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Abstract: The ketogenic diet (KD) is the first line intervention for glucose transporter 1 deficiency
syndrome and pyruvate dehydrogenase deficiency, and is recommended for refractory epilepsy.
It is a normo-caloric, high-fat, adequate-protein, and low-carbohydrate diet aimed at switching the
brain metabolism from glucose dependence to the utilization of ketone bodies. Several variants of
KD are currently available. Depending on the variant, KDs require the almost total exclusion, or a
limited consumption of carbohydrates. Thus, there is total avoidance, or a limited consumption of
cereal-based foods, and a reduction in fruit and vegetable intake. KDs, especially the more restrictive
variants, are characterized by low variability, palatability, and tolerability, as well as by side-effects,
like gastrointestinal disorders, nephrolithiasis, growth retardation, hyperlipidemia, and mineral
and vitamin deficiency. In recent years, in an effort to improve the quality of life of patients on
KDs, food companies have started to develop, and commercialize, several food products specific
for such patients. This review summarizes the foods themselves, including sweeteners, and food
products currently available for the ketogenic dietary treatment of neurological diseases. It describes
the nutritional characteristics and gives indications for the use of the different products, taking into
account their metabolic and health effects.

Keywords: ketogenic diet; food; epilepsy; glucose transporter 1 deficiency syndrome; pyruvate
dehydrogenase deficiency; children; adult

1. Introduction

The ketogenic diet (KD) is a normo-caloric, high-fat, adequate-protein, and low-carbohydrate
dietary treatment that, according to recent international guidelines, is recommended for children and
adults with drug-refractory epilepsy and two rare neurometabolic disorders: glucose transporter 1
deficiency syndrome (GLUT1-DS) and pyruvate dehydrogenase (PDH) deficiency [1–3]. The main
goal of KD is to mimic the metabolic condition that occurs during starvation. Indeed, in conditions of
restricted carbohydrate and high-fat availability, the brain metabolism shifts from glucose dependence
to the utilization of ketone bodies, principally β-hydroxybutyrate (BHB) and acetoacetate (ACA),
produced in the liver by the oxidation of fatty acids [4].
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Despite KD having been used for the first time in 1921 to treat patients with drug-refractory epilepsy,
the mechanisms by which KD exerts its anti-seizure effects are not completely understood. Multiple
hypotheses have been put forward to explain the KD effects. One hypothesis involves the modulation of
brain neurotransmitters, including γ-aminobutyric acid (GABA), glutamate, and adenosine, as well as
ion channel regulation [5–7]. It has been proposed that ketone bodies alter the metabolism of glutamate
in such a way that the levels of GABA increase and inhibitory neurotransmission is enhanced [8].
BHB and ACA have also been shown to influence presynaptic glutamate release by directly competing
with Cl− for the allosteric activation of vesicular glutamate transporters, resulting in diminished
glutamate release [9]. Ketone bodies, specifically BHB and ACA, can also open ATP-sensitive potassium
channels, potentially reducing the release of neurotransmitters, and the neuron’s action potential [10,11].
Moreover, the increased ATP synthesis leads to the accumulation of adenosine, stimulating adenosine
A1 receptors and reducing spontaneous seizures [12,13].

KD can also exert a neuroprotective effect. It is known that the epileptogenic state involves complex
molecular pathways in which oxidative stress and mitochondrial dysfunction can play important roles
in neuronal cell death [14]. However, KD has been shown to enhance energy reserves, ATP levels,
and the expression of many enzymes involved in multiple metabolic pathways in the mitochondria,
and it increases mitochondrial biogenesis in the hippocampus [5,15]. Additionally, many KD studies
have demonstrated an elevated antioxidant activity, diminished reactive oxygen species’ (ROS)
production, and decreased ROS-induced damage [4,5,16,17], due to NADH oxidation, upregulation of
the mitochondrial uncoupling protein (UCP) activity, and the biosynthesis of glutathione [18].

Finally, recent findings have led to the speculation of an important role for neuroactive peptides,
such as insulin, leptin, ghrelin, des-acyl ghrelin, and adiponectin, in regulating neuronal activity
during seizures [19]. Further details on KD mechanisms can be found in numerous reviews on this
subject [4–7].

The mechanism of action of KD in the treatment of neurometabolic disorders is clearer: in the
brain, the ketone bodies act as an alternative fuel to glucose. GLUT1-DS is caused by a defect in the
protein responsible for the transfer of glucose across the blood-brain barrier, and is manifested in
seizures early in life and impairment of brain growth with developmental delay and other neurological
problems, including a complex movement disorder. The use of ketone bodies as an alternative fuel to
glucose bypasses the deficit of the glucose transporter, as the ketone bodies can enter the brain via
facilitated diffusion mediated by the MCT1 transporter [3]. Instead, PDH is caused by an enzyme
deficiency within the pyruvate dehydrogenase complex, which allows the metabolism of pyruvate to
acetyl-coA, which, in turn, enters the Krebs cycle [20]. Thus, in PDH patients, because of this enzyme
deficit, the pyruvate is metabolized in lactate, resulting in a compromised ATP production. KD allows
this metabolic block to be bypassed [21].

In addition to the above described effects, there is emerging evidence that ketone bodies exhibit
systemic and neuroprotective anti-inflammatory effects [22], as KD treatment reduces the expression
of pro-inflammatory cytokines, microglial activation, pain, and inflammation [23–25]. This occurs
through the fatty acid-induced activation of the peroxisome proliferator-activated receptor α (PPARs),
which, in turn, inhibits the pro-inflammatory transcription factor nuclear factor kappa B pathway, and
the ability of BHB to bind the hydroxycarboxylic acid receptor 2 and inhibit the innate immune sensor
NOD-like receptor 3 inflammasome that controls the activation of caspase-1 and the release of the
pro-inflammatory cytokines interleukin (IL)-1β and IL-18 [25].

Thanks to investigations that have revealed the favorable impact of ketone bodies on cellular
metabolism in many tissues, KD has also been evaluated for numerous other neurological
and neuromuscular disorders [26,27], like mitochondrial, Parkinson’s, and Alzheimer’s disease,
migraine/headache, depression, glycogenosis, high grade glioblastoma [28], and amyotrophic lateral
sclerosis, as well as for metabolic and endocrine disorders like diabetes, obesity, metabolic syndrome,
poly-cystic ovary syndrome, and congenital hyperinsulinism [29–31]. Recent reviews have summarized
the studies exploring the effects of KDs in the treatment of specific neurological disorders, and the
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clinical studies investigating the efficacy of KDs in the management of different neurological disorders
in adults [22,27].

Currently, several KD variants are used in clinical practice: the classic ketogenic diet (CKD),
the medium-chain triglyceride ketogenic diet (MCTKD), the modified Atkins diet (MAD), and the
low glycemic index treatment (LGIT) [1,32]. The CKD is the most restrictive diet and is based on
the ketogenic ratio (KR), the ratio between the grams of fat and the sum of the grams of proteins
and carbohydrates. Today, CKDs aim to achieve a KR of 4:1 (90% of daily calories derive from fat)
or 3:1 (87% of daily calories derive from fat). In CKD fat are represented especially by long-chain
triglycerides (LCT). Instead, the carbohydrate allowance is very limited, and the proteins are kept to a
minimum to satisfy the requirements for growth. In the MCTKD, 30–60% of the energy is derived
from medium-chain triglyceride (MCT) oil, which yields more ketone per kilocalorie of energy than
LCT, allowing a decrement of total fat and a higher carbohydrate and protein intake, compared to
CKD. MAD is characterized by a KR of 1:1 or 2:1 and a carbohydrate intake of up to 20 g/day. Finally,
the LGIT allows a carbohydrate intake of 40–60 g/day limited to food with a glycemic index <50 [1,2].
Figure 1 shows the detailed distribution of macronutrients in the different variants of KD, compared to
a balanced diet as recommended by the Italian Society of Human Nutrition [33].
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Figure 1. Proportion of calories provided by fat, protein, and carbohydrates in the different variants of
KD compared to a typical balanced diet.

The aim of these variants is to increase the variability, the palatability, and the tolerability of the
diet [2], improving the compliance, an important factor for a successful dietary treatment. However,
a recent meta-analysis of 11 studies on adult patients reveals a compliance rate of 45% for KDs [34].
Such adherence decreases to 38% when considering only the CKD [34]. This relatively low compliance
is related to diet ineffectiveness or diet-intolerability because of severe side-effects or discontinuation
caused by psychosocial factors and the restrictiveness of the diet [34].

KDs are not free from side effects and contraindications. The adverse effects most often reported
by patients treated with KDs are gastrointestinal problems, increased risk of nephrolithiasis, mineral
and vitamin deficiencies, growth retardation, and hyperlipidemia.

Gastrointestinal side effects include constipation, diarrhea (particularly in patients with MCT
supplementation), nausea, vomiting and, rarely, pancreatitis. However, these side effects can improve
with continued diet use and following dietary advice, such as increasing fiber and fluid intakes [22].
Pharmacological treatments and diet discontinuations are rarely required [22]. With regard to MCT
supplementation, the gradual introduction of MCT should reduce gastrointestinal side effects [22].
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Nephrolithiasis is an adverse effect occurring in a 3–7% of children treated with restricted
KDs [35–37], while no cases of kidney stone have been reported in adults treated with MAD
and LGIT [38]. Supplementation with oral potassium citrate seems to help prevent kidney stone
formation [35,39].

There are mixed results with regard to an adverse effect of KDs on growth retardation.
Some prospective studies reported constant linear growth during the first six months of treatment
with CKD [40–42], while others have observed a deceleration in height after six months of treatment,
in children prescribed with CKD [43–48] and MCTKD [49]. Nevertheless, from the available research
it is difficult to draw firm conclusions on the effect of the ketogenic diet on growth. Very often the
results are confused by the ketogenic dietary management, the follow-up protocol, the duration of
treatment, and the pre-existing malnutrition due to the diagnosed disease [50]. Furthermore, the same
mechanisms underlying the association between KDs and growth are unclear. One hypothesis involves
reduced secretion and bioavailability, during treatment with KDs, of insulin-like growth factor I (IGF-1),
one of the major growth effectors in children [47]. Further speculation links the reported growth
retardation found in children treated long-term with KDs with reduced levels of serum ghrelin [51].
However, the results concerning the KDs impact on ghrelin concentration are conflicting. Finally,
KDs could act differently on growth across the different developmental ages. In a prospective study of
237 children treated with CKD, it was found that older children grew “almost normally”, whereas
younger ones had growth retardation [43]. Other studies, on the contrary, did not find any age
difference between children who grew as expected and those who had retarded linear growth [44,48].
Prospective studies specifically designed to evaluate the impact of KDs on growth are required before
drawing any firm conclusions.

For the lipid profile, the results are discordant. Several prospective studies reported an increment
in serum lipids after initiation with CKD, both in children [42,52–54] and adults [55,56]. However,
in children, these increments are usually transitory, and normalize with diet continuation. Medium-long
term studies showed an improvement of the lipid profile after 12 and 24 months [52], with a return
to pre-treatment values after this period [57,58]. No study evaluated the long-term effect of CKD on
lipid profile in adults. A return to pre-diet values has instead been shown after diet cessation [55].
In adults, early increments in serum lipids have been shown with MAD [38,59,60] and LGIT [38],
however, also here, they tend to normalize within a year of treatment [59]. Finally, conflicting results are
reported for the impact of MCTKD on blood lipids in children. In a prospective study, an improvement
of the lipid profile was observed 4 months after diet initiation [42], however, in another, 7% of the
children showed a relevant increase in both total cholesterol and LDL cholesterol values during the
MCTKD [61].

Vitamin and mineral deficiencies can also occur because of the limited consumption of
fruit and vegetables, grains, and calcium-rich foods. The main deficiencies observed in children
treated with restrictive KDs concern vitamins B [1], vitamin C [62], vitamin D and calcium [63],
selenium [64,65], and magnesium [66]. Carbohydrates-free multivitamin and mineral products are,
therefore, recommended to prevent such deficiencies [1].

