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Abstract

One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical
imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration
of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008
to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for
more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal,
cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible
increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human
eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on
the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced
because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical
judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided
by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital
role in multidisciplinary clinical teams.
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Key points

� Over 10 years, publications on AI in radiology have
increased from 100–150 per year to 700–800 per
year

� Magnetic resonance imaging and computed
tomography are the most involved techniques

� Neuroradiology appears as the most involved
subspecialty (accounting for about one-third of the
papers), followed by musculoskeletal, cardiovascular,
breast, urogenital, lung/thorax, and abdominal
radiology (each representing 6–9% of articles)

� Radiologists, the physicians who were on the
forefront of the digital era in medicine, can now
guide the introduction of AI in healthcare
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Introduction
One of the most promising areas of health innovation is
the application of artificial intelligence (AI) in medical im-
aging, including, but not limited to, image processing and
interpretation [1]. Indeed, AI may find multiple applica-
tions, from image acquisition and processing to aided
reporting, follow-up planning, data storage, data mining,
and many others. Due to this wide range of applications, AI
is expected to massively impact the radiologist’s daily life.
This article provides basic definitions of terms com-

monly used when discussing AI applications, analyses
various aspects related to the integration of AI in the
radiological workflow, and provides an overview of the
balance between AI threats and opportunities for radiol-
ogists. Awareness of this trend is a necessity, especially
for younger generations who will face this revolution.
Artificial intelligence: definitions
The term AI is applied when a device mimics cognitive
functions, such as learning and problem solving [2].
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More generally, AI refers to a field of computer science
dedicated to the creation of systems performing tasks
that usually require human intelligence, branching off
into different techniques [3]. Machine learning (ML), a
term introduced by Arthur Samuel in 1959 to describe a
subfield of AI [4] that includes all those approaches that
allow computers to learn from data without being expli-
citly programmed, has been extensively applied to med-
ical imaging [5]. Among the techniques that fall under
the ML umbrella, deep learning (DL) has emerged as
one of the most promising. Indeed, DL is a technique
belonging to ML, which in turn refers to a broader AI
family (Fig. 1). In particular, DL methods belong to
representation-learning methods with multiple levels of
representation, which process raw data to perform clas-
sification or detection tasks [6].
ML incorporates computational models and algorithms

that imitate the architecture of the biological neural net-
works in the brain, i.e., artificial neural networks (ANNs)
[7]. Neural network architecture is structured in layers
composed of interconnected nodes. Each node of the net-
work performs a weighted sum of the input data that are
subsequently passed to an activation function. Weights
are dynamically optimised during the training phase.
There are three different kinds of layers: the input layer,
which receives input data; the output layer, which pro-
duces the results of data processing; and the hidden
layer(s), which extracts the patterns within the data. The
DL approach was developed to improve on the perform-
ance of conventional ANN when using deep architectures.
A deep ANN differs from the single hidden layer by hav-
ing a large number of hidden layers, which characterise
the depth of the network [8]. Among the different deep
ANNs, convolutional neural networks (CNNs) have
Fig. 1 Deep learning as a subset of machine learning methods, which repres
learning techniques have been extensively applied since the 1980s. Deep lear
computational resources
become popular in computer vision applications. In this
class of deep ANNs, convolution operations are used to
obtain feature maps in which the intensities of each pixel/
voxel are calculated as the sum of each pixel/voxel of the
original image and its neighbours, weighted by convolu-
tion matrices (also called kernels). Different kernels are ap-
plied for specific tasks, such as blurring, sharpening, or
edge detection. CNNs are biologically inspired networks
mimicking the behaviour of the brain cortex, which con-
tains a complex structure of cells sensitive to small regions
of the visual field [3]. The architecture of deep CNNs al-
lows for the composition of complex features (such as
shapes) from simpler features (e.g. image intensities) to
decode image raw data without the need to detect specific
features [3] (Fig. 2).
Despite their performance, ML network architecture

makes them more prone to fail in reaching the conver-
gence and overfit training dataset. On the other hand,
the complexity of deep network architectures makes
them demanding in terms of computational resources
and dimension of the training sample.
Success in DL application was possible mainly due to

recent advancements in the development of hardware
technologies, like graphics processing units [5]. Indeed,
the high number of nodes needed to detect complex re-
lationships and patterns within data may result in bil-
lions of parameters that need to be optimised during the
training phase. For this reason, DL networks require a
huge amount of training data, which in turn increase the
computing power needed to analyse them. These are
also the reasons why DL algorithms are showing in-
creased performance and are, theoretically, not suscep-
tible to the performance plateau of the simpler ML
networks (Fig. 3).
ent a branch of the existing artificial intelligence techniques. Machine
ning has been applied since the 2010s due to the advancement of



Fig. 2 Comparison between classic machine learning and deep learning approaches applied to a classification task. Both depicted approaches
use an artificial neural network organised in different layers (IL input layer, HL hidden layer, OL output layer). The deep learning approach avoids
the design of dedicated feature extractors by using a deep neural network that represents complex features as a composition of simpler ones
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Radiologists are already familiar with computer-aided
detection/diagnosis (CAD) systems, which were first in-
troduced in the 1960s in chest x-ray and mammography
applications [5]. However, advances in algorithm devel-
opment, combined with the ease of access to computa-
tional resources, allows AI to be applied in radiological
decision-making at a higher functional level [7].

