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When calculating the Gini coefficient for distributions which include nega-
tive values, the Gini coefficient can be greater than one, which does not make
evident its interpretation. In order to avoid this awkward result, common
practice is either replacing the negative values with zeros, or simply dropping
out units with negative values. We show how these practices can neglect sig-
nificant variability shares and make comparisons unreliable. The literature
also presents some corrections or normalizations which restrict the modified
Gini coefficient into the range [0-1]: unluckily these solutions are not free
of deficiencies. When negative values are included, the Gini coefficient is no
longer a concentration index, and it has to be interpreted just as relative
measure of variability, taking account of its maximum inside each particu-
lar situation. Our findings and suggestions are illustrated by an empirical
analysis, based on the Survey of Household Income and Wealth, released by
Banca d’Italia.
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1 Introduction

While labour earnings are always non-negative, a business may lose money in any year.
Hence, income data, financial assets (such as capital gains) and money transfers typically
can include also negative values. The same happens to tax systems which admit negative
income taxes, that can originate, for example, from child allowances. In the literature,
the issue of negative values arises also in wealth distributions as described for example
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in Amiel et al. (1996) and in Jenkins and Jantti (2005). The most used measure of
income inequality is the Gini coefficient of concentration. In Gastwirth (1975) the author,
addressing an issue originally proposed in Budd (1970), found a lower and an upper
bound for the Gini coefficient. His approach fits well also in presence of negative values.
When a distribution includes negative values, as Castellano (1937) remarked, the Lorenz
curve lies below the X-axis (here we suppose that the mean of the variable is positive)
and the Gini coefficient can assume values greater than one, as it is also observed by
Hagerbaumer (1937), Pyatt et al. (1980), and Lambert and Yitzhaki (2013). In order
to avoid these issues, the most common and simple practices are either to eliminate
the observations with negative values or convert them into zero, with the latter also
suggested by a very important international organization (OECD, 2015). These two
methods have two important drawbacks: first, a significant proportion of information
is neglected due to the elimination of negative values or to the setting them to zero;
second, ignoring negative values can lead to unreliable comparisons among different
distributions. In order to restrict the Gini coefficient to the interval [0, 1], Chen et al.
(1982, 1985) modify the normalizing factor by adding a component that depends on the
distribution of negative values and on the smallest positive values, which are enough
to compensate for the former. Chen et al.’s method was subsequently completed by
Berrebi and Silber (1985), by providing a correct expression for the general case when
the compensation does not take place exactly in correspondence to a particular unit.
Chen et al.’s correction has the advantage of decreasing the modified Gini coefficient,
whatever egalitarian transfer occurs. The major drawback of this procedure is that
it does not refer to a theoretical extreme situation, and so it is an ad hoc procedure.
Another drawback is that the CTR-BS index can have some unreasonable behaviours in
particular situations. In the paper Raffinetti et al. (2015), the authors provide a deep
investigation about this issue and suggest a normalization that keeps into account the
potential maximum inequality, stating appropriate conditions for the application of their
normalization. In presence of negative values, the issue of the normalization of the Gini
coefficient, through the identification of an upper bound for the inequality index, is quite
delicate. As pointed out by Cowell and Van Kerm (2015) (in the note 13, pag 701), the
extreme situation which should be corresponding to the upper bound of the inequality
index is debatable. If we allow the units to enter into debt with the others and we do
not fix any restrictions to the transfers, it is not possible to identify the “maximum”
situation of inequality, since we can do an unitary transfer from the poorest to the richest
unit, and we can repeat such transfer, at least theoretically, indefinitely.

van de Ven (2001) defined the distribution of “perfect inequality” in presence of nega-
tive values. This extreme situation basically is the case when the maximum proportion q
of the population owns the minimum value of the variable at stake, while the remaining
proportion 1 − q has the maximum one, keeping fixed the mean of the distribution. A
worthy remark is that the extreme situation proposed by van de Ven (2001) is the same
one described by Castellano (1937).

Starting from the observation of Frosini (1984) at pag 376 that “...the concentration,
unlike variability, can only be related to non-negative variables”, perhaps we should give
up the demand that the Gini coefficient is a concentration index in presence of negative
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values, and we have to interpret it by making use of other complementary measures. The
Raffinetti et al.’s index, which by itself is not a solution to the problem, could integrate
the information provided by the standard Gini coefficient.

The purpose of the present paper is to review the existing methods for managing the
Gini coefficient in presence of negative values, and to provide some general guidelines
suitable for a such situation. The paper is organized as follows. The next section provides
the basic notations and some initial settings; sections 3 and 4 illustrate in detail the
most adopted procedures: the one which replaces the negative values with zeros, and
the one which drops out units with negative values, respectively. The CTR-BS index
and its implications are thoroughly analysed in section 5, whilst section 6 reconsiders the
Raffinetti et al.’s index, suggesting how it could be properly used. Section 7 considers
how the indexes reported in this article respect the Pigou-Dalton principle. Section 8
provides an empirical application to data from the Survey of Household Income and
Wealth (SHIW) and illustrates how the indexes considered in the article work. Section
9 concludes.