Finally, KDs are contraindicated in several specific disorders, particularly those involving fat
metabolism. A complete list of disorders in which KDs are contraindicated is reported in the recent
international guidelines [1].

In order to increase KDs compliance and reduce the diet’s side effects, thus improving the quality
of life and diet of patients treated with KDs, there has, in recent years, been an exponential increment
in the availability of special food products usable for KDs.

This review summarizes the food, including sweeteners, and food products for the ketogenic
dietary treatment of neurological diseases, describing their nutritional characteristics, giving indications
for the use of the different products, and considering their metabolic and health effects. We analyzed the
commonly-used KDs foodstuffs with high and low amounts of fat and carbohydrates, and sweeteners,
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selecting this food from that used by general population. A description is then given of food products
specifically designed for KDs, and we illustrate food alternative to traditional cereal-based food.

2. Foods for a Ketogenic Diet

2.1. Commonly-Used Foods

Regardless of the variant, KDs mainly include high-fat foods. Table 1 shows the macronutrients
content and the KR of the foods common to all KD variants.

Table 1. Macronutrients content and ketogenic ratio of the most common foods used in a ketogenic
dietary plan.

Food CHO
(%)

Protein
(%)

Lipids
(%)

SFA
(%)

MUFA
(%)

PUFA
(%) KR

Vegetable oils
Olive oil 0.0 0.0 99.9 14.46 72.95 7.52

Sunflower oil 0.0 Tr 99.9 11.24 33.37 50.22
Wheat germ oil 0.0 Tr 99.9 18.5 16.70 60.40

Rice oil 0.0 0.0 100.0 19.70 39.30 35.00
Coconut oil 0.0 Tr 99.9 86.80 6.25 1.60

Nuts
Macadamia nut 5.1 8.0 76.0 12.10 59.06 1.51 5.8:1

Nut 5.1 14.3 68.1 5.57 9.54 40.66 3.5:1
Hazelnut 6.1 13.8 64.1 4.16 38.60 5.20 3.2:1
Almond 4.6 22.0 55.3 4.59 39.44 10.85 2.1:1

Pistachio nut 8.1 18.1 56.1 5.61 36.47 10.66 2.1:1
Peanut 8.5 29.0 50.0 7.13 23.05 14.19 1.3:1
Fruit

Green olives in brine 1.0 0.8 15.0 2.10 10.47 1.68 8.3:1
Avocado 1.8 4.4 23.0 2.48 18.33 1.45 3.7:1
Coconut 9.4 3.5 35.0 30.93 2.38 0.61 2.7:1
Cheeses

Mascarpone 0.3 7.6 47.0 27.55 14.36 1.57 5.9:1
Spreadable cheese Tr 8.6 31.0 18.52 9.87 0.84 3.6:1

Brie Tr 19.3 26.9 16.92 7.79 0.80 1.4:1
Gorgonzola 1.0 19.1 27.1 13.10 7.10 0.73 1.3:1

Robiola 2.3 20.0 27.7 16.24 8.46 0.92 1.2:1
Cheddar 0.5 25.0 31.0 18.52 8.52 0.88 1.2:1

Fish
Eel 0.7 14.6 19.6 5.27 8.58 4.56 1.3:1

Mackerel 0.5 17.0 11.1 2.61 4.13 2.46 0.6:1
Salmon 1.0 18.4 12.0 2.97 4.60 3.05 0.6:1

Sardines, canned in oil, drained 0.0 22.3 12.1 2.37 6.60 2.39 0.5:1
Animal fats

Pork lard 0.0 Tr 99.0 33.12 37.14 28.77
Cow butter 1.1 0.8 83.4 48.78 23.72 2.75

Cream from cow’s milk with 35% lipids 3.4 2.3 35.0 20.37 10.85 0.94 6.1:1
Processed meat

Sausage 0.6 15.4 26.7 9.44 10.44 4.15 1.7:1
Mortadella 1.5 14.7 28.1 9.25 12.80 3.94 1.7:1

Bacon 0.0 15.8 23.6 7.97 9.82 3.42 1.5:1
Wurstel 1.4 13.7 23.3 6.94 10.81 4.43 1.5:1

Eggs
Hen’s egg yolk Tr 15.8 29.1 9.82 8.29 4.63 1.8:1

Hen’s whole egg Tr 12.4 8.7 3.17 2.58 1.26 0.7:1
Miscellaneous

Mayonnaise sauce based on sunflower oil 2.2 4.2 70.0 8.82 23.70 33.35 10.9:1
Coconut flour 6.4 5.6 62.0 53.27 4.08 1.05 5.2:1

Tofu 0.7 8.1 4.8 0.07 1.06 2.70 0.5:1

Abbreviation: CHO: carbohydrates, SFA: Saturated fatty acids, MUFA: Monounsaturated fatty acids, PUFA:
Polyunsaturated fatty acids, KR: Ketogenic ratio, Tr: Traces; The nutritional composition of the foods reported in
Table 1 have been obtained from the Italian food composition database of the European Institute of Oncology [67].
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In addition to these foods, the less restrictive KD variants allow the use of food products with a
low glycemic index. Food products with a low glycemic index available on the Italian and International
market are, respectively, reviewed in [68] and [69].

KDs must satisfy protein requirements. However, the maintenance a constant KR limits, especially
in CKD, the amount of proteins that can be included in the diet. Generally, in infants and young
children, it is still possible to provide 1 g of protein per kg of body weight [70]. This value is, however,
below the recommended protein requirement for infants and children aged 1–3 years, but meets the
needs of older children [33]. In adults, CKD allows to provide 0.5–0.7 g of protein per kg of body
weight in function of the KR. With less restrictive KDs it is easier to satisfy protein requirements. Due to
the limit imposed by the KR, proteins must be of high quality (able to satisfy the need for essential
amino acids) [70]. For this reason, protein foods are almost exclusively selected from animal foods that
are also rich in fat. Particular attention must be paid when such foods need to be cooked before being
consumed, as the fats of these products, represented mainly by saturated fatty acids (SFA), tend to be
liquefied during cooking and to collect inside the cooking medium. In order to guarantee the correct
intake of lipids and to maintain high ketosis, it is important that the lipids released from the food are
also consumed.

With regard to fat intake, what matters to maintain KR is the amount of fat to consume. However,
from the nutritional point of view, the dietary fatty acid composition is also important. Several studies
have reported an increase in serum lipids and the risk of hyperlipidemia in patients treated with KDs,
especially with the more restrictive variants. To reduce the cardiovascular risk, several authors suggest
increasing the ratio of polyunsaturated (PUFA) + monounsaturated fatty acids (MUFA) to SFA in
the ketogenic meal [70]. A recent prospective study on 12 children with pre-existing hyperlipidemia,
and treated for 12 months with KDs (nine CKD and three MCTKD) containing very low SFA (10–11%
of daily calorie intake), low dietary cholesterol (less than 80 mg/day), no added trans fatty acids,
an optimized intake of MUFA and PUFA, and supplementation of omega-3 and carnitine (if the
triglycerides and carnitine levels were, respectively, high and low), showed a significant reduction in
total and LDL cholesterol. This suggests that with an optimized dietary fat intake, a healthy serum
lipid profile can be achieved [71]. Another prospective study treated 121 children with intractable
epilepsy with olive oil-based KDs (the olive oil amount was 80–85% of the total fat) and observed that
even the olive oil-based KD caused hyperlipidemia within the first month of treatment. However,
this elevated serum level tended to decrease during follow up [72]. In fact, recent international
guidelines also suggest the use of olive oil as a possible strategy to prevent hyperlipidemia [1]. It has
also been seen that PUFAs induce a greater level of ketosis than SFA [73]. Moreover, PUFAs are natural
activators of PPARs, and there is evidence that activation of brain-localized PPARs can influence seizure
activity [74]. PUFAs, together with ketone bodies, have been shown to exert neuroprotective activity in
neurodegenerative conditions associated with impaired mitochondrial function [4]. Therefore, olive oil,
which is particularly rich in MUFA, should be used as the main fat source. To increase the PUFA intake,
portions of nuts should be included in the dietary plan. Several epidemiological studies and trials
have shown an inverse association between nuts consumption and the risk of hyperlipidemia and
cardiovascular disease [75]. However, the effects of nuts in subjects treated with KDs remain unknown.
A further strategy to increase PUFA intake consists in the addition of soy lecithin, commercially
available in the granular form, to the meal. Finally, vegetable oils rich in PUFA, such as sunflower,
wheat germ, and rice oils, can be used in addition to olive oil. In addition to being rich in PUFA, rice oil
is also a source of γ-oryzanol, a bioactive compound with antioxidant and hypolipidemic effects [76],
and subjects treated with KDs could benefit from its consumption.

Finally, in order to increase the production of ketone bodies, a portion of the daily lipid intake
can also be provided by coconut oil, the main source of MCT. Such addition is possible with all KD
variants, not only in MCTKD. For example, if CKD with a KR 3:1 fails to reach therapeutic ketonemia,
one valuation can be made of the possibility of replacing a part of the daily lipids with MCTs from
vegetable oils, before moving to a more restrictive KD. Indeed, in clinical practice many dietitians
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adopt a more flexible, patient-tailored approach to KD, combining elements from one or more variants
of KD, rather than sticking to a rigid dietary protocol [77].

2.2. Sweeteners

As specified in the introduction, in order to be effective, KDs require, according to the variant, the
almost total exclusion or the limited introduction of carbohydrates. Hence the need to have foods and
ingredients free, or with a limited content, of carbohydrates.

In the food industry, sweeteners are increasingly used as substitutes for sucrose. Indeed,
sweeteners, as an alternative to sucrose, allow the sweetening and, at the same time, the reduction of
the caloric power and glycemic index of food products. For this reason, such products are widely used
in the treatment of obesity and by diabetic subjects. Instead, the use of sweeteners in KDs is a topic
that is currently a source of doubt and perplexity, for both health professionals and the families of KDs
patients, as the absorption, metabolism and potential effects on ketonemia is relatively unknown.

Below is a brief description of the most used sweeteners, focusing on their digestion and
absorption processes, metabolism, energy value, and their effects on glucose metabolism and the
gastrointestinal tract.

2.2.1. Polyols

Polyols, or sugar alcohols, are poorly-digestible carbohydrates commonly obtained by the
hydrogenation of sugars. They are used as sugar substitutes to confer a sweet taste to food, and are
characterized by a lower degree of sweetness than sucrose, but also have a lower nutritional value.
Once ingested, only about one-third of the introduced polyols are absorbed in the small intestine via
passive diffusion. The amount absorbed varies depending on the individual polyol [78]. Unabsorbed
polyols undergo fermentation by the gut bacteria, resulting in the production of short-chain fatty acids
and gases [79]. The low nutritional value of polyols helps consumers reduce energy intake and lose
weight. Moreover, the addition of polyols to food determines a lower increment in blood glucose
and insulin secretion, which is particularly relevant to diabetic subjects. The major health concern
concerning polyols is that such sugar alcohols can have a laxative effect if eaten in large amounts,
causing bloating, intestinal gas, and diarrhea. Furthermore, some polyols have known anti-ketogenic
effects, which is a concern for subjects treated with KDs (Table 2).

Table 2 shows the characteristics and properties of the most used polyols.
Erythritol is a small polyol (four-carbon, tetritol) naturally found in fruit and vegetables,

mushrooms, and fermented foods like wine and soy sauce. Its sweetness is 60–80% that of sucrose [78].
Being a small molecule, approximately 90% of the erythritol assumed with food is readily absorbed,
by diffusion, by the small intestine, while approximately 10% reaches the large intestine. Absorbed
erythritol is minimally metabolized by the tissues, and it is essentially excreted unused in the
urine [80–82]. Therefore, erythritol contributes no calories and does not affect blood glucose levels [83].
Moreover, as erythritol is almost totally absorbed, it causes fewer intestinal symptoms [78,84].

