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Abstract: It is often the case that the environment of a quantum system may be described as a bath
of oscillators with an ohmic density of states. In turn, the precise characterization of these classes
of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols.
Recently, the use of quantum probes in characterizing ohmic environments at zero-temperature has
been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the
other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the
analysis to a complex system at thermal equilibrium. In particular, we discuss the interplay between
thermal fluctuations and time evolution in determining the precision attainable by quantum probes. Our
results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff
frequency, i.e. values of the order ωc . T (in natural units). For larger values of ωc, decoherence is mostly
due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a
single qubit is still an effective estimation procedure.

Keywords: open quantum systems; quantum probes; ohmic environments

1. Introduction

In the last decade, technological advances in control and manipulation of quantum systems have made
quantum probes available to the characterization of a large set of physical platforms. In turn, a radically
new approach to probe complex quantum systems emerged, and it is based on the quantification and
optimization of the information that can be extracted by an immersed quantum probe, as opposed to a
classical one [1–9]. Quantum probes offer two main advantages: on one hand, they often provide enhanced
precision, due to the inherent sensitivity of quantum system to environment-induced decoherence.
On the other hand, they provide non-invasive techniques in order to estimate parameters of interest,
without perturbing the system under investigation too much.

In this paper, we address the use of the simplest quantum probe, a single qubit, as it already embodies
all the desired properties of an effective probe: it is small, only weakly invasive, and it can be easily
manipulated and controlled [10–12]. Our aim is to characterize the spectral properties of a bath of
oscillators, which itself provides a quite general model, suitable to describe several complex systems
of interest for quantum information science and reservoir engineering [13–18]. In particular, we focus
on the cutoff frequency ωc of the environment, which is linked to the environment correlation time
and, in turn, to the available coherence time for communication and computation. Indeed, a precise
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characterization of the spectral density is a crucial step to the engineering of reservoirs, tailored to specific
tasks. Recently, the effective use of a single qubit quantum probe to characterize ohmic environments
at zero temperature has been analyzed and discussed [3]. On the other hand, thermal fluctuations often
spoil the effectiveness of quantum metrological protocols, the most dramatic case being represented by
quantum interferometry, where an infinitesimal amount of noise is enough to kill Heisenberg scaling
and reinstates the shot noise limit [19]. In turn, the effect of temperature has been analyzed in different
metrological contexts, for example the out-of-equilibrium regimes [20] and phase estimation in Gaussian
states [21]. For these reasons, we extend here the analysis to the more realistic case of complex systems at
thermal equilibrium and discuss in detail the interplay among thermal fluctuations and time evolution in
making the qubit an effective probe for the cutoff frequency of its environment. In this context, a relevant
feature of our probing technique is the pure dephasing nature of the interaction between the qubit and
its environment. This means that, while the ohmic system has a fixed temperature, the probe has access
to the full set of out-of-equilibrium states [22], while not exchanging energy with the ohmic system. As
we will see, this provides room to optimize the probing strategy and to enhance sensitivity over classical
(thermal) probes.

Any probing strategy requires control of the initial state of the probing system, as well as of the
coupling with the probed one. Concerning the detection of the probe after interaction, we exploit results
from local quantum estimation theory (QET), which provides the necessary tools to determine the most
informative measurement and the most precise estimator and, in turn, to optimize the extraction of
information from the quantum probe [23]. Indeed, QET has been effectively employed in different
contexts [24–44], in order to individuate the most convenient detection scheme and to evaluate the ultimate
quantum bounds to precision. In this work, we address the characterization of ohmic environments
at thermal equilibrium, i.e., the estimation of their cutoff frequency, assuming that the nature of the
environment is known, i.e., the value of the ohmicity parameter. On the other hand, we optimize the
strategy over the initial preparation of the probe qubit, the interaction time, and the detection scheme at the
output. In particular, we pay attention to the overall estimability of the cutoff frequency, as measured by
the quantum signal-to-noise ratio, in different temperature regimes. As we will see, the presence of thermal
fluctuations degrades the estimation precision. On the other hand, the negative effects of temperature are
relevant only for small values of the cutoff frequency, i.e., values of the order ωc . T (in natural units).
For larger values of the cutoff frequency, the decoherence of the probe is mostly due to the structure of the
environment, rather than thermal fluctuations, so the overall estimation procedure is still very effective,
with performances very close to the zero temperature case.