2 Some notations and the initial settings

Let X be a statistical variable, which can assume both negative and positive values. Let

(x1, x2, . . . , xN , xN+1, . . . , xM )

be the values of X in non-decreasing order. We suppose, without loss of generality, that
the first N values (x1, . . . , xN ) are negative, while the remaining (xN+1, . . . , xM ) values
are non-negative. We assume that the sum Ta of the non-negative values:

Ta =

M∑
i=N+1

xi

is higher than the sum Tn of the absolute negative values:

Tn =

N∑
i=1

|xi|,

meaning that:

Ta − Tn =
M∑

i=N+1

xi −
N∑
i=1

|xi| > 0.

Let G be the Gini coefficient, defined by

G =
S

2(M − 1)(Ta − Tn)
, (1)

where S denotes the sum of absolute differences:

S =

M∑
i=1

M∑
j=1

|xi − xj |.
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Remark 1 In the following, we will calculate the Gini coefficient by the formula (1),
even if, whenever the number of units M is large enough, G can also be approximated by

G =
∆R

2µ
, (2)

where

∆R =
S

M2
and µ =

Ta − Tn
M

are the Gini mean difference and the mean of the distribution, respectively. We decided
to use expression (1) because it implies that G ranges in the interval [0, 1]. Moreover,
formula (1) is the original definition of G, provided by Corrado Gini (1914). Unfortu-
nately, it is well-known in the literature that using such definition G does not satisfy the
Daltons’s principle of population. To overcome this issue, G should be defined as stated
in (2): this can be performed, by a simple replacement of (M − 1) by M in (1). As M
is large enough, the difference between the two definitions is negligible; moreover, if one
uses the expression (2) as definition of G, most of the considerations in the rest of the
paper still hold true and most of the formulae can be easily adapted.

Remark 2 When the variable X has positive or null values, the Gini coefficient can
be interpreted as a measure of variability with respect to the maximum of variability.
If the variable assumes also negative values (but it still have positive mean), the Gini
coefficient becomes a relative variability measure with respect to the mean of the variable.

Now, if we split the support of X into two groups, the former containing the negative
values and the latter the non-negative ones, we can write the sum S of the absolute
differences as

S =

M∑
i=1

M∑
j=1

|xi − xj |

=
N∑
i=1

N∑
j=1

|xi − xj |+ 2
N∑
i=1

M∑
j=N+1

|xi − xj |+
M∑

i=N+1

M∑
j=N+1

|xi − xj |

= Sn + 2[NTa + (M −N)Tn] + Sa, (3)

where

Sn =

N∑
i=1

N∑
j=1

|xi − xj |

is the Within component for the group of negative values, while

Sa =
M∑

i=N+1

M∑
j=N+1

|xi − xj |
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is the Within component for the group of non-negative values, and finally

[NTa + (M −N)Tn] =

N∑
i=1

M∑
j=N+1

|xi − xj | =
M∑

i=N+1

N∑
j=1

(xi − xj)

is the Between-group component (see Dagum (1997) for further details). It is worth
to note that formula (3) can be seen as a special case of the decomposition originally
proposed by Yntema (1933) and used by Gastwirth (1975), where only two groups are
considered. By using the formula (3), the expression of the Gini coefficient becomes:

G =
Sn + 2[NTa + (M −N)Tn] + Sa

2(M − 1)(Ta − Tn)
. (4)

An important reason making the Gini coefficient so famous is its easy interpretation:
when dealing with non-negative values it can be seen as the ratio of the concentration
area and the area corresponding to the situation with maximum inequality, it follows
that its value can represent the percentage of inequality with respect to the maximum
possible. However, when negative values are considered, this interpretation is no longer
adequate. In Figure 1, the Lorenz curve for a variable that assumes also negative values
is drawn.
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Figure 1: The Lorenz curve for a distribution with negative values.

The Gini coefficient is now the ratio between the sum of areas A and B, at the nu-
merator, and the sum of areas B and C at the denominator, that is:

G =
A+B

B + C
. (5)
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It is easy to understand that the Gini coefficient assumes values greater than 1, whenever
the area denoted by A is greater than the one denoted by C. However, when there are
negative values of the variable at stake, even if the Gini coefficient is less than 1, it is
no longer a normalized index, because area A, which is added in the numerator, does
not appear in the denominator. Furthermore, in these circumstances, we can no longer
talk of inequality. Indeed, as clearly underlined also in Frosini (1985), inequality is a
characteristic related only to non-negative variables.

For these reasons, the case of negative values is delicate and it needs to be carefully
managed and interpreted. Nevertheless, in such a situation the Gini coefficient remains a
relative measure of variability with respect to the mean value of the variable: it can still
be interpreted as the Gini mean difference, related to twice the mean of the distribution
at stake.