Xylitol is a polyol with the same sweetness as sucrose [78] and it is widely used in various
pharmaceutical products, as well as in sugar-free candies and chewing gum. Like other polyols, xylitol
is partially absorbed in the small intestine by either passive or facilitated diffusion. Several experts and
authorities have proposed that xylitol absorbability is approximately 50% [82]. Once absorbed, xylitol
is transferred to the liver where it is dehydrogenated by a non-specific cytoplasmic NAD-dependent
dehydrogenase, with consequent production of xylulose, which is first phosphorylated via a specific
xylulokinase to xylulose-5-phosphate, an intermediate of the pentose-phosphate pathway and, thus,
converted to glucose that is released into the bloodstream or stored as glycogen [85]. It is not known
how much glucose is released per gram of xylitol, however, a small (approximately 4 mg/dL) but
significant increment of postprandial glycemia has been observed 60 min after the ingestion of a
solution containing 25 g of xylitol [86], suggesting a very low glucose production. Unabsorbed xylitol
reaches the large intestine where it is fermented by gut bacteria. As a result of its metabolism and
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fermentation, xylitol contributes 2.4 kcal/g. Moreover, in animal and human studies, xylitol has been
reported to have an antiketogenic effect, decreasing ketone body production by the liver and also
decreasing blood ketone body levels [87–89]. Presumably, this antiketogenic effect is mediated by an
indirect mechanism, and is due to a stimulation of insulin release from the pancreas by xylitol [89,90],
improving peripheral glucose utilization [79]. With regard to gastrointestinal side effects in healthy
humans, these occur after the consumption of an excessive dose of xylitol. In general, single doses
ranging from 10–30 g are normally tolerated without diarrhea [91]. In this light, small amounts of
xylitol, such as those contained in chewing gum, should not interfere with the ketosis level. However,
it is advisable to avoid consuming it in excessive doses.

Mannitol is a polyol with a sweetening potency approximately 50–70% that of sucrose, and it is
naturally found in the exudates of certain trees, in marine algae, and mushrooms [78]. Once ingested,
approximately 25% of mannitol is absorbed in the small intestine and subsequently excreted
not-metabolized in urine [82,92,93]. Unabsorbed mannitol is slowly fermented by gut bacteria with
the production of volatile fatty acids [93]. Consequently, mannitol contributes 1.6 kcal/g, but it does
not seem to affect blood glucose levels [94]. Concerning the effects of mannitol on the gastrointestinal
tract, human studies have shown that a dose of 10–20 g of mannitol have laxative effects [94], while at
doses of 40 g, more than of 50% of subjects developed diarrhea [93].

Sorbitol, a polyol naturally found in some fruits and vegetables, has a sweetness approximately
50–70% of that of sucrose [78]. The amount absorbed in the small intestine varies depending on
the dose ingested. However, overall, an absorption percentage of 25% has been established [82].
This part is fully metabolized in the liver through a non-specific NAD-dependent dehydrogenase,
resulting in the production of fructose and then glycogen or glucose, which is then slowly released
into the bloodstream [95]. Unabsorbed sorbitol is fermented by gut bacteria to short-chain fatty
acids and only small and insignificant amounts of sorbitol are excreted with the feces [95]. As a
result of digestion and fermentation, sorbitol contributes 2.6 kcal/g, but it does not seem to affect
blood sugar levels [94], even though an increment in the respiratory quotient has been observed [94].
Moreover, in animal studies, sorbitol has been reported to have an anti-ketogenic effect, as sorbitol
caused a marked decrement, up to 50%, of the liver production of ACA and BHB [96–98]. Additionally,
the relation between sorbitol consumption and the appearance of gastrointestinal symptoms seems to
be dose dependent [78]. Several human studies have shown that 10 g/day of sorbitol provokes only a
mild gastrointestinal problem, like flatulence or bloating, while a dose of 20 g/day can lead to more
distressing symptoms, like abdominal pain and diarrhea [99,100].

Maltitol is a disaccharide polyol, consisting of sorbitol and glucose, with a sweetness of 75–90%
that of sucrose [78]. It is used in the food industry for the production of hard candies, chewing gum,
chocolates, baked goods, and ice cream. Maltitol absorption ranges from 5–80%, however, several
authorities have agreed to consider maltitol absorbability as being 45% of the ingested amount [82].
Before its absorption, maltitol needs to be hydrolyzed by the intestinal brush-border disaccharidases in
its two components. Thus, the liberated glucose is completely absorbed, whereas the liberated sorbitol
is only partially absorbed, as described above. Unabsorbed maltitol passes to the colon where it is
fermented by the gut bacteria. As a result of its metabolism and fermentation, maltitol contributes
2.1–2.4 kcal/g. Moreover, in humans, maltitol consumption affects blood glucose level. It has been
shown that the oral administration of 50 g of maltitol determined a blood glucose maximal increment
of approximately 15–20 mg/dL [101]. An increment of postprandial blood glucose has observed also
with lower doses. Only an oral administration of 10 g of mannitol showed no effects on postprandial
glycemia [101]. Therefore, caution must be exercised when administering foodstuffs containing maltitol
to KD-treated patients. With regard to gastrointestinal distress following maltitol consumption, several
studies have shown that doses of 30–35 g of maltitol do not cause significant gastrointestinal symptoms,
whereas a dose of 40 g of maltitol caused mild borborygmus and flatus, without laxation. Diarrhea
occurred only for very high doses of maltitol (45–90 g) [102,103].
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Table 2. Characteristics and properties of the most used polyols.

Sugar
Alcohol

Absorption,
%

Fermentation,
%

Urinary Excretion,
%

Sweetness
Compared with

Sucrose, %

Caloric Value,
kcal/g Antiketogenic Effects Gastrointestinal Symptoms

Erythritol 90 10 90 60–80 0.2 - Well tolerated in the usually used doses

Xylitol 50 50 0 100 2.4 Low increment of blood glucose
Decrement of ketone bodies production 10–30 g are generally well tolerated without diarrhea

Mannitol 25 75 25 50–70 1.6 - 10–20 g have laxative effects.
Higher doses can provoke diarrhea

Sorbitol 25 75 0 50–70 2.6 Decrement of the liver production of
acetoacetate and β-hydroxybutyrate

10g can provoke bloating and flatulence. 20 g can lead
to abdominal pain and diarrhea

Maltitol 45 55 0 75–90 2.1–2.4
Increment of blood glucose also with low

doses of maltitol.
Sorbitol is released after digestion of maltitol

30–35 g/day are generally well tolerated.
40 g/day can lead to mild borborygmus and flatus.

Higher doses can lead to diarrhea

Isomalt 10 90 0 65 2.0 - Over 40 g/day can lead to several gastrointestinal
symptoms, including mild laxation

Lactitol 2 98 0 30–40 2.4 -
Up to 10g/day are generally well tolerated

Higher doses can lead to flatulence, borborygmus, colic,
motion frequency and loose stools
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Isomalt is a mixture of mannitol and sorbitol and is used in the manufacture of sugar-free
hard candies, chewing gum, chocolate, and cough drops. Its sweetness is up to 65% of that
attributed to sucrose [78]. After ingestion, isomalt is hydrolyzed by the sucrose-isomaltase and
the glucoamylase-maltase complexes of the intestinal brush-border. However, because of its poor
affinity with such enzymes, compared to maltose and sucrose, only 10% of ingested isomalt is
hydrolyzed and absorbed, while 90% passes into the colon where it is fermented to volatile fatty acids
and H2 gas by the gut bacteria. As a result of the degradation, isomalt supplies 2 kcal/g. Studies
investigating the gastrointestinal symptoms following the ingestion of isomalt have shown that 40 g
isomalt leads to an increased incidence of several symptoms, including mild laxation. A reduction
of isomalt to 30 g increased tolerance, with evidence of only mild borborygms, mild flatulence, colic,
and laxation [104]. In any case, the gastrointestinal symptoms resulting from isomalt ingestion tend to
decline with habitual consumption [91].

Lactitol is a disaccharide polyol used in the food and pharmaceutical industries. It has a low
sweetness, approximately 30–40% that of sucrose [78]. Once ingested, lactitol passes through the
small intestine almost completely unbroken because of the very low activity of β-galactosidase in
humans [105,106]. Only 2% of ingested lactitol is, indeed, hydrolyzed in galactose and sorbitol [82].
These two are, respectively, completely and partially absorbed and, on reaching the liver, are metabolized
and stored as glycogen or released as glucose into the bloodstream [82]. Unabsorbed lactitol is
intensively fermented by the gut bacteria, with the production of volatile fatty acids, particularly
butyric acid, and H2 gas [79,106]. Consequently, lactitol supplies up to 2.4 kcal/g without raising
blood glucose levels [107]. Concerning the gastrointestinal distress following the consumption of
lactitol, since almost all of the ingested lactitol reaches the large intestine, it can pull water into the gut
causing osmotic diarrhea [91]. Moreover, given the intense production of gases, it can cause flatulence.
Human studies have shown that the consumption of low doses of lactitol, up to 10 g/day, causes
little gastrointestinal distress [108], while higher doses frequently lead to gastrointestinal symptoms,
like flatulence, borborygms, colic, motion frequency, and loose stools [102,104,109,110].

2.2.2. Artificial Sweeteners

Artificial sweeteners are synthetic sugar substitutes, but they can be derived from natural sources
like herbs or sugar itself. Artificial sweeteners are characterized by high-intensity sweetness, many times
sweeter than sucrose. This implies that to achieve the same level of sweetness conferred by sucrose
only a minimal amount of artificial sweetener is needed. Furthermore, artificial sweeteners have a low
or even no nutritional value, and do not affect blood glucose levels [111].

Table 3 shows the characteristics and properties of the most used artificial sweeteners.

Table 3. Characteristics and properties of the most used artificial sweeteners.

Artificial
Sweeteners Digestion and Absorption Metabolism

Sweetness
Compared with
Sucrose, times

Caloric Value,
kcal/g

Aspartame

Completely digested in
methanol, aspartic acid, and

phenylalanine, which are
absorbed in the small intestine

Methanol is excreted with the urine or
metabolized to CO2 and excreted with breath
Aspartic acid and phenylalanine are used for

protein synthesis and gluconeogenesis

200 4

Acesulfame K Almost completely absorbed Excreted, not-metabolized, into the urine 200 0

Saccharin 85–95% is absorbed
Absorbed saccharin is excreted,
not-metabolized, into the urine

Unabsorbed saccharin is excreted in the feces
300–500 0

Sucralose Poorly absorbed
Absorbed sucralose is excreted,
not-metabolized, into the urine

Unabsorbed sucralose is excreted in the feces
600 0

Steviol glycosides Not hydrolyzed by human
enzymes

Steviol glycosides are hydrolyzed by gut
bacteria in steviol and glucose

Steviol is absorbed, glucuronidated in the
liver and excreted in the urine
Glucose is used by gut bacteria

200–300 0
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Aspartame is used extensively as a tabletop sweetener and in a wide variety of foods and beverages
like chewing gum, yogurt, desserts, and nutritional bars. From the chemical point of view, aspartame
is a methyl ester of a dipeptide containing two amino acids: L-aspartic acid and L-phenylalanine.
Its calorie content per gram is similar to that of sucrose (4 kcal/g), but aspartame’s sweetening intensity
is approximately 200 times that of sucrose. As a result, only a small amount of aspartame is needed to
achieve sweetness, leading to virtually no calories from aspartame in sweetened products. Indeed,
125 mg of aspartame approximately replace 25 g of sugar [111]. Aspartame digestion is complete
and occurs in the gastrointestinal tract by esterases and peptidases, with the production of methanol,
aspartic acid, and phenylalanine, which are all absorbed into the bloodstream [112,113]. Methanol
enters the portal circulation and is quickly metabolized to formaldehyde by alcohol dehydrogenase.
Formaldehyde, in turn, is then oxidized, by formaldehyde dehydrogenase, to formic acid which is
excreted in the urine, or is further metabolized to carbon dioxide and excreted through the breath.
The two amino acids derived from the digestion of the aspartame follow, instead, the normal metabolic
fate expected for these amino acids, including gluconeogenesis [112,113].