The paper is structured as follows. In Section 2, we describe the interaction model, establish notation,
and briefly review the ideas and the tools of QET. In Section 3, we present our results and discuss in details
the interplay between thermal fluctuations and time evolution in determining the precision of quantum
probes. Section 4 closes the paper with some concluding remarks.

2. The Model

Our quantum probe is a single qubit with energy gap ω0, which interacts with a bosonic reservoir at
thermal equilibrium. The total Hamiltonian may be written as

H =
ω0

2
σ3 + ∑

k
ωk b†

k bk + σ3 ∑
k
(gk b†

k + g∗k bk) (1)

where ωk is the frequency of the k-th reservoir mode, and we use natural units with h̄ = kB = 1.
The Pauli matrix σ3 acts on the qubit, and [bk, b†

k ] = δk k′ describes the modes of the bath. The gk’s
are coupling constants, describing the interaction of each mode with the qubit. Their distribution is
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usually described in terms of the so-called spectral density of the bath, which is defined as J(ω) =

∑k |gk|2 δ(ωk −ω). The spectral density depends on the the specific features of the physical system and
may often be engineered in order to enable control of quantum decoherence [2]. The model described by
H in Equation (1) is exactly solvable, making it possible to analyze the mechanisms creating entanglement
between the qubit and environment, which in turn is at the core of decoherence processes [1,2].

We are interested in probing properties of the environment by performing measurements on the qubit.
To this aim, we study the reduced dynamics of the qubit assuming that the environment is at thermal
equilibrium, i.e.,

ρE =
1
Z

exp

{
− 1

T ∑
k

ωk b†
k bk

}

where Z = Tr
[
exp{− 1

T ∑k ωk b†
k bk}

]
is the partition function and T denotes the temperature. In particular,

our goal is to probe the cutoff frequency of ohmic environments, i.e. the quantity ωc appearing in spectral
densities of the form

Js(ω, ωc) = ωc

(
ω

ωc

)s
exp

{
− ω

ωc

}
. (2)

The cutoff frequency is a crucial parameter for applications in quantum information science, since it is
linked to the environment correlation time and, in turn, to the available coherence time for communication
and computation. The quantity s is a real positive number, which instead governs the behavior of the
spectral density at low frequencies. Upon varying s, we move from the sub-ohmic (s < 1), to the
ohmic (s = 1), and to the super-ohmic (s > 1) regimes. In the following, in order to make some explicit
quantitative statements, we will often refer to the paradigmatic values s = 0.5, 1, 3 [45,46].

The initial state of the combined system, qubit and environment, is described by the density matrix

ρQE(0) = ρQ(0)⊗ ρE (3)

where ρE is given above. The initial preparation of the qubit probe ρQ(0) should be optimized in order
to extract the maximum possible information on ωc from measurements performed on the qubit after
the interaction with the environment. This optimization has been performed in [3] for environments at
zero temperature. The proof does not depend on the structure of the environment, but only on the pure
dephasing map of the qubit. Since the same dynamical map is considered here, the proof holds also for
thermal environments, so we consider ρQ(0) = |+〉〈+| = 1

2 (I+ σ1), where |+〉 = 1√
2
(|0〉+ |1〉), {|0〉, |1〉}

being the computational basis, i.e., the eigenstates of σ3. We now move to the interaction picture, where
the Hamiltonian and the evolution operator take on the expressions

HI = σ3 ∑
k

(
gkb†

k eiωkτ + g∗k bke−iωkτ
)

(4)