3 Turning to zero all the negative values

The first method of our review is widely used in applications, and its aim is to change the
data, in order to return to the “standard” situation with no negative values. It consists
in turning into zero all the negative values. In this case, the Gini coefficient becomes
the index Gza:

Gza =
2NTa + Sa
2(M − 1)Ta

. (6)

In the formula (6), the quantity 2NTa represents the differences between the first N
values (i = 1, 2, ..., N) which are set equal to zero, and the values that maintain their
original non-negative values (i = N+1, N+2, ...,M). By a comparison between formulae
(4) and (6), it should be also noted that

Gza =
2NTa + Sa
2(M − 1)Ta

≤ Sn + 2[NTa + (M −N)Tn] + Sa
2(M − 1)Ta

≤ Sn + 2[NTa + (M −N)Tn] + Sa
2(M − 1)(Ta − Tn)

≤ G, (7)

since Sn + (M −N)Ta and 2(M − 1)Tn are both non negative quantities.

Indeed, the index Gza coincides with the Gini coefficient that results after a redistri-
bution by subtracting the quantity xiTn/Ta from each positive xi and by transferring
the total amount Tn, so obtained, to the units with negative values: in this way, the final
result is that all the negative xi are set to zero and all the positive values are multiplied
by the quantity (Ta−Tn)/Ta. Obviously this implies that formula (7) holds. A graphical
proof of this result is shown in Figure 2, where the Lorenz curves both before and after
the transformation of negative values into zero are drawn. Before the transformation,
the numerator of the Gini coefficient is the sum of three areas: B1 +B2 +A. After the
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transformation the concentration area reduces to B1. Being the denominator the same,
B1 +B2 + C, the reduction in the Gini coefficient is immediately perceived.
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Figure 2: The Lorenz curve before -L(p)- and after -Lza(p)- the turning to zero of the
negative values.

This method, suggested by important international organizations like OECD (see
OECD (2015) for further details), has the important advantage of being very simple
to apply, but it leads to a loss of information about the negative values after their
modification.

4 Discarding all the negative values

Even if this second method is unsophisticated, actually it is very used and if the number
of negative values of the variable X is limited, it is a forceful cheap solution. It consists
basically in the discarding of the values which cause troubles, that is, the negative ones:
in this way, we return to a situation with no negative values, where the “standard” Gini
coefficient can be used without problems. Using our setting, if the negative values are
erased, the Gini coefficient becomes:

Ga =
Sa

2(M −N − 1)Ta
. (8)

Analytically it can be proved that Ga ≤ Gza: in fact, let’s consider Gza, as it is repre-
sented per expression (6), and let’s re-write it as

Gza =
2NTa + Sa

2(M −N − 1)Ta + 2NTa
,
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having in mind Ga as per expression (8), as Sa ≤ 2(M −N −1)Ta, we can conclude that
Ga ≤ Gza. From which it follows immediately, that a fortiori, Ga ≤ G. Figure 3 shows
the curve Lza(p) and the curve La(p) - obtained by the discarding of the negative values-
for a variable with negative values. Referring to such Figure 3, it is easy to observe that
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Figure 3: The Lorenz curve after the discarding of the negative values La(p) and Lza(p).

the concentration area associated to La(p), B3, is smaller than the concentration area
associated to Lza, which is B3+B4. However, if we keep into account that, in calculating
the coordinates of La, N units have been discarded, the maximum concentration area
associated to Ga, B3+B4+C1, is smaller than B3+B4+C1+C2, which is the maximum
concentration area associated to Gza.

The major advantage of this method is that it is very easy to apply. If the negative
values are negligible, it can result quite satisfactory. Its main drawback is instead the
loss of information related to the negative values (which is greater than the one in the
previous).

5 The CTR-BS correction of the Gini coefficient

Beyond the two previous methods, in the literature some corrections for the Gini coef-
ficient have been proposed, in order to obtain an index with range [0, 1]. In the present
section we approach the first normalization we will consider in this paper: it was ini-
tially proposed by Chen et al. (1982) and further completed by Berrebi and Silber (1985),
where the authors highlighted a defect of the first proposal and suggested an adjustment
to overcome it. The modification of the Gini coefficient suggested by these authors
(henceforth denoted by GCTR−BS), on the one hand, allows the preservation of the
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whole variability in S and, on the other hand, restricts their modified Gini coefficient
within the range [0, 1].

This correction is obtained by taking into account the Lorenz curve below the X-axis in
Figure 1: this portion of the curve involves the negative values and the smallest positive
values which are enough to compensate the former, in order to ensure that their overall
sum is zero. After that, the modified Gini coefficient is calculated as the ratio between
the sum of areas A and B, at the numerator, and the sum of areas A, B and C at the
denominator -see Figure 1-, that is to say [A+ (1− 1/M)(1/2)]:

GCTR−BS =
A+B

A+B + C
=

A+B

A+ 1
2

(
1− 1

M

) . (9)

It is easy to see that GCTR−BS can be also evaluated as:

GCTR−BS = 1− C

A+B + C
(10)

or alternatively as

GCTR−BS =
A+B

B + C

[
B + C

A+B + C

]
=
A+B

B + C
·

[
1− A

A+ 1
2

(
1− 1

M

)] (11)

where the ratio A+B
B+C denotes the “standard” Gini coefficient.

By construction, the coefficient GCTR−BS always lies between 0 and 1, since for ex-
ample in (10) the ratio C

A+B+C is clearly in the interval [0, 1].
Moreover, as the authors argue (Chen et al., 1982), if there are no negative values,

meaning that A = 0, the formula (11) clearly shows that GCTR−BS coincides with the
“standard” Gini coefficient.1

For a deeper investigation of the CTR-BS correction, the following decomposition of
S is useful.