Acesulfame potassium (Acesulfame K, ACK) is a non-nutritive sweetener used in foods and
beverages. It has a relative sweetness approximately 200 times that of sucrose. Indeed, 125 mg of ACK
replaces approximately 25 g of sugar [111]. Once ingested, acesulfame potassium is rapidly and almost
completely absorbed into the systemic circulation [114]. However, it remains not-metabolized and is
excreted primarily via the kidneys into urine within 24 h of consumption [111,114].

Saccharin is used to sweeten products such as drinks, candies, cookies, and medicines. From the
chemical point of view, it is an acid converted into a salt using sodium hydroxide or calcium hydroxide.
Saccharin is approximately 300–500 times sweeter than sugar. For this reason, 80 mg of saccharin
replaces approximately 25 g of sugar [111]. Approximately 85–95% of dietary saccharin is absorbed in
the gastrointestinal tract. Absorbed saccharin binds reversibly to plasma proteins and is distributed
via the blood to the body organs. However, saccharin is rapidly excreted not-metabolized with the
urine, while unabsorbed saccharin is excreted in the feces [111].

Sucralose is a non-nutritive sweetener derived from sucrose. It is intensely sweet, and has a
sweetening potency approximately 600 times that of sucrose, so much so that 40 mg of sucralose
can replace approximately 25 g of sugar [111]. The ingested sucralose is poorly absorbed in the
gastrointestinal tract and is eliminated not-metabolized through feces. Instead the small amount
of absorbed sucralose is excreted not-metabolized through the urine [111,115]. Therefore, sucralose
contributes no calories and does not affect blood glucose levels.

Steviol glycosides are sweet tasting compounds extracted from Stevia rebaudiana leaves. The most
abundant steviol glycosides are stevioside and rebaudioside A. From the chemical point of view,
steviol glycosides are diterpene compounds formed by steviol molecule in which the hydrogen atom
of the carboxyl group has been replaced by a glucose molecule to form an ester, and a hydroxylic
hydrogen has been replaced by combinations of glucose and rhamnose to form an acetal. Once ingested,
the glycosidic steviols are not hydrolyzed by the enzymes and acid of the upper gastrointestinal
tract [116], so much so that they arrive intact in the large intestine, where they are hydrolyzed to
steviol by the gut bacteria. The thus-produced steviol is absorbed and transported to the liver and
glucuronidated. The steviol glucuronide is excreted mostly in urine [117]. Concerning the glucose
removed from the glycosides, there is no evidence that it is absorbed. Therefore, it is plausible that it is
quickly utilized by gut microbiota [111,118].

3. Food Products for the Ketogenic Diet

In recent years there has been a notable increase in the number of foodstuffs labeled “ketogenic”
on the market. However, not all these products have been developed specifically for the ketogenic
dietary treatment of neurological diseases. Many are suggested for the dietary treatment of obesity.
Two different categories of ketogenic food products can be distinguished: high-fat products and
high-protein low-carbohydrate food products. Furthermore, there are the glucomannan-based
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products developed for the dietary treatment of obesity and for losing weight, and also these are used
in the ketogenic dietary treatment of neurological diseases.

3.1. High-Fat Products

This category includes all foodstuffs specifically developed for the ketogenic dietary treatment of
neurological diseases. They are high-fat food products with a quite specific KR. This category includes
powder and liquid formulas, MCT-rich products, LCT-rich products, baking mixes, and ready-to-eat
foods. The characteristics of each of these products are given below.

Powder ketogenic formula: This is the first food product specifically developed for KDs. It is a
high-fat powder food product, with a KR of 4:1 or 3:1, available in different flavors, fortified with
docosahexaenoic and arachidonic acids, fiber, minerals, and vitamins, primarily intended for infants
from six weeks of age. For infants, it is generally dissolved in water, and used as a meal replacement.
For older children and adults, it can be used as a meal substitute and in combination with solid
foods, to increase the KR of a meal or to supplement it with vitamins and minerals. Several studies
have shown that the use of powder ketogenic formula in KDs is effective, safe, and tolerable for
infants and children suffering refractory seizures [119,120]. In a recent study, 27 infants and children
with drug-refractory epilepsy, aged between 12 months and five years, were treated with a powder
ketogenic formula for four months. Of the 27 children, five were lost to follow-up, 22 remaining to the
end of the study. After four months, a reduction of the median frequency of seizures per week was
observed: 68.2% of patients showed a 50% reduction in seizure frequency per week, 40.9% showed
a 50–90% reduction in seizure frequency per week, and 27.3% showed more than 90% reduction in
seizure frequency per week. As far as concerns the adverse effects, 27% of the children developed
constipation, one developed gastroesophageal reflux, and another developed hypercholesterolemia.
No child discontinued the diet because of the complications. Finally, about 60% of children and their
parents reported that the diet was palatable, and quite tolerable [119]. Similarly, in another study
involving 10 children with drug-refractory epilepsy, aged nine months to 16 years, a powder ketogenic
formula was administered for three months together with solid foods. The authors observed that
ketosis was achieved in 7–10 days and at the end of the study, 60% of children showed a 50% or more
reduction in in seizure frequency per week, while 10% was seizure-free. The formula was accepted and
tolerated by 90% of the children [120]. It was also shown that the addition of the powder ketogenic
formula to MAD during the initial month improved the efficacy of the dietary treatment of intractable
childhood epilepsy. In this study, 30 children with intractable epilepsy were prospectively followed
for two months. During the first month of treatment, MAD was used in combination with a daily
400-calorie powder ketogenic formula. At one month, 80% children had >50% of seizure reduction,
of which 37% had >90% of seizure reduction. These findings showed that the likelihood of >50%
and >90% seizure reduction was higher than that reported by other studies where only MAD was
used. No significant loss of efficacy during the second month, after the powder ketogenic formula
was discontinued, was observed. Therefore, the addition of a powder ketogenic formula to the MAD
during its initial month may be beneficial for the efficacy of dietary treatment [121]. This product is
also indicated for enteral KD [120,122].

Liquid ketogenic formulas: In addition to powder formulations, there are also liquid ketogenic
formulas. These are, substantially, ready-to-drink ketogenic formulas with a KR of 4:1 and fortified
with docosahexaenoic and arachidonic acids, fiber, minerals, and vitamins. Some versions also have
L-carnitine added, and a part of the total fats present in these products consists of MCTs. Liquid
ketogenic formulas can be used for infants, children, and adults as meal substitutes or a snack, or in
combination with solid foods to increase the KR of a meal or its contribution in vitamins and minerals.
Such products have been shown to be safe and generally well accepted by children and their parents.
Refractory epileptic children treated almost exclusively with liquid ketogenic formula have been
shown to achieve a stable ketosis in a mean time period of seven days. [123]. Moreover, being liquid,
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such products can be also beneficial for children who are tube-fed and for those in an intensive care
setting [123].

Products rich in medium-chain triglycerides: MCTs are triglycerides with two or three fatty acids
having an aliphatic tail of 6–12 carbon atoms, also called medium-chain fatty acids (MCFAs).
These include caproic (C6), caprylic (C8), capric (C10), and lauric (C12) acids. A KD containing
60–75% of calories from lipids induce ketosis if it includes a high proportion of MCT, as, unlike LCTs,
they do not require the actions of bile or micellar-chylomicron-mediated absorption into the lymphatic
system, being instead diffused into the hepatic portal vein and preferentially converted into ketone
bodies in the liver [124–126]. This allows an increase in the intake of carbohydrates and proteins and
increases the palatability of the diet [127], with little clinical difference in BHB levels when compared to
a CKD [128]. On the market, there are products consisting of mixtures of MCTs obtained by extraction
from palm and coconut oils, the main food sources of MCTs. Such mixtures, primarily available in
the oil form, have different percentage amounts of MCTs, and can have added fat-soluble vitamins,
like vitamins A, D, and E. Other available forms include margarines and ready-to-use ketogenic
formulas and powders consisting almost exclusively of MCTs. These products are not exclusive
to MCTKD, but can also be used in other KD variants, for example, to increase the production of
ketone bodies.

Products rich in long-chain triglycerides: Such products are mixtures of LCTs; they contain
neither protein nor carbohydrates. They are available in liquid state with a neutral taste and can,
therefore, be used to adjust the lipid amount in a meal or a recipe. Alternatively, they can be used as a
meal replacement.

Ketogenic baking mixes: To be effective, KDs require, according to the variant, the almost total
exclusion or the limited introduction of carbohydrates. This excludes, or limits, foods like bread, pasta,
and all bakery products in general. However, these days there are readily available on the market
ketogenic baking mixes that substitute grain flours and, thus, allow the domestic production of foods
alternative to traditional cereal-based foods. These mixes are basically vegetable oils, in particular
sunflower or palm oil, absorbed on a cellulose substrate and rendered in powder form, to which
protein sources or other lipid sources, like nut flour, can be added. Currently, there are several versions
of these products, with a KR ranging from 4.5:1 to 5:1.

Ready-to-eat ketogenic products: The number of these products on the market is constantly
growing, e.g., biscuits, bread, crackers, savory biscuits, focaccia, and desserts. The nutritional
composition of these products is very different from each other. However, two categories can
be distinguished on the basis of the KR: ready-to-eat products with a medium-low KR (2:1) and
ready-to-eat products with a high KR (3:1 or 4:1). Both categories have the benefit of being ready for
consumption, improving diet management due to their palatability and tolerability. Indeed, for a
family with a child on a KD, the fact of having safe, ready-to-eat products, with a certified nutritional
composition, greatly facilitates the management of the child’s diet, as it reduces the time spent preparing
meals. Thus, the child has more foods to choose from, so as to increase the dietary variability, and the
fact that the foods consumed are similar to those consumed by healthy peers reduces the feeling of
diversity, marginalization and isolation.

3.2. High-Protein, Low-Carbohydrate Products

This category includes many food alternatives to traditional cereal-based products, like pasta,
bread, biscuits, and desserts. However, these foodstuffs are characterized by a high protein and a low
carbohydrate content, and are mainly indicated for the treatment of obesity. The KR and, therefore,
the yield in ketone bodies, is, thus, very low and, therefore, they find little use within ketogenic
dietary plans, especially in CKD, except in small quantities and balanced with an adequate quantity of
fat-rich products.
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3.3. Glucomannan-Based Products

Glucomannan-based products are foodstuffs not directly involved in the production of
ketone bodies; however, being glucomannan a non-digestible soluble dietary fiber obtained from
Amorphophallus konjac plant tubers [129], these products can be included in a ketogenic food plan as
alternative foods to traditional cereal-based foods. Konjac flour is used as low calorie substitute in the
food industry for the production of foodstuffs such as noodles and spaghetti [129,130]. Being dietary
fiber-rich products, such foodstuffs can delay the stomach emptying, increasing satiety and, for this
reason they are mainly used as an anti-obesity agent. Moreover, these products, being low-caloric
foods, are also used in KDs as alternative products to traditional cereal based foodstuffs. Beyond
that, the inclusion of glucomannan-based products in KDs can lead to some benefits in patients’
health status. Some small-sized studies have shown that glucomannan supplementation can reduce,
in both children and adults, the risk of constipation, increasing defecation frequency and the stool
bulk without increasing the risk of side effects like abdominal cramping, borborygmi, bloating,
and flatulence [131–136]. In addition, there is some evidence that glucomannan has prebiotic effects,
as it increases the proportion of bifidobacteria and lactobacilli, and reduces the proportion of clostridia
to total fecal bacteria [135]. Such effects seem to be partially related to the increment of short chain fatty
acids and the decreased fecal pH following the consumption of glucomannan [135]. However, a further
double-blind, placebo-controlled randomized trial did not find any amelioration of constipation in
children treated with glucomannan compared to the children treated with a placebo [137]. Further
benefits, resulting from glucomannans consumption, are related to lipid and glucose metabolism.
Recent meta-analysis of randomized controlled trials shows that glucomannans lowered total and LDL
cholesterol, triglycerides, and fasting blood glucose, whereas the use of glucomannan did not appear
to affect HDL cholesterol or either systolic or diastolic blood pressure [138,139]. In the light of this,
there are no contraindications to the use of glucomannan-based products in KDs. However, since these
are highly-satiating foods, caution should be exercised when including portions in the dietary plan.
Excessive portions of these products can lead to early satiety, with consequent non-consumption of the
whole meal, resulting in KR variation and a possible effect on the level of circulating ketone bodies.