UI(τ) ∝ exp

[
1
2

σ3 ∑
k

(
αkb†

k − α∗k bk

)]
(5)

where αk = 2gk
1−eiωkτ

ωk
[1]. If we assume a continuum of the environment’s modes, we can use the

spectral density (2) to evaluate the evolved state of the qubit probe upon tracing out the environment
ρQ(τ) = TrE

[
UI(τ) ρQE(0)U†

I (τ)
]
, which explicitly reads

ρQ(τ) =
1
2

(
I+ e−Γs(τ,T,ωc)σ1

)
(6)
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where

Γs(τ, T, ωc) =
∫ ∞

0
dω Js(ω, ωc)

1− cos ωτ

ω2 coth
( ω

2T

)
(7)

is usually referred to as the decoherence function, with exp{−Γs(τ, T, ωc)} referred to as the decoherence
factor. Notice that in Equation (7) frequencies, time and temperature are dimensionless quantities expressed
in units of the probe frequency ω0. The decoherence function depends on the temperature T of the
environment and on the form of the spectral density Js(ω, ωc) [1,3], i.e., on the cutoff frequency ωc

and the ohmicity parameter s. An analytic form of the integral in Equation (7) may be obtained at
any temperature, time, and ohmicity parameter by expanding the hyperbolic cotangent coth(x) = 1 +

2 ∑∞
n=1 e−2nx. The decoherence function may then be written as

Γs(τ, T, ωc) = Γs(τ, 0, ωc) + 2
∞

∑
n=1

(
T

T + n ωc

)s−1
Γs

(
τ, 0,

Tωc

T + n ωc

)
,

which explicitly reads

Γs(τ, T, ωc)=Γs(τ, 0, ωc) + s(s− 1)
(

T
ωc

)s−1Γe[s− 1]2

Γe[s + 1]
F(ζ) (8)

where Γe[z] =
∫ ∞

0 dt tz−1e−t is the Euler Gamma function and where we introduced the function

F(ζ)≡2ζ[s−1, 1+Re(w)]− ζ[s−1, 1+w]− ζ[s−1, 1+w∗] (9)

where w ≡ T ω−1
c + i T τ, ζ[p, q] = ∑∞

k=0(k + q)−p is the generalized (Hurwitz) zeta function and
Γs(τ, 0, ωc) is the decoherence function at zero temperature, i.e., [3]

Γs(τ, 0, ωc)=Γe[s−1]

{
1−

cos
[
(s−1) arctan(ωcτ)

]
(1 + ω2

c τ2)
s−1

2

}
. (10)

The behavior of the decoherence function, which from now on we denote as Γs ≡ Γs(τ, T, ωc), as a
function of the dimensionless time τ is shown in Figure 1, for different cutoff frequencies, ohmicity
parameters, and two regimes of high and low temperature of the environment. As is apparent from the
plots, for short times (τ � 1), the decoherence function follows a power-law scaling for any value of the
other parameters. More precisely, from a first-order approximation, it scales as τ2:

Γs'
1
2

ω2
c Γe(s− 1)

[
2
(

T
ωc

)s+1
ζ

(
s+1,

T
ωc

)
− 1

]
τ2 . (11)

The asymptotic behavior at long times, instead, is different for the three choices of the ohmicity
parameters. In particular, in the super-ohmic case with s = 3, the decoherence function saturates to
a constant value, at any temperature T. This means that the stationary state of the qubit is not a fully
dephased one and that the residual degree of coherence is larger for values of the parameters leading
to smaller saturation values of Γ3. In the other cases, sub-ohmic with s = 0.5 and ohmic with s = 1,
the decoherence function scales, respectively, as Γ0.5 ∼ τ

3
2 and Γ1 ∼ τ, meaning that the stationary state of

the qubit probe has been completely decohered. The long-time behavior of the decoherence function is also
important from the point of view of the characterization of the type of ohmic-like environment, namely
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the asymptotic scaling clearly distinguishes and characterizes the ohmicity parameter of the considered
structured reservoir.
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Figure 1. Decoherence function Γs as a function of the dimensionless time τ for different temperatures,
cutoff frequencies, and ohmicity parameters. The left panel reports Γs in the high temperature regime (the
plot is for T = 102), whereas the right panel shows it for low temperature, T = 10−2. In both plots, black
lines are for ωc = 10−2, red ones for ωc = 1, and blue ones for ωc = 102. Finally, solid lines denote results
obtained for super-ohmic environments (s = 3), dashed for ohmic (s = 1), and dotted ones for sub-ohmic
(s = 0.5).