Suppose that we can identify the value k ∈ {1, . . . ,M − 2} such that:

k∑
i=1

xi ≤ 0 and
k+1∑
i=1

xi > 0. (12)

In a such case, we can consider then the “fake” or “artificial” (in the sense that it is not a
real possible distribution, since not all the frequencies are integer numbers) distribution
of the variable X:

V alues x1 . . . xN xN+1 . . . xk (xk+1)1 (xk+1)2 . . . xM

Freq. 1 . . . 1 1 . . . 1 η 1− η . . . 1

where:

1This correction differs from the original one, since it is slightly adjusted, according to the considered
case of a discrete variable. In Chen et al. (1982) and Berrebi and Silber (1985), in the denominator
of (9) C + B is replaced by 1/2, i.e. the asymptotic approximation of this sum.
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• x1, . . . , xN are the negative values of X;

• xN+1, . . . , xM are the positive values of X;

• all the values of X, but xk+1, have frequency equal to 1;

• the value xk+1 appears twice because its frequency (that is equal to 1) is split into
the two “weights” η and 1 − η. In other words, in this distribution, the symbol
(xk+1)1 denotes the value xk+1 with weight η, and (xk+1)2 denotes the value xk+1

with weight 1− η.

The weight η is calculated by:

η =
|
∑k

i=1 xi|
xk+1

= −
∑k

i=1 xi
xk+1

(13)

so that:
k∑
i=1

xi + ηxk+1 = 0

and

(1− η)xk+1 +
M∑

i=k+2

xi = Ta − Tn.

Remark 3 If
∑k

i=1 xi = 0 it follows that η = 0. In a such case there exists a value xk
which exactly compensates the sum of the previous ones.

If now we define:

S0 =

k∑
i=1

k∑
j=1

|xi − xj |+ 2

k∑
i=1

(xk+1 − xi)η

which is the sum of absolute differences within the subset:

Ω1 = {x1, x2, . . . , xN , xN+1, xN+2 . . . , xk, (xk+1)1}, (14)

and

Su =

M∑
i=k+2

M∑
j=k+2

|xi − xj |+ 2

M∑
i=k+2

(xi − xk+1)(1− η)

which is the sum of absolute differences within the subset:

Ω2 = {(xk+1)2, xk+2, . . . , xM}, (15)

we can decompose S as
S = S0 + 2S0,u + Su, (16)

where S0,u is the Between-group component, since it represents the sum of the absolute
differences among the elements of the two subsets Ω1 and Ω2: as the elements of set Ω1
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are never greater than those in the set Ω2, all these differences are non-negative and the
modulus can be avoided:

S0,u =
k∑
i=1

M∑
j=k+2

(xj − xi) +
k∑
i=1

(xk+1 − xi)(1− η) +
M∑

j=k+2

(xj − xk+1)η.

If we rearrange, we have:

S0,u = k
M∑

j=k+2

xj − (M − k − 1)
k∑
i=1

xi + kxk+1(1− η)−
k∑
i=1

xi(1− η) +

+
M∑

j=k+2

xjη − (M − k − 1)xk+1η

= k

xk+1(1− η) +
M∑

j=k+2

xj

+

[
−(M − k − 1)

(
k∑
i=1

xi + ηxk+1

)]

+

− k∑
i=1

xi(1− η) +
M∑

j=k+2

xjη


= k(Ta − Tn) + (M − k − 1) · 0 +

[
−

(
k∑
i=1

xi + ηxk+1

)
+

+ η

 k∑
i=1

xi + xk+1 +
M∑

j=k+2

xj


= k(Ta − Tn) + (Ta − Tn)η

= (k + η)(Ta − Tn).

We then obtain:
S = S0 + 2(k + η)(Ta − Tn) + Su. (17)

Now we prove that the area between the X-axis and the Lorenz curve for values in Ω1,
denoted by A in (9), (10), and (11), is given by:

A =
S0

4M(Ta − Tn)
.

By using the trapeziums, it holds that

A = − 1

2M(Ta − Tn)
[x1 + (x1 + x2 + x1) + · · ·+ (x1 + x2 + · · ·+ xk)η]

= − 1

2M(Ta − Tn)

k∑
i=1

[2(k − i) + 1 + η]xi

=
−2
∑k

i=1[2(k − i) + 1 + η]xi
4M(Ta − Tn)

(18)
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Now, recalling formula (13), we can obtain:

S0 = 2
k∑
i=1

k∑
j=1

|xi − xj |+ 2
k∑
i=1

(xk+1 − xi)η

= 2

[
k∑
i=1

(2i− k − 1)xi −
k∑
i=1

xiη + kxk+1η

]

= 2

[
k∑
i=1

(2i− k − 1− η)xi − k
k∑
i=1

xi

]

= 2

k∑
i=1

(2i− 2k − 1− η)xi

= −2

k∑
i=1

[2(k − i) + 1 + η]xi,

that is exactly the numerator of (18). It follows therefore that

A =
S0

4M(Ta − Tn)
. (19)