4. Conclusions

The present review summarizes the foods and the food products available on the Italian market for
the ketogenic dietary treatment of neurological diseases. However, it cannot be excluded that there are
other products on the international market that have not been taken into consideration in this review.
We think that this article is helpful for clinicians trying to promote KDs to patients, and researchers that
want to implement the diet into their studies. Moreover, all the information described in this review
can be used to provide information for patients treated with KDs and for their caregivers.

Today, thanks to the awareness campaigns carried out by the associations of families with
children treated with KDs, such as Charlie Foundation, Matthew’s friends and, in Italy, Associazione
Italiana GLUT1, one hundred years after the birth of KD, food companies have started to develop,
and make available on the market, several food products intended for this category of patients.
This is very important as it has made it possible to improve the quality of life of patients and their
families [140]. In fact, the range of products to choose from has increased, improving dietary variability.
Indeed, patients now have access to alternative foods that resemble the traditional ones rich in
carbohydrates, making patients feel less different from their healthy peers, and giving them new
ingredients for the realization of recipes that are otherwise difficult to make. However, the road is still
long. More ready-to-eat ketogenic foods are needed. In addition, the use of KDs for prolonged periods,
as in GLUT1-DS patients and in patients with metabolic diseases, requires foods with a lipid profile
characterized by a greater presence of MUFA and PUFA and lower in SFA; this is in order to reduce the
risk of future dyslipidemia and cardiovascular problems. Moreover, given the reduced consumption
of fruit and vegetables, ketogenic foods with added antioxidant and bioactive compounds are really
necessary. Finally, much work remains to have these products recognized as medical food products by
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the various health systems, so that their cost does not fall entirely on the patient, allowing all families,
regardless of their income, to access these products.

Author Contributions: Conceptualization: A.L. and S.B.; investigation: A.L., R.D.A., C.L., C.T., A.F., and S.R.;
writing—original draft preparation: A.L.; writing—review and editing: A.L., S.B., R.D.A., A.B., A.T., C.T., C.F.
and P.V.

Funding: This research received no external funding and the APC was funded by ICANS internal funds.

Acknowledgments: We want to thank Barbara Carey for the English revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.;
Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal clinical management of children
receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet
Study Group. Epilepsia. Open 2018, 3, 175–192. [CrossRef]

2. Cervenka, M.C.; Kossoff, E.H. Dietary treatment of intractable epilepsy. Continuum (Minneap Minn) 2013, 19,
756–766. [CrossRef]

3. Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 2008, 49
(Suppl. 8), 46–49. [CrossRef] [PubMed]

4. Masino, S.A.; Rho, J.M. Mechanisms of Ketogenic Diet Action. In Jasper’s Basic Mechanisms of the Epilepsies,
4th ed.; Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Eds.; National Center
for Biotechnology Information (US): Bethesda, Rockville, MD, USA, 2012.

5. Gano, L.B.; Patel, M.; Rho, J.M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 2014,
55, 2211–2228. [CrossRef]

6. Rho, J.M. How does the ketogenic diet induce anti-seizure effects? Neurosci. Lett. 2017, 637, 4–10. [CrossRef]
7. Lima, P.A.; Sampaio, L.P.; Damasceno, N.R. Neurobiochemical mechanisms of a ketogenic diet in refractory

epilepsy. Clinics (Sao Paulo) 2014, 69, 699–705. [CrossRef]
8. Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Lazarow, A.; Luhovyy, B.; Wehrli, S. Response of brain amino

acid metabolism to ketosis. Neurochem. Int. 2005, 47, 119–128. [CrossRef]
9. Juge, N.; Gray, J.A.; Omote, H.; Miyaji, T.; Inoue, T.; Hara, C.; Uneyama, H.; Edwards, R.H.; Nicoll, R.A.;

Moriyama, Y. Metabolic control of vesicular glutamate transport and release. Neuron 2010, 68, 99–112.
[CrossRef]

10. Tanner, G.R.; Lutas, A.; Martinez-Francois, J.R.; Yellen, G. Single K ATP channel opening in response to
action potential firing in mouse dentate granule neurons. J. Neurosci. 2011, 31, 8689–8696. [CrossRef]

11. Ma, W.; Berg, J.; Yellen, G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP)
channels. J. Neurosci. 2007, 27, 3618–3625. [CrossRef]

12. Masino, S.A.; Geiger, J.D. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic
diets? Trends Neurosci. 2008, 31, 273–278. [CrossRef] [PubMed]

13. Masino, S.A.; Li, T.; Theofilas, P.; Sandau, U.S.; Ruskin, D.N.; Fredholm, B.B.; Geiger, J.D.; Aronica, E.;
Boison, D. A ketogenic diet suppresses seizures in mice through adenosine A(1) receptors. J. Clin. Investig.
2011, 121, 2679–2683. [CrossRef] [PubMed]

14. Chuang, Y.C. Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death.
Acta Neurol. Taiwan 2010, 19, 3–15.

15. Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.;
Geiger, J.D.; Dingledine, R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic
diet. Ann. Neurol. 2006, 60, 223–235. [CrossRef]

16. Milder, J.; Patel, M. Modulation of oxidative stress and mitochondrial function by the ketogenic diet.
Epilepsy Res. 2012, 100, 295–303. [CrossRef]

17. Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological
conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism.
Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 309–319. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/epi4.12225
http://dx.doi.org/10.1212/01.CON.0000431396.23852.56
http://dx.doi.org/10.1111/j.1528-1167.2008.01833.x
http://www.ncbi.nlm.nih.gov/pubmed/19049586
http://dx.doi.org/10.1194/jlr.R048975
http://dx.doi.org/10.1016/j.neulet.2015.07.034
http://dx.doi.org/10.6061/clinics/2014(10)09
http://dx.doi.org/10.1016/j.neuint.2005.04.014
http://dx.doi.org/10.1016/j.neuron.2010.09.002
http://dx.doi.org/10.1523/JNEUROSCI.5951-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.0132-07.2007
http://dx.doi.org/10.1016/j.tins.2008.02.009
http://www.ncbi.nlm.nih.gov/pubmed/18471903
http://dx.doi.org/10.1172/JCI57813
http://www.ncbi.nlm.nih.gov/pubmed/21701065
http://dx.doi.org/10.1002/ana.20899
http://dx.doi.org/10.1016/j.eplepsyres.2011.09.021
http://dx.doi.org/10.1016/j.plefa.2003.09.007
http://www.ncbi.nlm.nih.gov/pubmed/14769489


Nutrients 2019, 11, 1104 16 of 21

18. Zhang, Y.; Xu, J.; Zhang, K.; Yang, W.; Li, B. The Anticonvulsant Effects of Ketogenic Diet on Epileptic
Seizures and Potential Mechanisms. Curr. Neuropharmacol. 2018, 16, 66–70. [CrossRef]

19. Giordano, C.; Marchio, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of
antiepileptic ketogenic diets. Front. Neurol. 2014, 5, 63. [CrossRef] [PubMed]

20. Prasad, C.; Rupar, T.; Prasad, A.N. Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev. 2011, 33,
856–865. [CrossRef]

21. Sofou, K.; Dahlin, M.; Hallböök, T.; Lindefeldt, M.; Viggedal, G.; Darin, N. Ketogenic diet in pyruvate
dehydrogenase complex deficiency: Short- and long-term outcomes. J. Inherit. Metab. Dis. 2017, 40, 237–245.
[CrossRef]

22. McDonald, T.J.W.; Cervenka, M.C. Ketogenic Diets for Adult Neurological Disorders. Neurotherapeutics 2018,
15, 1018–1031. [CrossRef]

23. Ruskin, D.N.; Kawamura, M.; Masino, S.A. Reduced pain and inflammation in juvenile and adult rats fed a
ketogenic diet. PLoS ONE 2009, 4, e8349. [CrossRef] [PubMed]

24. Yang, X.; Cheng, B. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced
neurotoxicity. J. Mol. Neurosci. 2010, 42, 145–153. [CrossRef]

25. Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.;
Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3
inflammasome-mediated inflammatory disease. Nat. Med. 2015, 21, 263–269. [CrossRef]

26. Paoli, A.; Bianco, A.; Damiani, E.; Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases.
Biomed. Res. Int. 2014, 2014, 474296. [CrossRef] [PubMed]

27. McDonald, T.J.W.; Cervenka, M.C. The Expanding Role of Ketogenic Diets in Adult Neurological Disorders.
Brain Sci. 2018, 8, 148. [CrossRef]

28. Seyfried, T.N.; Flores, R.; Poff, A.M.; D’Agostino, D.P.; Mukherjee, P. Metabolic therapy: A new paradigm for
managing malignant brain cancer. Cancer Lett. 2015, 356, 289–300. [CrossRef]

29. Paoli, A. Ketogenic diet for obesity: Friend or foe? Int. J. Environ. Res. Public Health 2014, 11, 2092–2107.
[CrossRef]

30. Leow, Z.Z.X.; Guelfi, K.J.; Davis, E.A.; Jones, T.W.; Fournier, P.A. The glycaemic benefits of a
very-low-carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased
hypoglycaemia risk and dyslipidaemia. Diabet. Med. 2018. [CrossRef]

31. Gupta, L.; Khandelwal, D.; Kalra, S.; Gupta, P.; Dutta, D.; Aggarwal, S. Ketogenic diet in endocrine disorders:
Current perspectives. J. Postgrad. Med. 2017, 63, 242–251.

32. Roehl, K.; Sewak, S.L. Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified
Ketogenic Diets for Treatment of Epilepsy. J. Acad. Nutr. Diet. 2017, 117, 1279–1292. [CrossRef] [PubMed]

33. Società Italiana di Nutrizione Umana. Livelli di assunzione di riferimento di nutrienti ed energia per la popolazione
italiana, 2nd ed.; SICS Editore Srl: Milan (IT), Italy, 2016.