Quantum Parameter Estimation

The density matrix ρQ(τ, ωc, s, T) in Equation (6) describes the state of the qubit probe after the
interaction with the environment. As such, it depends on the interaction time τ, which is basically a
free parameter, on the temperature T and the ohmicity parameter s, which are fixed by the experimental
conditions, and on the cutoff frequency ωc of the environment, which is the parameter we would like
to estimate. In the jargon of quantum estimation, it is usually referred to as a quantum statistical model.
According to this classification, and in order to simplify the notation, in this section, we will use the
following shorthands

ρQ(τ, ωc, s, T) −→ ρc
∂

∂ωc
−→ ∂c .

Our task is to optimize the inference of ωc by performing measurements on ρc. To this aim, we employ
results from quantum estimation theory [23], which provides tools to find the best detection scheme and to
evaluate the corresponding lower bounds to precision. We assume that the value of the temperature T and
the ohmicity parameter s are fixed, whereas the value of interaction time is a free parameter, over which
we may further optimize the precision.

Let us consider the family of quantum states ρc, which is labeled by the cutoff frequency ωc. In order
to estimate ωc, we perform measurements on repeated preparations of the quantum probe and then
process the overall sample of outcomes. The measurement X is any measure that can be performed on
the system. For example, it can be a polarization measurement if the system is a qubit implemented by a
polarized photon. Let us denote by X the observable measured on the probe, and by p(x|c) the conditional
distribution of its outcomes when the true value of the cutoff frequency is ωc. We also denote by M the
number of repeated measurements. Once X is chosen and a set of outcomes x = {x1, ..., xM} is collected,
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we process the data by an estimator ω̂c ≡ ω̂c(x), i.e., a function from the space of datasets to the manifold
of the parameter values. The estimate of the cutoff frequency is the average value of the estimator over
data, whereas the precision of this estimate corresponds to the variance of the estimator i.e.

ωc =
∫

dx p(x|c) ω̂c(x) , Vc ≡ Var ωc =
∫

dx p(x|c)
[
ω̂c(x)−ωc

]2
(12)

where p(x|c) = ΠM
k=1 p(xk|c), since the repeated measurements are independent on each other. The smaller

Vc is, the more precise the estimator is. In fact, there is a bound to the precision of any unbiased estimator
(those satisfying the condition ωc → ωc for M� 1), given by the Cramér-Rao (CR) inequality:

Vc ≥
1

MFc
, Fc =

∫
dx p(x|c)

[
∂c log p(x|c)

]2
(13)

where Fc is the (single-measurement) Fisher information (FI). The best, i.e., more precise, measurement to
infer the value of ωc is the measurement maximizing the FI, where the maximization should be performed
over all possible observables of the probe. To this aim, one introduces the symmetric logarithmic derivative
Lωc ≡ Lc (SLD), as the operator which satisfies the relation

Lc ρc + ρc Lc = 2∂cρc . (14)

The quantum CR theorem states that the optimal quantum measurements are those corresponding to
the spectral measure of the SLD, and consequently Fc ≤ Hc = Tr[ρc L2

c ], where Hc is usually referred to as
the quantum Fisher information (QFI). The quantum CR inequality then follows

Vc ≥
1

MHc
, (15)

and it represents the ultimate bound to precision, taking into account both the intrinsic (quantum) and
extrinsic (statistical) source of fluctuations for the estimator. Starting from the diagonal form of the
quantum statistical model ρc = ∑n ρn

∣∣φn〉〈φn
∣∣, where both the eigenvalues and the eigenvectors do,

in general, depend on the parameter of interest, we arrive at a convenient form of the QFI