Then, whenever k ∈ {1, . . . ,M − 2}, by formulae (11), (1), (19), and (17), it follows
that the modified Gini coefficient is:

GCTR−BS =
A+B

B + C
·

[
1− A

A+ 1
2

(
1− 1

M

)]

=
S

2(M − 1)(Ta − Tn)

[
1−

S0
4M(Ta−Tn)

S0
4M(Ta−Tn) + 1

2

(
1− 1

M

)]

=
S0 + 2(k + η)(Ta − Tn) + Su

2(M − 1)(Ta − Tn)

[
1− S0

4M(Ta − Tn)
· 4M(Ta − Tn)

S0 + 2(M − 1)(Ta − Tn)

]
=

S0 + 2(k + η)(Ta − Tn) + Su
S0 + 2(M − 1)(Ta − Tn)

.

To investigate the case k = M − 1, we have to approach the extreme values of
GCTR−BS . The formula (10) shows that the GCTR−BS can assume value 1 only if
C = 0. In a such case, it is interesting consider two different situations:

• if also A = 0, the values of the variable at stake are non-negative, GCTR−BS
coincides with the standard Gini G, therefore it is equal to 1 if one value is non-
zero, and all the remaining ones are zero;

• if A 6= 0, meaning that there are negative values, GCTR−BS takes on value 1 if
k = M − 1. We can consider then two subcases:

a)
∑k

i=1 xi =
∑M−1

i=1 xi = 0 (case η = 0);
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b)
∑k

i=1 xi =
∑M−1

i=1 xi < 0, and
∑k+1

i=1 xi =
∑M

i=1 xi > 0 (case η 6= 0.)

Remark 4 Indeed, the case b) is not considered neither in Chen et al. (1982), nor in
Chen et al. (1985), since it differs from case a) only in the discrete framework, proposed
in this paper. In the continuous case, it coincides with the case a).

Let’s see the case b) more in details. If the value of k is the largest admissible one,
(M − 1), and the biggest value xM is the first one which compensates the sum of all the
negative ones, we have that

M−1∑
i=1

xi < 0 and
M∑
i=1

xi > 0,

and also Su = 0. In a such extreme case, the normalization area is the sum of the areas
denoted by A + B in the right panel of Figure 4, since the Lorenz curve lies beneath
the X-axis also for some values greater than 1− 1/M , because it can be proved that the
Lorenz curve crosses the X-axis in the point

P =

(
1− (1− η)

M
, 0

)
,

where η is the same value defined in formula (13). If η = 0, the case a) holds and the
corresponding Lorenz curve is drawn in the left panel of Figure 4.
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Figure 4: The Lorenz curve in the two extreme situations for the CTR-BS normalization:
case a) (left panel), case b) (right panel).
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Scenario Values xi G GCTR−BS

(a) -2 -2 -2 -2 -2 30 1.6 1

(b) -10 0 0 0 0 30 2 1

(c) -7 -3 0 0 0 30 1.94 1

(d) -5 -3 -2 1 8 21 1.66 1

(e) -5 -3 -2 1 9 20 1.64 1

Table 1: Five scenarios where the index GCTR−BS assumes its maximum admissible
value, which in the present paper is 1.

Taking in account all the above considerations, the (modification to the discrete case
of) GCTR−BS index is given by:

GCTR−BS =


S0+2(k+η)(Ta−Tn)+Su

S0+2(M−1)(Ta−Tn) if k = 1, ...,M − 2

1 if k = M − 1.

Remark 5 The two expressions of GCTR−BS assume the same value in the special case
with k = M − 1 and η = 0.

From the expression of the index GCTR−BS it is easy to see that it is not suitable to
distinguish among all these different extreme situations. Table 1 reports five scenarios,
where the index GCTR−BS takes on its maximum value, even if the scenarios are related
to five very different situations: in all of them k = M−1, but in the first four ones η 6= 0
-case b) and right panel of Figure 4-, while in the last one η = 0 -case a) and left panel
of Figure 4-.

6 The Raffinetti et al. normalization of Gini coefficient

In Raffinetti et al. (2015) a different normalization of the Gini coefficient has been
proposed. By using our notation, the authors in their paper state that, given the sum of
non negative values Ta, the sum of absolute negative values Tn, and the total number of
units M : “ ... if the attribute distribution presents negative values, it seems reasonable
to identify as the maximum inequality scenario the situation where the total negative
attribute amount −Tn is assigned to one unit and the total positive Ta to another unit,
while all the other M − 2 units have a zero amount of attribute. As a consequence, the
proposed reference distribution becomes (−Tn, 0, · · · , Ta). In such a scenario, as one can
easily verify, the mean difference S yields the value:

S = 2(M − 1)(Ta + Tn).” (20)

In other words, the authors consider the following extreme situation where the variable
X has the distribution:
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V alues x1 = −Tn x2 = 0 x3 = Ta

Freq. 1 M − 2 1

and they propose to modify the Gini coefficient, dividing S by the value in formula (20)
assumed in the reference distribution; in a such way they define the Raffinetti et al.’s
GP as:2

GP =
S

2(M − 1)(Ta + Tn)
.

