flight commands to the drone. During the flight, the progress
of the acquisition process can be followed on the application dashboard (see Figure 7).

4.2. Flight and Acquisition Process

The acquisition of the subjects presented as results (two sculptures, see Figures 8 and 9) have been
carried out in sunny daylight, in order to assess the reliability of the marker detection algorithm in
presence of shadows. In the two cases, markers of two different colors have been used, to assess the
flexibility of the detection algorithm. For the considered subjects, having a size of up to 4 m tall, 2 to
3 m wide, we used eight markers, placed approximately on a circumference (for the subject in Figure 8)
and on an ellipse (for the subject in Figure 9).

Thanks to the achieved algorithm efficiency, the system is able to acquire and analyze one frame
every 3s, on average. For both subjects, the system collected over 200 images in total, in approximately
20 min (fast enough to complete the process within the drone battery lifetime). The overall accuracy in
following the trajectory could be estimated in terms of the occurrence rate of a trajectory correction.
In all the performed experiments, the acquisition process has proved to be significantly robust and
accurate: a trajectory correction after the execution of the computed motion was seldom necessary.

To evaluate the ability of the system in locating the markers, we examined the video of the whole
acquisition processes, available through the application dashboard. In all experiments, the detection
algorithm detected all the visible markers (no “false negatives” occurred); in few situations a “false
positive” occurred (mainly in backlit images) but, in all of them, the correctly detected markers kept
always the trajectory estimation correct, with no significant consequence for the flight accuracy.

4.3. Final 3D Subject Reconstruction

Although this work focuses on the automatic acquisition process, a qualitative evaluation of
the 3D reconstruction results obtained from the acquired images makes sense as a final validation
of the proposed procedure. Indeed, the quality of a 3D reconstruction result is very sensitive to the
quality of the acquired images and to the correct choice of their position [11]; for this reason, the result
we are interested in here is the success and the overall quality of the final 3D reconstruction, rather
than the quantitative measurement of the dimensional accuracy of the resulting 3D shape, which
essentially depends on the characteristics of the camera and of the used 3D reconstruction software.
We adopted a professional Structure-from-Motion software (Agisoft PhotoScan [18]) to compute these
3D reconstructions.

We selected subjects with complex shapes and irregular spatial extent, to test the procedure and
the reconstruction on a challenging case. Figure 8 shows the first example. The sculpture belongs to
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the collection Popolo del cibo, by D. Ferretti, which was exposed at the international “Expo 2015” in
Milan. The particular shape of this subject (3.5 m height, compared to 1.2 m width at the basement),
together with the presence of fine details on the subject surface, led to a high density of the viewpoints.
The drone flew a circular trajectory of approximately 4 m radius around the sculpture, acquiring over
200 views, with an average image interdistance of approx. 10-15 cm.

The images have been then processed using a professional Structure-from-Motion software [18].
The resulting quality of the reconstructed 3D models, shown in Figure 8, proves the effectiveness
of the proposed technique: the 3D metric reconstruction from the acquired views was successful.
The planarity of the basement faces and their mutual orthogonality have been correctly reconstructed,
as well as the little details present on the complex shape of this subject.

A similarly demanding subject is the sculpture shown in Figure 9. In this case we deployed
orange markers, to test the reliability of the procedure against the marker color. Due to the shape of
this subject, we placed eight markers on the ground, approximately forming an ellipse around the
sculpture. The drone followed therefore an elliptical trajectory, keeping the starting distance of approx.
3 m from the sculpture during the whole flight, acquiring approximately 200 views. As the 3D model
in Figure 9 shows, the reconstruction process was equally successful, despite the particularly complex
3D shape of this subject.

=

Figure 8. (Left) one of the acquired images from a sculpture by D. Ferretti (Expo 2015, Milan, Italy).
Due to its complex shape, this represented a particularly difficult subject to reconstruct with good
accuracy. (Right) a view of the reconstructed 3D model of the sculpture.
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Figure 9. (Left) one of the acquired images from another sculpture (from the collection: warriors in the
wind, by S. Volpe, Milan, Italy). (Right) A view of the reconstructed 3D model.

5. Conclusions

This paper describes the design and implementation of a simple stand-alone system (consisting
of a drone and a simple device—a tablet or a smartphone) able to acquire large-size subjects by means
of a camera aboard a UAV, where both the flight and the image shooting are automatically controlled
by the proposed application running on the device, which is connected to the drone through the radio
link provided by the remote controller. The experimental results have shown that the system is able to
accurately follow the planned trajectory, with significant robustness against outdoor illumination and
flight perturbations, and to yield a sequence of images enabling good-quality 3D model reconstructions
of the acquired objects. The reconstruction results for the considered complex-shaped objects is a
sound proof of the reliability of this technique. Compared to the state of the art [8-10], the peculiarity
of the proposed technique is the ability to produce a valid image data-set for 3D reconstruction with
an extremely simple hardware/software system and maximally simple user operation.

Among the possible directions for further improving the proposed technique, we are considering,
in particular: (a) the further optimization of the marker localization algorithm, aiming to reduce the
total processing time. Since the current solution takes approximately half of the time between two
subsequent shots, decreasing this time could ideally speed-up the entire acquisition process up to
2x; (b) the extension of this procedure to a “multi-level” version, able to follow multiple trajectories
lying on different heights, to enable the image acquisition of particularly tall objects (like a tower,
for instance).
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