Hc = ∑
n

(∂cρn)2

ρn
+ 2 ∑

n 6=m

(ρn − ρm)2

ρn + ρm

∣∣〈φm|∂c φn〉
∣∣2 (16)

where, for our qubit case, n, m = 1, 2. The first term in Equation (16) is the FI of the distribution of
the eigenvalues ρn, whereas the second term is a positive definite, genuinely quantum, contribution,
explicitly quantifying the potential quantum enhancement of precision. Any measurement X on the
system is associated to its FI, and different measurements lead to different degrees of precisions through
the CR bound. However, when a measurement is found, such that the condition Fc = Hc is satisfied,
the measurement is said to be optimal. If the equality in Equation (15) is satisfied, the corresponding
estimator is said to be efficient. A global measure of the estimability of a parameter, weighting the variance
with the value of the parameter, is given by the signal-to-noise ratio Rc = ω2

c /Vc. The quantum CR bound
may then be rewritten in terms of Rc, as follows:

Rc ≤ Qc = ω2
c Hc (17)

where Qc is referred to as the quantum signal-to-noise ratio (QSNR), and itself represents the ultimate
quantum bound to the estimability of a parameter [9,23]. The larger the QSNR is, the (potentially) more
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effective the estimation scheme is [3]. Here “potentially” refers to the fact that a large value of the QSNR
means a large QFI, which in turn tells us about the maximum precision that can be achieved. However,
it does not say anything about the best estimator that must be employed in order to process the output
data and to infer the value of the parameter. A large Qc is a necessary step in order to precisely estimate
the parameter.

Finally, we notice that ωc takes a value on a subset of the real axis, and this means that, even if the
optimal measurement does depend on the value to be estimated, the ultimate precision dictated by the
quantum Cramer–Rao bound may be achieved by a two-stage adaptive scheme [47].

3. Quantum Probes for Ohmic Environments at Thermal Equlibrium

In this section, using results of Section 2, we discuss the performances of a qubit probe in estimating
the cutoff frequency of ohmic environments at thermal equilibrium. Our starting point is the state of the
probe after the interaction with the environment, which provides the quantum statistical model ρc. We
assume that the temperature T and the ohmicity parameter s are fixed by the experimental conditions,
whereas the interaction time τ may be tuned in order to maximize the quantum Fisher information Hc

and, in turn, the quantum signal-to-noise ratio Qc. To this aim, we first diagonalize ρc and then use
Equation (16). After some algebra, we arrive at

Hc(τ) =

[
∂cΓs

]2
exp [2Γs]− 1

(18)

where we have omitted the explicit dependence on T and Γs is given by the explicit analytic formula (8).
Starting from Equation (18), we have maximized Qc(τ) = ω2

c Hc(τ) over the interaction time τ at different
fixed values of T and s. In particular, we have considered three specific values of s = 0.5, 1, 3 in order to
address sub-ohmic, ohmic, and super-ohmic regimes.

In Figure 2 we show the results of the optimization. The upper plots show the optimal interaction time
τc as a function of the cutoff frequency for the three considered values of the ohmicity parameter, and for
different values of temperature (T = 0.1, 0.5, 1.0, 5.0, 10.0), whereas the plots in the lower panels show the
corresponding optimized values of the QSNR Qc, for the same values of s and T. In all plots, the arrow
denotes increasing values of temperature. In the region of low cutoff frequencies, the decoherence of
the probe qubit is governed by thermal fluctuation, rather than the structure of the environment. As a
consequence, a larger interaction time, scaling as τc ∝ ω−1/2

c , is needed to imprint the maximal possible
information about ωc on the probe. The corresponding values of Qc are anyway smaller than those
achievable in the zero temperature case, which corresponds to the upper saturation level for ωc � T.
Upon increasing the cutoff frequency, the zero temperature scaling of the optimal time, τc ∝ ω−1

c is
recovered, as well as the values of the optimized QSNR. Combining numerical results with Equation (8)
we see that for ωc > T the optimal time scales as follows: τc ' 5

4 ω−1
c for s = 0.5, τc ' ω−1

c for s = 1, and
τc ' 2

5 ω−1
c for s = 3, independently on the temperature itself.