It is worth noting that GP can be evaluated from the Gini coefficient by the following
transformation:

GP = G ·
[
Ta − Tn
Ta + Tn

]
. (21)

Even if Raffinetti et al. (2015) do not show that the maximum for S is (20), it is
possible to prove it by the following procedure. It is well-known that:

S = 2
M∑
i=1

(2i−M − 1)xi

= 2
M∑
i=1

(2i− 1)xi − 2M(Ta − Tn). (22)

Now, it is easy to see that the two inequalities hold (remembering that xi is negative for
i = 1, . . . , N and non-negative for i = N + 1, . . . ,M):

N∑
i=1

(2i− 1)xi ≤
N∑
i=1

xi;

M∑
i=N+1

(2i− 1)xi ≤
M∑

i=N+1

(2M − 1)xi.

The formula (22) then provides:

S = 2

[
N∑
i=1

(2i− 1)xi +
M∑

i=N+1

(2i− 1)xi

]
− 2M(Ta − Tn)

≤ 2

[
N∑
i=1

xi +

M∑
i=N+1

(2M − 1)xi

]
− 2M(Ta − Tn)

≤ 2 [−Tn + (2M − 1)Ta]− 2M(Ta − Tn)

≤ 2Tn(M − 1) + 2Ta(M − 1)

≤ 2(M − 1)(Ta + Tn). (23)

2In the author’s notation, the subscript P in GP stands for “Polarization”. In this framework we
preferred to omit the word “Polarization”, because it can create misunderstanding, since in the
literature such word is used to describe a different phenomenon, largely studied.



100 De Battisti, Porro, Vernizzi

Scenario Values xi G GP

(a) -2 -2 -2 -2 -2 30 1.6 0.8

(b) -10 0 0 0 0 30 2 1

(c) -7 -3 0 0 0 30 1.94 0.97

(d) -5 -3 -2 1 8 21 1.66 0.83

(e) -5 -3 -2 1 9 20 1.64 0.82

Table 2: The values of the index GP for the five scenarios proposed in Table 1

Formula (23) implies that the maximum value of the Gini coefficient is Ta+Tn
Ta−Tn , for fixed

values of Ta, Tn, and M : for this reason the index GP can be seen as the normalization
of the Gini coefficient with respect to its maximum value. Consequently GP ranges in
the interval [0, 1].

To highlight the differences between GP , G and GCTR−BS , the values of GP for the
five scenarios in Table 1 are reported in Table 2.

7 Compensative redistributions

In the literature it is commonly accepted that, whenever a transfer occurs from a richer
unit to a poorer one, and this transfer does not change the ranks of the units, a reason-
able inequality index should decrease its value. This is in accordance to the Pigou-Dalton
principle. Compensation processes are quite common in the analysis over time of eco-
nomic and financial variables: it is not difficult to find examples of variables -that can
assume both positive and negative values- which modify their distribution between two
consecutive (or even not consecutive) observations, because of a redistribution of the
total quantity.

In this section, we analyse the behaviour of the indexes presented in the previous
sections, after a compensation. We do not investigate the changes of the index Ga,
because it modifies the number of units and the sum of the values, since it discards the
negative values of the variable at stake. For this reason the two situations -before and
after the compensation- cannot be considered comparable.

Among all the possible compensations, we identify a particular one, where the neg-
ative values are replaced by zero, due to a transfer from the smallest positive val-
ues. More in detail, let’s consider an egalitarian transfer, achieved at the expense
of the units with smaller positive values. This compensation acts inside the subset
Ω1 = {x1, x2, . . . , xN , xN+1, . . . , xk, (xk+1)1} -already defined in (14)- and it modifies all
the values in the subset Ω1 into zero. It is useful to recall that the value of η is obtained
by the relationship:

k∑
i=1

xi + ηxk+1 = 0.

The subset Ω2 = {(xk+1)2, xk+2, . . . , xM} -already defined in (15)- does not change.
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We label a such redistribution the “minimal compensation”, since the positive values
involved are the smallest ones. In the pursue we shall label the before-compensation
indexes by B, and the after-compensation indexes by A. The first important remark is
that if we consider the Gini coefficient, it holds that

GB ≥ GA.

After the compensation, it is not difficult to see that GAza, G
A
CTR−BS , G

A
P coincide with

GA and they are all equal to the Gini coefficient evaluated on the (non-negative) values

GA =
2(k + η)(Ta − Tn) + Su

2(M − 1)(Ta − Tn)
, (24)

where Ta, Tn, k, and η are defined as usual and refer to the situation before the compen-
sation.

The index Gza is not included in this analysis, because it is not difficult to see that
it does not satisfy the transfer principle. Starting from any distribution with negative
values, the value of the index Gza is the Gini coefficient evaluated on a new distribution,
where the negative values are replaced by zero and the positive ones remain the same. As
mentioned in Section 3, this modification of the original distribution can be seen as the
result of an egalitarian transfer. The index Gza applied to the new modified distribution
(with positive values and zeros) coincides with the Gini coefficient and therefore it has
the same values assumed from the original distribution (with also negative values). In
a such case, Gza is not sensible to the distribution modification, and therefore it does
not satisfy the Pigou-Dalton principle. By definition, the index GP satisfies the transfer
principle in the case of the minimal compensation if

GAP ≤ GBP ,

meaning that, by using the formula (21),

GA ≤ GB
(
Ta − Tn
Ta + Tn

)
,

where Ta and Tn refer to the situation before the compensation. It follows that the
index GP satisfies the Pigou-Dalton principle in the case of the minimal compensation,
whenever it holds that

GA

GB
≤ Ta − Tn
Ta + Tn

.