34. Ye, F.; Li, X.J.; Jiang, W.L.; Sun, H.B.; Liu, J. Efficacy of and patient compliance with a ketogenic diet in adults
with intractable epilepsy: A meta-analysis. J. Clin. Neurol. 2015, 11, 26–31. [CrossRef]

35. Sampath, A.; Kossoff, E.H.; Furth, S.L.; Pyzik, P.L.; Vining, E.P. Kidney stones and the ketogenic diet: Risk
factors and prevention. J. Child. Neurol. 2007, 22, 375–378. [CrossRef] [PubMed]

36. Kossoff, E.H.; Pyzik, P.L.; Furth, S.L.; Hladky, H.D.; Freeman, J.M.; Vining, E.P. Kidney stones, carbonic
anhydrase inhibitors, and the ketogenic diet. Epilepsia 2002, 43, 1168–1171. [CrossRef]

37. Furth, S.L.; Casey, J.C.; Pyzik, P.L.; Neu, A.M.; Docimo, S.G.; Vining, E.P.; Freeman, J.M.; Fivush, B.A. Risk
factors for urolithiasis in children on the ketogenic diet. Pediatr. Nephrol. 2000, 15, 125–128. [CrossRef]
[PubMed]

38. Roehl, K.; Falco-Walter, J.; Ouyang, B.; Balabanov, A. Modified ketogenic diets in adults with refractory
epilepsy: Efficacious improvements in seizure frequency, seizure severity, and quality of life. Epilepsy. Behav.
2019. [CrossRef] [PubMed]

39. McNally, M.A.; Pyzik, P.L.; Rubenstein, J.E.; Hamdy, R.F.; Kossoff, E.H. Empiric use of potassium citrate
reduces kidney-stone incidence with the ketogenic diet. Pediatrics 2009, 124, e300–e304. [CrossRef]

40. Couch, S.C.; Schwarzman, F.; Carroll, J.; Koenigsberger, D.; Nordli, D.R.; Deckelbaum, R.J.; DeFelice, A.R.
Growth and nutritional outcomes of children treated with the ketogenic diet. J. Am. Diet. Assoc. 1999, 99,
1573–1575. [CrossRef]

http://dx.doi.org/10.2174/1570159X15666170517153509
http://dx.doi.org/10.3389/fneur.2014.00063
http://www.ncbi.nlm.nih.gov/pubmed/24808888
http://dx.doi.org/10.1016/j.braindev.2011.08.003
http://dx.doi.org/10.1007/s10545-016-0011-5
http://dx.doi.org/10.1007/s13311-018-0666-8
http://dx.doi.org/10.1371/journal.pone.0008349
http://www.ncbi.nlm.nih.gov/pubmed/20041135
http://dx.doi.org/10.1007/s12031-010-9336-y
http://dx.doi.org/10.1038/nm.3804
http://dx.doi.org/10.1155/2014/474296
http://www.ncbi.nlm.nih.gov/pubmed/25101284
http://dx.doi.org/10.3390/brainsci8080148
http://dx.doi.org/10.1016/j.canlet.2014.07.015
http://dx.doi.org/10.3390/ijerph110202092
http://dx.doi.org/10.1111/dme.13663
http://dx.doi.org/10.1016/j.jand.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/28754198
http://dx.doi.org/10.3988/jcn.2015.11.1.26
http://dx.doi.org/10.1177/0883073807301926
http://www.ncbi.nlm.nih.gov/pubmed/17621514
http://dx.doi.org/10.1046/j.1528-1157.2002.11302.x
http://dx.doi.org/10.1007/s004670000443
http://www.ncbi.nlm.nih.gov/pubmed/11095028
http://dx.doi.org/10.1016/j.yebeh.2018.12.010
http://www.ncbi.nlm.nih.gov/pubmed/30867113
http://dx.doi.org/10.1542/peds.2009-0217
http://dx.doi.org/10.1016/S0002-8223(99)00387-9


Nutrients 2019, 11, 1104 17 of 21

41. Tagliabue, A.; Bertoli, S.; Trentani, C.; Borrelli, P.; Veggiotti, P. Effects of the ketogenic diet on nutritional
status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy:
A 6-month prospective observational study. Clin. Nutr. 2012, 31, 246–249. [CrossRef]

42. Liu, Y.M.; Williams, S.; Basualdo-Hammond, C.; Stephens, D.; Curtis, R. A prospective study: Growth
and nutritional status of children treated with the ketogenic diet. J. Am. Diet. Assoc. 2003, 103, 707–712.
[CrossRef]

43. Vining, E.P.; Pyzik, P.; McGrogan, J.; Hladky, H.; Anand, A.; Kriegler, S.; Freeman, J.M. Growth of children on
the ketogenic diet. Dev. Med. Child. Neurol. 2002, 44, 796–802. [CrossRef]

44. Williams, S.; Basualdo-Hammond, C.; Curtis, R.; Schuller, R. Growth retardation in children with epilepsy on
the ketogenic diet: A retrospective chart review. J. Am. Diet. Assoc. 2002, 102, 405–407. [CrossRef]

45. Peterson, S.J.; Tangney, C.C.; Pimentel-Zablah, E.M.; Hjelmgren, B.; Booth, G.; Berry-Kravis, E. Changes in
growth and seizure reduction in children on the ketogenic diet as a treatment for intractable epilepsy. J. Am.
Diet. Assoc. 2005, 105, 718–725. [CrossRef]

46. Groleau, V.; Schall, J.I.; Stallings, V.A.; Bergqvist, C.A. Long-term impact of the ketogenic diet on growth and
resting energy expenditure in children with intractable epilepsy. Dev. Med. Child. Neurol. 2014, 56, 898–904.
[CrossRef] [PubMed]

47. Spulber, G.; Spulber, S.; Hagenas, L.; Amark, P.; Dahlin, M. Growth dependence on insulin-like growth
factor-1 during the ketogenic diet. Epilepsia 2009, 50, 297–303. [CrossRef] [PubMed]

48. Nation, J.; Humphrey, M.; MacKay, M.; Boneh, A. Linear growth of children on a ketogenic diet: Does the
protein-to-energy ratio matter? J. Child. Neurol. 2014, 29, 1496–1501. [CrossRef] [PubMed]

49. Neal, E.G.; Chaffe, H.M.; Edwards, N.; Lawson, M.S.; Schwartz, R.H.; Cross, J.H. Growth of children on
classical and medium-chain triglyceride ketogenic diets. Pediatrics 2008, 122, e334–e340. [CrossRef]

50. Bertoli, S.; Battezzati, A.; Tagliabue, A. Ketogenic diet in children with intractable epilepsy: What about
resting energy expenditure and growth? Dev. Med. Child. Neurol. 2014, 56, 806–807. [CrossRef] [PubMed]

51. Marchio, M.; Roli, L.; Giordano, C.; Trenti, T.; Guerra, A.; Biagini, G. Decreased ghrelin and des-acyl ghrelin
plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet.
Clin. Nutr. 2019, 38, 954–957. [CrossRef] [PubMed]

52. Kwiterovich, P.O., Jr.; Vining, E.P.; Pyzik, P.; Skolasky, R., Jr.; Freeman, J.M. Effect of a high-fat ketogenic
diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 2003, 290, 912–920.
[CrossRef]

53. Nizamuddin, J.; Turner, Z.; Rubenstein, J.E.; Pyzik, P.L.; Kossoff, E.H. Management and risk factors for
dyslipidemia with the ketogenic diet. J. Child. Neurol. 2008, 23, 758–761. [CrossRef]

54. Azevedo de Lima, P.; Baldini Prudencio, M.; Murakami, D.K.; Pereira de Brito Sampaio, L.; Figueiredo
Neto, A.M.; Teixeira Damasceno, N.R. Effect of classic ketogenic diet treatment on lipoprotein subfractions in
children and adolescents with refractory epilepsy. Nutrition 2017, 33, 271–277. [CrossRef]

55. Klein, P.; Janousek, J.; Barber, A.; Weissberger, R. Ketogenic diet treatment in adults with refractory epilepsy.
Epilepsy Behav. 2010, 19, 575–579. [CrossRef]

56. Mosek, A.; Natour, H.; Neufeld, M.Y.; Shiff, Y.; Vaisman, N. Ketogenic diet treatment in adults with refractory
epilepsy: A prospective pilot study. Seizure 2009, 18, 30–33. [CrossRef]

57. Groesbeck, D.K.; Bluml, R.M.; Kossoff, E.H. Long-term use of the ketogenic diet in the treatment of epilepsy.
Dev. Med. Child. Neurol. 2006, 48, 978–981. [CrossRef] [PubMed]

58. Heussinger, N.; Della Marina, A.; Beyerlein, A.; Leiendecker, B.; Hermann-Alves, S.; Dalla Pozza, R.;
Klepper, J. 10 patients, 10 years—Long term follow-up of cardiovascular risk factors in Glut1 deficiency
treated with ketogenic diet therapies: A prospective, multicenter case series. Clin. Nutr. 2018, 37, 2246–2251.
[CrossRef] [PubMed]

59. Cervenka, M.C.; Patton, K.; Eloyan, A.; Henry, B.; Kossoff, E.H. The impact of the modified Atkins diet on
lipid profiles in adults with epilepsy. Nutr. Neurosci. 2016, 19, 131–137. [CrossRef]

60. Kossoff, E.H.; Rowley, H.; Sinha, S.R.; Vining, E.P. A prospective study of the modified Atkins diet for
intractable epilepsy in adults. Epilepsia 2008, 49, 316–319. [CrossRef]

61. Lambrechts, D.A.; de Kinderen, R.J.; Vles, H.S.; de Louw, A.J.; Aldenkamp, A.P.; Majoie, M.J.
The MCT-ketogenic diet as a treatment option in refractory childhood epilepsy: A prospective study
with 2-year follow-up. Epilepsy Behav. 2015, 51, 261–266. [CrossRef]

http://dx.doi.org/10.1016/j.clnu.2011.09.012
http://dx.doi.org/10.1053/jada.2003.50136
http://dx.doi.org/10.1111/j.1469-8749.2002.tb00769.x
http://dx.doi.org/10.1016/S0002-8223(02)90093-3
http://dx.doi.org/10.1016/j.jada.2005.02.009
http://dx.doi.org/10.1111/dmcn.12462
http://www.ncbi.nlm.nih.gov/pubmed/24749520
http://dx.doi.org/10.1111/j.1528-1167.2008.01769.x
http://www.ncbi.nlm.nih.gov/pubmed/18727678
http://dx.doi.org/10.1177/0883073813508222
http://www.ncbi.nlm.nih.gov/pubmed/24309243
http://dx.doi.org/10.1542/peds.2007-2410
http://dx.doi.org/10.1111/dmcn.12474
http://www.ncbi.nlm.nih.gov/pubmed/24828524
http://dx.doi.org/10.1016/j.clnu.2018.03.009
http://www.ncbi.nlm.nih.gov/pubmed/29605572
http://dx.doi.org/10.1001/jama.290.7.912
http://dx.doi.org/10.1177/0883073808318061
http://dx.doi.org/10.1016/j.nut.2016.06.016
http://dx.doi.org/10.1016/j.yebeh.2010.09.016
http://dx.doi.org/10.1016/j.seizure.2008.06.001
http://dx.doi.org/10.1017/S0012162206002143
http://www.ncbi.nlm.nih.gov/pubmed/17109786
http://dx.doi.org/10.1016/j.clnu.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29199027
http://dx.doi.org/10.1179/1476830514Y.0000000162
http://dx.doi.org/10.1111/j.1528-1167.2007.01256.x
http://dx.doi.org/10.1016/j.yebeh.2015.07.023


Nutrients 2019, 11, 1104 18 of 21

62. Willmott, N.S.; Bryan, R.A. Case report: Scurvy in an epileptic child on a ketogenic diet with oral complications.
Eur. Arch. Paediatr. Dent. 2008, 9, 148–152. [CrossRef]

63. Bergqvist, A.G.; Schall, J.I.; Stallings, V.A. Vitamin D status in children with intractable epilepsy, and impact
of the ketogenic diet. Epilepsia 2007, 48, 66–71. [CrossRef] [PubMed]

64. Arslan, N.; Kose, E.; Guzel, O. The Effect of Ketogenic Diet on serum selenium levels in patients with
intractable epilepsy. Biol. Trace Elem. Res. 2017, 178, 1–6. [CrossRef]

65. Bergqvist, A.G.; Chee, C.M.; Lutchka, L.; Rychik, J.; Stallings, V.A. Selenium deficiency associated with
cardiomyopathy: A complication of the ketogenic diet. Epilepsia 2003, 44, 618–620. [CrossRef]

66. Christodoulides, S.S.; Neal, E.G.; Fitzsimmons, G.; Chaffe, H.M.; Jeanes, Y.M.; Aitkenhead, H.; Cross, J.H. The
effect of the classical and medium chain triglyceride ketogenic diet on vitamin and mineral levels. J. Hum.
Nutr. Diet. 2012, 25, 16–26. [CrossRef]

67. Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy.
Available online: http://www.bda-ieo.it/ (accessed on 5 March 2019).