The transition from the regime of decoherence induced by temperature to the regime of decoherence
governed by the structure of the environment may be traced back to the behavior of the decoherence
function Γs, and takes place for cutoff frequencies of the order ωc ' T. Remarkably, as ωc exceeds this
threshold value, the value of the QSNR Qc quickly increases and reaches the zero temperature level
independently on the temperature of the environment. We notice that, even in the region of low cutoff
frequencies where thermal fluctuations degrade performances (the QSNR is reduced by a factor about
2/3), qubit probes are still providing information about their environment.
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Figure 2. Upper plots: the optimal interaction time τc as a function of the cutoff frequency ωc for different
values of the temperature (from top to bottom, we have T = 0.1, 0.5, 1.0, 5.0, 10.0, arrows point to increasing
temperature). From left to right, the plots refer to s = 0.5, 1, 3. Dashed lines indicate the scaling of τc with
ωc in the two regimes of low and high cutoff frequency. Lower plots: the optimized values of the QSNR
Qc, achieved for the interaction times of the upper plots, as a function of the cutoff frequency for different
values of the temperature (from top to bottom, we have T = 0.1, 0.5, 1.0, 5.0, 10.0, arrows point to increasing
temperature). From left to right, the plots refer to s = 0.5, 1, 3.

4. Conclusions

In this paper, we have addressed estimation of the cutoff frequency of a complex ohmic environment
at thermal equilibrium. Our approach is based on the use of a quantum probe, i.e., a simple quantum
system that undergoes decoherence due to its interaction with the environment. In particular, we have
focused on the use of a single qubit subject to environment-induced dephasing and have evaluated the
optimal interaction time between the probe and the environment that is needed to imprint the maximum
information about the cutoff frequency onto the qubit. In addition, we have discussed the interplay
between thermal fluctuations and time evolution in determining the precision of quantum probes.

Our results show that the presence of thermal fluctuations degrades the precision for low values of
the cutoff frequency, whereas for larger values a single qubit is still providing nearly optimal performances,
i.e., a precision close to the zero temperature case. This behavior may be explained in terms of the
mechanisms responsible for the decoherence of the qubit. In the region of low cutoff frequencies,
the decoherence of the probe is governed by thermal fluctuations, rather than the structure of the
environment. As a consequence, a larger interaction time, scaling as τc ∝ ω−1/2

c , is needed to imprint the
maximal possible information about ωc onto the probe, and the corresponding values of the QSNR are
smaller than those achievable in the zero temperature case. On the other hand, upon increasing the cutoff
frequency, thermal fluctuations are no longer the main cause of decoherence, and the zero temperature
scaling of the optimal interaction time, τc ∝ ω−1

c is recovered, as well as the values of the optimized QSNR.
Our results pave the way for possible applications to realistic room temperature systems, as well as for the
estimation of more than a single parameter in system-environment couplings with general spectra.



Entropy 2019, 21, 486 9 of 11

Author Contributions: Conceptualization, M.B., C.B. and M.G.A.P.; Investigation, F.S.S., M.B., C.B. and M.G.A.P.;
Methodology, C.B. and M.G.A.P.; Writing original draft, M.B. and M.G.A.P.; Writing review and editing, M.B., C.B.
and M.G.A.P.

Funding: This work has been supported by the EU through the collaborative H2020 project QuProCS (Grant
No. 641277) and by SERB through project VJR/2017/000011. MGAP is a member of GNFM-INdAM.

Acknowledgments: The authors thank Luigi Seveso and Sholeh Razavian for several useful discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002.
2. Palma, M.G.; Suominen, K.-A.; Ekert, A.K. Quantum computers and dissipation. Proc. R. Soc. Lond. A

1996, 452, 567–584.
3. Benedetti, C.; Sehdaran, F.S.; Zandi, M.H.; Paris, M.G.A. Quantum probes for the cutoff frequency of Ohmic

environments. Phys. Rev. A 2018, 97, 012126. [CrossRef]
4. Bina, M.; Grasselli, F.; Paris, M.G.A. Continuous-variable quantum probes for structured environments. Phys. Rev.