Let’s see what happens to the index GCTR−BS if the minimal compensation occurs.
It always holds that

GBCTR−BS ≥ GA,
meaning that, by the definitions (9) and (5) of the two indexes:

A+B

A+B + C
≥ B

B + C
,

where A,B, and C are the areas already considered in Figure 1. This last relationship
can be proved, by considering a positive real number a and the following function φa:
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φa : R+ → R+

x 7→ 1 + a
x .

It is easy to see that φa is a monotonically non-increasing function, i.e.

if x1 ≤ x2, then φa(x1) ≥ φa(x2).

By choosing a = A, x1 = B, and x2 = B + C, since B ≤ B + C we have:

φa(B) ≥ φa(B + C)

1 +
A

B
≥ 1 +

A

B + C
A+B

B
≥ A+B + C

B + C
A+B

A+B + C
≥ B

B + C
.

It follows that in the case of the minimal compensation GCTR−BS satisfies the trans-
fer principle: obviously from this result we cannot state that this index satisfies such
principle in any other situation.

8 An application to real data

In this section, we want to illustrate the methods introduced in the previous sections
through an empirical analysis performed on income data collected in 1987 and in 2014 by
the Survey of Household Income and Wealth (SHIW) released by Banca d’Italia (2015).
We selected these two years in order to better illustrate the issue related to the presence
of negative values. Even if they are more recent, the data of year 2016 have not been
used in our analysis since in that year for the variable Financial Capital Gains (YCF) it
happens that Ta−Tn < 0, and therefore the Chen et al.’s correction cannot be performed.

The SHIW survey began in the 1960s with the aim of gathering data on the incomes
and on the savings of Italian households. Since its inception, the scope of the survey
has grown and includes wealth and other aspects of households’ economic and financial
behaviour. The variable Total Income (Y) is the sum of six main income sources:

1. Earned Income, including income employment (YL);

2. Self-employment (YM);

3. Pensions (YTP);

4. Transfers (YTA) -which consist in many kinds of pensions and other government
benefits;

5. Income from Real Estate Property (YCA);

6. Financial Capital Gains (YCF).
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Sample Characteristics 1987 2014

M : sample size 7328 8156

N : number of households with negative value 340 700

Number of households with null value (xi = 0) 1163 1329

Ta: total amount of positive values 8922383.25 3094826.61

Tn: total amount of absolute negative values 702443.14 1811122.53

Value of k satisfying the relationships in (12) 4376 7996

xmin: minimum value -56376.88705 -19603.43467

xmax: maximum value 71506.19816 79133.89668

Median 378.479 43.013

IQR: interquartile range 1236.264 214.207

g1: Fisher’s sample coefficient of skewness 6.065 13.086

g2: Fisher’s sample coefficient of kurtosis 117.763 391.825

Table 3: The Financial Capital Gain (YCF) data for 1987 and 2014.

In this application, we take into consideration the last source: the Household Financial
Capital Gain (YCF) of the two years 1987 and 2014. The surveys cover 7328 households
(for 1987) and 8156 (for 2014). Table 3 summarizes the main characteristics of the two
samples: in our analysis the unit coincides with the household. The monetary values of
1987 have been converted into euro. The index g1 and g2 are defined by:

g1(X) =
M

(M − 1)(M − 2)

M∑
i=1

(
xi − x̄
s

)3

g2(X) =
(M + 1)M

(M − 1)(M − 2)(M − 3)

M∑
i=1

(
xi − x̄
s

)4

− 3(M − 1)2

(M − 2)(M − 3)
.

The two years are quite different in terms of the percentage of households with negative
values: 4.6% in 1987 and 8.6% in 2014. Moreover they have different ratios Tn/Ta:
7.9% in 1987 and 58.5% in 2014. The percentage of units with no financial capital gain
remains almost stable in the two surveys: 15.9% and 16.3%, respectively. If now we
apply the first procedure presented in the previous sections, by turning the negative
values to zero, we consider the part 2NTa + Sa -see formula (6)- of S; while if we apply
the second method, by removing the negative values, S reduces to Sa -see formula (8)-.
This means that in the former case we use 90.44% of the overall variability in 1987
and only 60.24% in 2014. In the latter case, the two percentages decrease nearly six
percentage points, to 84.69% in 1987 and to 54.12% in 2014. The Table 4 summarizes
some relevant statistics (like the percentages of variability taken into account, etc...) and
the values of the indexes presented in the previous sections.
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Statistics 1987 2014

[2NTa + Sa]/S 90.44% 60.24%

Sa/S 84.69% 54.12%

G 0.8761 3.3799

Upper bound for G 1.1709 3.8217

Ga 0.7169 0.8300

Gza 0.7300 0.8446

GCTR−BS 0.8178 0.9967

GP 0.7483 0.8844

GA 0.7959 0.9887

S0/4M(Ta − Tn) 0.0356 1.1954

Table 4: Statistics for the Financial Capital Gain (YCF) data of 1987 and 2014.