68. Scazzina, F.; Dall’Asta, M.; Casiraghi, M.C.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic index
and glycemic load of commercial Italian foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [CrossRef]

69. Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load
values: 2008. Diabetes Care 2008, 31, 2281–2283. [CrossRef]

70. Freeman, J.; Veggiotti, P.; Lanzi, G.; Tagliabue, A.; Perucca, E. The ketogenic diet: From molecular mechanisms
to clinical effects. Epilepsy Res. 2006, 68, 145–180. [PubMed]

71. Liu, Y.M.; Lowe, H.; Zak, M.M.; Kobayashi, J.; Chan, V.W.; Donner, E.J. Can children with hyperlipidemia
receive ketogenic diet for medication-resistant epilepsy? J. Child. Neurol. 2013, 28, 479–483. [CrossRef]

72. Guzel, O.; Yilmaz, U.; Uysal, U.; Arslan, N. The effect of olive oil-based ketogenic diet on serum lipid levels
in epileptic children. Neurol. Sci. 2016, 37, 465–470. [CrossRef]

73. Fuehrlein, B.S.; Rutenberg, M.S.; Silver, J.N.; Warren, M.W.; Theriaque, D.W.; Duncan, G.E.; Stacpoole, P.W.;
Brantly, M.L. Differential metabolic effects of saturated versus polyunsaturated fats in ketogenic diets. J. Clin.
Endocrinol. Metab. 2004, 89, 1641–1645. [CrossRef]

74. Lucchi, C.; Costa, A.M.; Giordano, C.; Curia, G.; Piat, M.; Leo, G.; Vinet, J.; Brunel, L.; Fehrentz, J.-A.;
Martinez, J.; et al. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor
Antagonist. Front. Pharmacol. 2017, 8, 676. [CrossRef]

75. Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity:
A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. 2018, 15, 46. [CrossRef]

76. Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice Bran Oil Containing Gamma-Oryzanol
Improves Lipid Profiles and Antioxidant Status in Hyperlipidemic Subjects: A Randomized Double-Blind
Controlled Trial. J. Altern. Complement Med. 2018. [CrossRef]

77. Neal, E.G. Ketogenic dietary therapy for epilepsy and other disorders: Current perspectives. Nutr. Diet. Suppl.
2014, 6, 25–33. [CrossRef]

78. Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable
Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596.

79. Grembecka, M. Sugar alcohols—their role in the modern world of sweeteners: A review. Eur. Food Res. Technol.
2015, 241, 1–14. [CrossRef]

80. Hiele, M.; Ghoos, Y.; Rutgeerts, P.; Vantrappen, G. Metabolism of erythritol in humans: Comparison with
glucose and lactitol. Br. J. Nutr. 1993, 69, 169–176. [CrossRef] [PubMed]

81. Noda, K.; Nakayama, K.; Modderman, J. Fate of erythritol after single oral administration to rats and dogs.
Regul. Toxicol. Pharmacol. 1996, 24, S206–S213. [CrossRef]

82. Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties.
Nutr. Res. Rev. 2003, 16, 163–191. [CrossRef]

83. Jenkins, A.; Shelke, K.; Vuksan, V.; Wolever, T.M.; Campbell, J.; Ezatagha, A. Glycemic and insulinemic
response to four different sweeteners in healthy individuals: A double blind, randomized controlled trial.
FASEB J. 2013, 27, lb303.

84. Jacqz-Aigrain, E.; Kassai, B.; Cornu, C.; Cazaubiel, J.M.; Housez, B.; Cazaubiel, M.; Prevel, J.M.; Bell, M.;
Boileau, A.; de Cock, P. Gastrointestinal tolerance of erythritol-containing beverage in young children:
A double-blind, randomised controlled trial. Eur. J. Clin. Nutr. 2015, 69, 746–751. [CrossRef] [PubMed]

85. Ylikahri, R. Metabolic and nutritional aspects of xylitol. Adv. Food Res. 1979, 25, 159–180. [PubMed]

http://dx.doi.org/10.1007/BF03262627
http://dx.doi.org/10.1111/j.1528-1167.2006.00803.x
http://www.ncbi.nlm.nih.gov/pubmed/17241209
http://dx.doi.org/10.1007/s12011-016-0897-7
http://dx.doi.org/10.1046/j.1528-1157.2003.26102.x
http://dx.doi.org/10.1111/j.1365-277X.2011.01172.x
http://www.bda-ieo.it/
http://dx.doi.org/10.1016/j.numecd.2016.02.013
http://dx.doi.org/10.2337/dc08-1239
http://www.ncbi.nlm.nih.gov/pubmed/16523530
http://dx.doi.org/10.1177/0883073813476140
http://dx.doi.org/10.1007/s10072-015-2436-2
http://dx.doi.org/10.1210/jc.2003-031796
http://dx.doi.org/10.3389/fphar.2017.00676
http://dx.doi.org/10.1186/s12986-018-0282-y
http://dx.doi.org/10.1089/acm.2018.0212
http://dx.doi.org/10.2147/NDS.S41517
http://dx.doi.org/10.1007/s00217-015-2437-7
http://dx.doi.org/10.1079/BJN19930019
http://www.ncbi.nlm.nih.gov/pubmed/8457525
http://dx.doi.org/10.1006/rtph.1996.0100
http://dx.doi.org/10.1079/NRR200371
http://dx.doi.org/10.1038/ejcn.2015.4
http://www.ncbi.nlm.nih.gov/pubmed/25744158
http://www.ncbi.nlm.nih.gov/pubmed/391001


Nutrients 2019, 11, 1104 19 of 21

86. Natah, S.S.; Hussien, K.R.; Tuominen, J.A.; Koivisto, V.A. Metabolic response to lactitol and xylitol in healthy
men. Am. J. Clin. Nutr. 1997, 65, 947–950. [CrossRef] [PubMed]

87. Bassler, K.H.; Dreiss, G. Antiketogenic effect of xylitol in alloxan-diabetic rats. Klin. Wochenschr. 1963, 41,
593–595.

88. Yamagata, S.; Goto, Y.; Ohneda, A.; Anzai, M.; Kawashima, S.; Kikuchi, J.; Chiba, M.; Maruhama, Y.;
Yamauchi, Y.; Toyota, T. Clinical Application of Xylitol in Diabetes. In Proceedings of the International
Symposium on Metabolism, Physiology, and Clinical Use of Pentoses and Pentitols, Hakone, Japan, 27–29
August 1967; Springer: Berlin/Heidelberg, Germany, 1969; pp. 316–325.

89. Jakob, A.; Williamson, J.R.; Asakura, T. Xylitol metabolism in perfused rat liver. Interactions with
gluconeogenesis and ketogenesis. J. Biol. Chem. 1971, 246, 7623–7631. [PubMed]

90. Kuzuya, T.; Kanazawa, Y. Studies on the mechanism of xylitol-induced insulin secretion in dogs. Effect of
its infusion into the pancreatic artery, and the inhibition by epinephrine and diazoxide of xylitol-induced
hyperinsulinaemia. Diabetologia 1969, 5, 248–257. [CrossRef]

91. Mäkinen, K.K. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with
Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care
Professionals. J. Biol. Chem. 2016, 2016, 5967907. [CrossRef]

92. Livesey, G. The energy values of dietary fibre and sugar alcohols for man. Nutr. Res. Rev. 1992, 5, 61–84.
[CrossRef]

93. Nasrallah, S.M.; Iber, F.L. Mannitol absorption and metabolism in man. Am. J. Med. Sci. 1969, 258, 80–88.
[CrossRef]

94. Ellis, F.W.; Krantz, J.C., Jr. Sugar alcohols. 22. Metabolism and toxicity studies with mannitol and sorbitol in
man and animals. J. Biol. Chem. 1941, 141, 147–154.

95. Adcock, L.H.; Gray, C.H. The metabolism of sorbitol in the human subject. Biochem. J. 1957, 65, 554–560.
[CrossRef]

96. Blakley, R.L. The metabolism and antiketogenic effects of sorbitol; sorbitol dehydrogenase. Biochem. J. 1951,
49, 257–271. [CrossRef]

97. Rawat, A.K.; Menahan, L.A. Antiketogenic action of fructose, glyceraldehyde, and sorbitol in the rat in vivo.
Diabetes 1975, 24, 926–932. [CrossRef]

98. Exton, J.H.; Edson, N.L. The antiketogenic action of sorbitol. Biochem. J. 1964, 91, 478–483. [CrossRef]
99. Hyams, J.S. Sorbitol intolerance: An unappreciated cause of functional gastrointestinal complaints.

Gastroenterology 1983, 84, 30–33. [PubMed]
100. Vernia, P.; Frandina, C.; Bilotta, T.; Ricciardi, M.R.; Villotti, G.; Fallucca, F. Sorbitol malabsorption and

nonspecific abdominal symptoms in type II diabetes. Metabolism 1995, 44, 796–799. [CrossRef]
101. Secchi, A.; Pontiroli, A.E.; Cammelli, L.; Bizzi, A.; Cini, M.; Pozza, G. Effects of oral administration of maltitol

on plasma glucose, plasma sorbitol, and serum insulin levels in man. Klin. Wochenschr. 1986, 64, 265–269.
[CrossRef] [PubMed]

102. Nakamura, S.; Hongo, R.; Moji, K.; Oku, T. Suppressive effect of partially hydrolyzed guar gum on transitory
diarrhea induced by ingestion of maltitol and lactitol in healthy humans. Eur. J. Clin. Nutr. 2007, 61,
1086–1093. [CrossRef]

103. Ruskone-Fourmestraux, A.; Attar, A.; Chassard, D.; Coffin, B.; Bornet, F.; Bouhnik, Y. A digestive tolerance
study of maltitol after occasional and regular consumption in healthy humans. Eur. J. Clin. Nutr. 2003, 57,
26–30. [CrossRef]

104. Koutsou, G.A.; Storey, D.M.; Lee, A.; Zumbe, A.; Flourie, B.; leBot, Y.; Olivier, P. Dose-related gastrointestinal
response to the ingestion of either isomalt, lactitol or maltitol in milk chocolate. Eur. J. Clin. Nutr. 1996, 50,
17–21.

105. Nilsson, U.; Jagerstad, M. Hydrolysis of lactitol, maltitol and Palatinit by human intestinal biopsies. Br. J. Nutr.
1987, 58, 199–206. [CrossRef] [PubMed]

106. Grimble, G.K.; Patil, D.H.; Silk, D.B. Assimilation of lactitol, an ‘unabsorbed’ disaccharide in the normal
human colon. Gut 1988, 29, 1666–1671. [CrossRef] [PubMed]

107. Metzger, J.; Chollet, C.; Wermeille, M.; Biollaz, J.; Llull, J.B.; Lauterburg, B.H. Lactitol: Gastrointestinal
absorption and effect on blood lactate in healthy volunteers and patients with cirrhosis. Eur. J. Clin. Pharmacol.
1988, 35, 97–99. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/ajcn/65.4.947
http://www.ncbi.nlm.nih.gov/pubmed/9094877
http://www.ncbi.nlm.nih.gov/pubmed/4332557
http://dx.doi.org/10.1007/BF01212093
http://dx.doi.org/10.1155/2016/5967907
http://dx.doi.org/10.1079/NRR19920007
http://dx.doi.org/10.1097/00000441-196908000-00003
http://dx.doi.org/10.1042/bj0650554
http://dx.doi.org/10.1042/bj0490257
http://dx.doi.org/10.2337/diab.24.10.926
http://dx.doi.org/10.1042/bj0910478
http://www.ncbi.nlm.nih.gov/pubmed/6847853
http://dx.doi.org/10.1016/0026-0495(95)90195-7
http://dx.doi.org/10.1007/BF01711933
http://www.ncbi.nlm.nih.gov/pubmed/3520129
http://dx.doi.org/10.1038/sj.ejcn.1602623
http://dx.doi.org/10.1038/sj.ejcn.1601516
http://dx.doi.org/10.1079/BJN19870087
http://www.ncbi.nlm.nih.gov/pubmed/3676242
http://dx.doi.org/10.1136/gut.29.12.1666
http://www.ncbi.nlm.nih.gov/pubmed/3220306
http://dx.doi.org/10.1007/BF00555516
http://www.ncbi.nlm.nih.gov/pubmed/3220101