A 2018, 97, 012125. [CrossRef]
5. Elliott, T.J.; Johnson, T.H. Nondestructive probing of means, variances, and correlations of ultracold-atomic-system

densities via qubit impurities. Phys. Rev. A 2016, 93, 043612. [CrossRef]
6. Streif, M.; Buchleitner, A.; Jaksch, D.; Mur-Petit, J. Measuring correlations of cold-atom systems using multiple

quantum probes. Phys. Rev. A 2016, 94, 053634. [CrossRef]
7. Troiani, F.; Paris, M.G.A. Probing molecular spin clusters by local measurements. Phys. Rev. B 2016, 94, 115422.

[CrossRef]
8. Cosco, F.; Borrelli, M.; Plastina, F.; Maniscalco, S. Momentum-resolved and correlation spectroscopy using

quantum probes. Phys. Rev. A 2017, 95, 053620. [CrossRef]
9. Benedetti, C.; Buscemi, F.; Bordone, P.; Paris, M.G.A. Quantum probes for the spectral properties of a classical

environment. Phys. Rev. A 2014, 89, 032114. [CrossRef]
10. Zhang, J.; Peng, X.; Rajendran, N.; Suter, D. Detection of Quantum Critical Points by a Probe Qubit. Phys. Rev.

Lett. 2008, 100, 100501. [CrossRef] [PubMed]
11. Berkley, A.J.; Przybysz, A.J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M.H.; Bunyk, P.; Enderud, C.;

Hoskinson, E.; et al. Tunneling spectroscopy using a probe qubit. Phys. Rev. B 2013, 87, 020502(R). [CrossRef]
12. Lolli, J.; Baksic, A.; Nagy, D.; Manucharyan, V.E.; Ciuti, C. Ancillary Qubit Spectroscopy of Vacua in Cavity and

Circuit Quantum Electrodynamics. Phys. Rev. Lett. 2015, 114, 183601. [CrossRef] [PubMed]
13. Paavola, J.; Piilo, J.; Suominen, K.-A.; Maniscalco, S. Environment-dependent dissipation in quantum Brownian

motion. Phys. Rev. A 2009, 79, 052120. [CrossRef]
14. Martinazzo, R.; Hughes, K.H.; Martelli, F.; Burghard, I. Effective spectral densities for system-environment

dynamics at conical inter-sections: S2-S1 conical intersection in pyrazine. Chem. Phys. 2010, 377, 21. [CrossRef]
15. Myatt, C.J.; King, B.E.; Turchette, Q.A.; Sackett, C.A.; Kielpinski, D.; Itano, W.M.; Monroe, C.; Wineland, D.J.

Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 2000, 403, 269.
[CrossRef]

16. Piilo, J.; Maniscalco, S. Driven harmonic oscillator as a quantum simulator for open systems. Phys. Rev. A 2006, 74,
032303. [CrossRef]

17. Tamascelli, D.; Smirne, A.; Huelga, S.F.; Plenio, M.B. Nonperturbative Treatment of non-Markovian Dynamics of
Open Quantum Systems. Phys. Rev. Lett. 2018, 120, 030402. [CrossRef] [PubMed]

18. Lemmer, A.; Cormick, C.; Tamascelli, D.; Schaetz, T.; Huelga, S.F.; Plenio, M.B. A trapped-ion simulator for
spin-boson models with structured environments. New J. Phys. 2018, 20, 073002. [CrossRef]

19. Demkowicz-Dobrzanski, R.; Jarzyna, M.; Kolodynski, J. Quantum Limits in Optical Interferometry. Progr. Opt.
2015, 60, 345.