In 1987, the Gini coefficient is equal to 0.8761; Ga is 16 percentage points lower
(0.7169) and Gza is more than 14 percentage points lower than G. The differences
between such three indexes are much more significant in 2014: in this year the Gini
coefficient is 3.3799, Ga is 0.83, and Gza is equal to 0.8446. In the examples considered
here, the most significant difference is definitely between G and Gza, rather than between
Gza and Ga.

It is interesting to observe what would happen after a redistribution which compen-
sates the negative values by an egalitarian redistribution from the lowest positive values,
that is after a minimal compensation. GA would become 0.7959 in 1987 and 0.9887 in
2014: in 1987 nearly 5 percent points greater than Gza and more than 8 percent points
greater than Ga. In 2014 the differences would be much higher: more than 14 percent
points for Gza and nearly 16 percent points for Ga. The GP indexes are

G1987
P = 0.7483 and G2014

P = 0.8844.

As expected GP is lower in 1987 and 2014 than the corresponding GA after the minimal
compensation. However we think that the proper use of GP is to integrate G, and not
to replace it. The standard Gini coefficient can not longer be considered a concentration
index, both in 1987 and 2014: for the presence of negative values, it is just a relative
measure of variability with respect to the mean value. It informs us that, if we measure
the variability by the ratio between the Gini mean difference and twice the mean of the
financial capital gain, the variability of the income source at stake has increased 3.86
times from 1987 to 2014.

Moreover, as the ratio (Ta + Tn)/(Ta − Tn) is 1.1709 in 1987 and 3.8217 in 2014, GP
informs that the Gini coefficient (which assesses the relative variability) reached nearly
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the 75% of its potential maximum in 1987, and more than the 88% of its potential
maximum in 2014.

The GCTR−BS indexes are

G1987
CTR−BS = 0.8178 and G2014

CTR−BS = 0.9967.

As expected, the GCTR−BS index is greater than GA: however if we consider the dif-
ference in variability expressed by the difference between G and GA, which have the
same denominator, the GCTR−BS index reveals very little of the variability reduction
due to the minimal compensation. In fact, in 1987 the difference between G and
GA is 0.8761 − 0.7959 = 0, 0802, whilst the difference between GCTR−BS and GA is
0.8178 − 0.7959 = 0, 0219. In 2014 the undervaluation is even more evident, as the
difference between G and GA is 3.3799-0.9887= 2,3912, whilst the difference between
GCTR−BS and GA is just 0.9967− 0.9887 = 0, 0080. Moreover, as the area below the X
axis, S0

4M(Ta−Tn) , in 2014 and 1987 is different, being 0.0356 in 1987 and 1.1954 in 2014,
the GCTR−BS index in 1987 is not immediately comparable with the GCTR−BS index in
2014.

We would conclude that, when dealing with negative values, by the use of G and
GP together one can better evaluate the differences among distributions, as well as the
effects of redistributions pertaining to the same population.

9 Final remarks

The purpose of this research was to indicate a valid operating procedure to manage the
issue of the inequality when a distribution includes negative values. Generally, in overall
income distributions only a few units present negative values. However, when we disag-
gregate overall income distributions into their sources, units presenting negative values
can no longer be considered a negligible phenomenon. Another situation where several
units with negative values can be observed is given by tax systems, which introduce fam-
ily allowances through the form of negative income taxes. In this article we have shown
that when a distribution includes negative values, neither dropping units with negative
values nor transforming these values to zero are suitable practices. This should not be
done if we do not want both to exclude a part of the variability that can be considerable
and to bias comparisons among distributions, related either to different populations or
to the same population in different periods. Even if the Chen et al. (1982) coefficient
appears a feasible procedure that preserves the whole variability, it presents some lim-
its due to unreasonable behaviours in some circumstances, as stressed by Raffinetti et
al. (2015) and remarked in Section 5. This ad hoc procedure is not recommended to
compare different situations.

From the results of our research, we suggest some general guidelines to deal with
negative values, based on empirical experience. When the negative values represent less
than the 1% of the total observations of the dataset, we suggest to use Ga, since the
loss of information due to the discarding of negative values is balanced out by the ease
of calculation. If the proportion of negative values is higher (between 1% and 5%), then
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we recommend the use of Gza, as OECD suggests, since its bias with respect to G is
smaller than the corresponding one of Ga. In all the other cases we propose the adoption
of GP , obtained by dividing the Gini coefficient by its upper bound. This normalized
index measures the percentage of the potential maximum variability, in a given situation;
it could compare any new distribution, obtained by a redistribution from the previous
one which keeps constant the ratio between the overall negative amount and the overall
positive amount. Moreover, GP can be used to compare the normalized variability in
the cases where the mentioned ratio is the same.

Finally, it is important to remark that when dealing with negative values the standard
Gini coefficient G is no longer a concentration measure: it can still be computed for
comparing different distributions, but it can be interpreted just as a relative measure of
variability with respect to the mean value.
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