Nutrients 2019, 11, 1104 20 of 21

108. Finney, M.; Smullen, J.; Foster, H.A.; Brokx, S.; Storey, D.M. Effects of low doses of lactitol on faecal microflora,
pH, short chain fatty acids and gastrointestinal symptomology. Eur. J. Nutr. 2007, 46, 307–314. [CrossRef]
[PubMed]

109. Soontornchai, S.; Sirichakwal, P.; Puwastien, P.; Tontisirin, K.; Kruger, D.; Grossklaus, R. Lactitol tolerance in
healthy Thai adults. Eur. J. Nutr. 1999, 38, 218–226. [CrossRef] [PubMed]

110. Lee, A.; Storey, D.M. Comparative gastrointestinal tolerance of sucrose, lactitol, or D-tagatose in chocolate.
Regul. Toxicol. Pharmacol. 1999, 29, S78–S82. [CrossRef] [PubMed]

111. Magnuson, B.A.; Carakostas, M.C.; Moore, N.H.; Poulos, S.P.; Renwick, A.G. Biological fate of low-calorie
sweeteners. Nutr. Rev. 2016, 74, 670–689. [CrossRef]

112. Hooper, N.M.; Hesp, R.J.; Tieku, S. Metabolism of aspartame by human and pig intestinal microvillar
peptidases. Biochem. J. 1994, 298, 635–639. [CrossRef]

113. Choudhary, A.K.; Pretorius, E. Revisiting the safety of aspartame. Nutr. Rev. 2017, 75, 718–730. [CrossRef]
114. Renwick, A.G. The metabolism of intense sweeteners. Xenobiotica 1986, 16, 1057–1071. [CrossRef] [PubMed]
115. Roberts, A.; Renwick, A.G.; Sims, J.; Snodin, D.J. Sucralose metabolism and pharmacokinetics in man.

Food Chem. Toxicol. 2000, 38 (Suppl. 2), S31–S41. [CrossRef]
116. Hutapea, A.M.; Toskulkao, C.; Buddhasukh, D.; Wilairat, P.; Glinsukon, T. Digestion of stevioside, a natural

sweetener, by various digestive enzymes. J. Clin. Biochem. Nutr. 1997, 23, 177–186. [CrossRef]
117. Wheeler, A.; Boileau, A.C.; Winkler, P.C.; Compton, J.C.; Prakash, I.; Jiang, X.; Mandarino, D.A.

Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men. Food Chem. Toxicol.
2008, 46 (Suppl. 7), S54–S60. [CrossRef]

118. Carakostas, M.C.; Curry, L.L.; Boileau, A.C.; Brusick, D.J. Overview: The history, technical function and
safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem.
Toxicol. 2008, 46 (Suppl. 7), S1–S10. [CrossRef] [PubMed]

119. Ashrafi, M.R.; Hosseini, S.A.; Zamani, G.R.; Mohammadi, M.; Tavassoli, A.; Badv, R.S.; Heidari, M.; Karimi, P.;
Malamiri, R.A. The efficacy of the ketogenic diet in infants and young children with refractory epilepsies
using a formula-based powder. Acta. Neurol. Belg. 2017, 117, 175–182. [CrossRef]

120. Sampaio, L.P.B.; Takakura, C.; Manreza, M.L.G. The use of a formula-based ketogenic diet in children with
refractory epilepsy. Arq. Neuropsiquiatr. 2017, 75, 234–237. [CrossRef]

121. Kossoff, E.H.; Dorward, J.L.; Turner, Z.; Pyzik, P.L. Prospective study of the modified atkins diet in
combination with a ketogenic liquid supplement during the initial month. J. Child. Neurol. 2011, 26, 147–151.
[CrossRef] [PubMed]

122. Hosain, S.A.; La Vega-Talbott, M.; Solomon, G.E. Ketogenic diet in pediatric epilepsy patients with gastrostomy
feeding. Pediatr. Neurol. 2005, 32, 81–83. [CrossRef]

123. Weijenberg, A.; van Rijn, M.; Callenbach, P.M.C.; de Koning, T.J.; Brouwer, O.F. Ketogenic Diet in Refractory
Childhood Epilepsy: Starting With a Liquid Formulation in an Outpatient Setting. Child Neurol. Open 2018,
5, 2329048x18779497. [CrossRef] [PubMed]

124. St-Onge, M.P.; Ross, R.; Parsons, W.D.; Jones, P.J. Medium-chain triglycerides increase energy expenditure
and decrease adiposity in overweight men. Obes. Res. 2003, 11, 395–402. [CrossRef]

125. CJ, D.C.H.; Schofield, G.M.; Williden, M.; McQuillan, J.A. The Effect of Medium Chain Triglycerides on
Time to Nutritional Ketosis and Symptoms of Keto-Induction in Healthy Adults: A Randomised Controlled
Clinical Trial. J. Nutr. Metab. 2018, 2018, 2630565.

126. Harvey, C.; Schofield, G.M.; Williden, M. The use of nutritional supplements to induce ketosis and reduce
symptoms associated with keto-induction: A narrative review. PeerJ 2018, 6, e4488. [CrossRef] [PubMed]

127. Liu, Y.M. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia 2008, 49 (Suppl. 8), 33–36. [CrossRef]
[PubMed]

128. Huttenlocher, P.R. Ketonemia and seizures: Metabolic and anticonvulsant effects of two ketogenic diets in
childhood epilepsy. Pediatr. Res. 1976, 10, 536–540. [CrossRef]

129. Singh, S.; Singh, G.; Arya, S.K. Mannans: An overview of properties and application in food products. Int. J.
Biol. Macromol. 2018, 119, 79–95. [CrossRef]

130. Behera, S.S.; Ray, R.C. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch
in health care. Int. J. Biol. Macromol. 2016, 92, 942–956. [CrossRef]

http://dx.doi.org/10.1007/s00394-007-0666-7
http://www.ncbi.nlm.nih.gov/pubmed/17623227
http://dx.doi.org/10.1007/s003940050064
http://www.ncbi.nlm.nih.gov/pubmed/10654158
http://dx.doi.org/10.1006/rtph.1998.1255
http://www.ncbi.nlm.nih.gov/pubmed/10341165
http://dx.doi.org/10.1093/nutrit/nuw032
http://dx.doi.org/10.1042/bj2980635
http://dx.doi.org/10.1093/nutrit/nux035
http://dx.doi.org/10.3109/00498258609038983
http://www.ncbi.nlm.nih.gov/pubmed/3541395
http://dx.doi.org/10.1016/S0278-6915(00)00026-0
http://dx.doi.org/10.3164/jcbn.23.177
http://dx.doi.org/10.1016/j.fct.2008.04.041
http://dx.doi.org/10.1016/j.fct.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18555576
http://dx.doi.org/10.1007/s13760-016-0732-0
http://dx.doi.org/10.1590/0004-282x20170028
http://dx.doi.org/10.1177/0883073810375718
http://www.ncbi.nlm.nih.gov/pubmed/20833798
http://dx.doi.org/10.1016/j.pediatrneurol.2004.09.006
http://dx.doi.org/10.1177/2329048X18779497
http://www.ncbi.nlm.nih.gov/pubmed/29872664
http://dx.doi.org/10.1038/oby.2003.53
http://dx.doi.org/10.7717/peerj.4488
http://www.ncbi.nlm.nih.gov/pubmed/29576959
http://dx.doi.org/10.1111/j.1528-1167.2008.01830.x
http://www.ncbi.nlm.nih.gov/pubmed/19049583
http://dx.doi.org/10.1203/00006450-197605000-00006
http://dx.doi.org/10.1016/j.ijbiomac.2018.07.130
http://dx.doi.org/10.1016/j.ijbiomac.2016.07.098


Nutrients 2019, 11, 1104 21 of 21

131. Han, Y.; Zhang, L.; Liu, X.Q.; Zhao, Z.J.; Lv, L.X. Effect of glucomannan on functional constipation in children:
A systematic review and meta-analysis of randomised controlled trials. Asia Pac. J. Clin. Nutr. 2017, 26,
471–477. [PubMed]

132. Staiano, A.; Simeone, D.; Del Giudice, E.; Miele, E.; Tozzi, A.; Toraldo, C. Effect of the dietary fiber
glucomannan on chronic constipation in neurologically impaired children. J. Pediatr. 2000, 136, 41–45.
[CrossRef]

133. Loening-Baucke, V.; Miele, E.; Staiano, A. Fiber (glucomannan) is beneficial in the treatment of childhood
constipation. Pediatrics 2004, 113, e259–e264. [CrossRef]

134. Passaretti, S.; Franzoni, M.; Comin, U.; Donzelli, R.; Rocca, F.; Colombo, E.; Ferrara, A.; Dinelli, M.; Prada, A.;
Curzio, M.; et al. Action of glucomannans on complaints in patients affected with chronic constipation:
A multicentric clinical evaluation. Ital. J. Gastroenterol. 1991, 23, 421–425.

135. Chen, H.L.; Cheng, H.C.; Liu, Y.J.; Liu, S.Y.; Wu, W.T. Konjac acts as a natural laxative by increasing stool
bulk and improving colonic ecology in healthy adults. Nutrition 2006, 22, 1112–1119. [CrossRef]

136. Chen, H.L.; Cheng, H.C.; Wu, W.T.; Liu, Y.J.; Liu, S.Y. Supplementation of konjac glucomannan into a
low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults:
A placebo-controlled, diet-controlled trial. J. Am. Coll. Nutr. 2008, 27, 102–108. [CrossRef] [PubMed]

137. Chmielewska, A.; Horvath, A.; Dziechciarz, P.; Szajewska, H. Glucomannan is not effective for the treatment
of functional constipation in children: A double-blind, placebo-controlled, randomized trial. Clin. Nutr.
2011, 30, 462–468. [CrossRef] [PubMed]

138. Sood, N.; Baker, W.L.; Coleman, C.I. Effect of glucomannan on plasma lipid and glucose concentrations, body
weight, and blood pressure: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2008, 88, 1167–1175.
[CrossRef] [PubMed]

139. Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.;
Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials
of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets
non-HDL cholesterol and apolipoprotein B. Am. J. Clin. Nutr. 2017, 105, 1239–1247. [CrossRef] [PubMed]

140. Dozieres-Puyravel, B.; Francois, L.; de Lucia, S.; Goujon, E.; Danse, M.; Auvin, S. Ketogenic diet therapies in
France: State of the use in 2018. Epilepsy Behav. 2018, 86, 204–206. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/28429913
http://dx.doi.org/10.1016/S0022-3476(00)90047-7
http://dx.doi.org/10.1542/peds.113.3.e259
http://dx.doi.org/10.1016/j.nut.2006.08.009
http://dx.doi.org/10.1080/07315724.2008.10719681
http://www.ncbi.nlm.nih.gov/pubmed/18460488
http://dx.doi.org/10.1016/j.clnu.2011.01.012
http://www.ncbi.nlm.nih.gov/pubmed/21320737
http://dx.doi.org/10.1093/ajcn/88.4.1167
http://www.ncbi.nlm.nih.gov/pubmed/18842808
http://dx.doi.org/10.3945/ajcn.116.142158
http://www.ncbi.nlm.nih.gov/pubmed/28356275
http://dx.doi.org/10.1016/j.yebeh.2018.05.031
http://www.ncbi.nlm.nih.gov/pubmed/29997039
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Foods for a Ketogenic Diet 
	Commonly-Used Foods 
	Sweeteners 
	Polyols 
	Artificial Sweeteners 


	Food Products for the Ketogenic Diet 
	High-Fat Products 
	High-Protein, Low-Carbohydrate Products 
	Glucomannan-Based Products 

	Conclusions 
	References