http://dx.doi.org/10.1103/PhysRevA.97.012126
http://dx.doi.org/10.1103/PhysRevA.97.012125
http://dx.doi.org/10.1103/PhysRevA.93.043612
http://dx.doi.org/10.1103/PhysRevA.94.053634
http://dx.doi.org/10.1103/PhysRevB.94.115422
http://dx.doi.org/10.1103/PhysRevA.95.053620
http://dx.doi.org/10.1103/PhysRevA.89.032114
http://dx.doi.org/10.1103/PhysRevLett.100.100501
http://www.ncbi.nlm.nih.gov/pubmed/18352166
http://dx.doi.org/10.1103/PhysRevB.87.020502
http://dx.doi.org/10.1103/PhysRevLett.114.183601
http://www.ncbi.nlm.nih.gov/pubmed/26001000
http://dx.doi.org/10.1103/PhysRevA.79.052120
http://dx.doi.org/10.1016/j.chemphys.2010.08.010
http://dx.doi.org/10.1038/35002001
http://dx.doi.org/10.1103/PhysRevA.74.032303
http://dx.doi.org/10.1103/PhysRevLett.120.030402
http://www.ncbi.nlm.nih.gov/pubmed/29400486
http://dx.doi.org/10.1088/1367-2630/aac87d


Entropy 2019, 21, 486 10 of 11

20. Cavina, V.; Mancino, L.; Pasquale, A.D.; Gianani, I.; Sbroscia, M.; Booth, R.I.; Roccia, E.; Raimondi, R.;
Giovannetti, V.; Barbieri, M. Bridging thermodynamics and metrology in nonequilibrium quantum thermometry.
Phys. Rev. A 2018, 98, 050101(R). [CrossRef]

21. Garbe, L.; Felicetti, S.; Milman, P.; Coudreau, T.; Keller, A. Metrological advantage at finite temperature for
Gaussian phase estimation. Phys. Rev. A 2019, 99, 0.43815. [CrossRef]

22. Razavian, S.; Paris, M.G.A. Quantum metrology out of equilibrium. Phys. A 2019, 525, 825. [CrossRef]
23. Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 2009, 7, 125. [CrossRef]
24. Benedetti, C.; Paris, M.G.A. Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A

2014, 378, 2495. [CrossRef]
25. Zwick, A.; Alvarez, G.A.; Kurizki, G. Maximizing information on the environment by dynamically controlled

qubit probes. Phys. Rev. Appl. 2016, 5, 014007. [CrossRef]
26. Monras, A.; Paris, M.G.A. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 2007, 98, 160401.

[CrossRef] [PubMed]
27. Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 2001, 63, 042304. [CrossRef]
28. Fujiwara, A.; Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 2003, 36, 8093.

[CrossRef]
29. Pinel, O.; Jian, P.; Treps, N.; Fabre, C.; Braun, D. Quantum parameter estimation using general single-mode

Gaussian states. Phys. Rev. A 2013, 88, 040102. [CrossRef]
30. Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P.

Experimental estimation of entanglement at the quantum limit. Phys. Rev. Lett. 2010, 104, 100501. [CrossRef]
31. Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P. Optimal

estimation of entanglement in optical qubit systems. Phys. Rev. A 2011, 83, 052301. [CrossRef]
32. Blandino, R.; Genoni, M.G.; Etesse, J.; Barbieri, M.; Paris, M.G.A.; Grangier, P.; Tualle-Brouri, R. Homodyne

estimation of Gaussian quantum discord. Phys. Rev. Lett. 2012, 109, 180402. [CrossRef]
33. Benedetti, C.; Shurupov, A.P.; Paris, M.G.A.; Brida, G.; Genovese, M. Experimental estimation of quantum discord

for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 2013, 87, 052136.
[CrossRef]

34. Genoni, M.G.; Olivares, S.; Paris, M.G.A. Optical phase estimation in the presence of phase diffusion. Phys. Rev.
Lett. 2011, 106, 153603. [CrossRef] [PubMed]

35. Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 2006, 73, 033821. [CrossRef]
36. Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Phase-reference monitoring in coherent-state discrimination assisted

by a photon-number resolving detector. Sci. Rep. 2016, 6, 26025. [CrossRef]
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