The wind of change
The great enthusiasm for and dynamism in the develop-
ment of AI systems in radiology is shown by the increase
in publications on this topic (Figs. 4 and 5). Only 10
years ago, the total number of publications on AI in
radiology only just exceeded 100 per year. Thereafter, we
had a tremendous increase, with over 700–800
Fig. 3 Graphical representation of the different relationship between
the amount of data given to traditional ML or DL systems and their
performance. Only DL systems continue to increase their performance
publications per year in 2016–17. In the last couple of
years, computed tomography (CT) and magnetic reson-
ance imaging (MRI) have collectively accounted for more
than 50% of articles, though radiography, mammography,
and ultrasound are also represented (Table 1). Neuroradi-
ology (here evaluated as imaging of the central nervous
system) is the most involved subspecialty (accounting for
about one-third of the papers), followed by musculoskel-
etal, cardiovascular, breast, urogenital, lung/thorax, and
abdominal radiology, each representing between 6 and 9%
of the total number of papers (Table 2). AI currently has
an impact on the field of radiology, with MRI and neuro-
radiology as the major fields of innovation.
Recent meetings have also proven the interest in AI

applications. During the 2018 European Congress of
Radiology and the 2017 Annual Meeting of the Radio-
logical Society of North America, AI represented the
focus of many talks. Studies showed the application of
DL algorithms for assessing the risk of malignancy for a
lung nodule, estimating skeletal maturity from paediatric
hand radiographs, classifying liver masses, and even ob-
viating the need for thyroid and breast biopsies [9–11];
at the same time, the vendors showed examples of AI
applications in action [9, 10].

AI in radiology: threat or opportunity?
A motto of radiology residents is: “The more images you
see, the more examinations you report, the better you
get”. The same principle works for ML, and in particular
for DL. In the past decades, medical imaging has evolved
from projection images, such as radiographs or planar
scintigrams, to tomographic (i.e. cross-sectional) images,
such as ultrasound (US), CT, tomosynthesis, positron



Fig. 4 Number of publications indexed on EMBASE obtained using the search query (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR
‘machine learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’) AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic
imaging’/exp. OR ‘diagnostic imaging’) AND ([english]/lim). EMBASE was accessed on April 24, 2018. For each year the number of publications
was stratified for imaging modality. US ultrasound, MRI magnetic resonance imaging, CT computed tomography, PET positron emission tomography,
SPECT single-photon emission tomography. Diagnostic modalities different from those listed above are grouped under the “other topic” label (e.g.
optical coherence tomography, dual-energy x-ray absorptiometry, etc.)

Table 1 Number of articles on AI in radiology indexed on
EMBASE, stratified by imaging modality

Imaging modality 2015 2016 2017

Magnetic resonance imaging 164 230 235

38% 42% 37%

Computed tomography 123 117 177

29% 21% 28%

Ultrasound 27 32 33

6% 6% 5%

Radiography 14 14 26

3% 3% 4%

Mammography and breast tomosynthesis 23 12 18

5% 2% 3%

Positron emission tomography and single-photon
emission tomography

1 7 5

0% 1% 1%

Other 79 139 134

18% 25% 21%

Total 431 551 628

100% 100% 100%

Search query: (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR ‘machine
learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’)
AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic imaging’/exp. OR ‘diagnostic
imaging’) AND ([english]/lim). Values were obtained including only “article”,
“article in press” and “conference paper” as publication type. EMBASE was
accessed on April 24, 2018
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emission tomography, MRI, etc., becoming more
complex and data rich. Even though this shift to
three-dimensional (3D) imaging began during the 1930s,
it was not until the digital era that this approach allowed
high anatomic detail to be obtained and functional infor-
mation to be captured.
The increasing amount of data to be processed can in-

fluence how radiologists interpret images: from inference
to merely detection and description. When too much time
is taken for image analysis, the time for evaluating clinical
and laboratory contexts is squeezed [12]. The radiologist
is reduced to being only an image analyst. The clinical in-
terpretation of the findings is left to other physicians. This
is dangerous, not only for radiologists but also for patients:
non-radiologists can have a full understanding of the clin-
ical situation but do not have the radiological knowledge.
In other words, if radiologists do not have the time for
clinical judgement, the final meaning of radiological exam-
inations will be left to non-experts in medical imaging.
In this scenario, AI is not a threat to radiology. It is in-

deed a tremendous opportunity for its improvement. In
fact, similar to our natural intelligence, AI algorithms
look at medical images to identify patterns after being
trained using vast numbers of examinations and images.
Those systems will be able to give information about the
characterisation of abnormal findings, mostly in terms of
conditional probabilities to be applied to Bayesian
decision-making [13, 14].



Table 2 Number of articles indexed on EMBASE stratified by
radiology subspecialty/body part

Body parts 2015 2016 2017

Central nervous system 163 235 211

38% 43% 34%

Bone, spine and joints 29 37 54

7% 7% 9%

Cardiovascular 24 32 49

6% 6% 8%

Breast 41 39 50

10% 7% 8%

Urogenital 40 25 52

9% 5% 8%

Thorax and lungs 36 21 46

8% 4% 7%

Abdomen 28 27 36

6% 5% 6%

Other 70 135 130

16% 25% 21%

Total 431 551 628

100% 100% 100%

Search query: (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR ‘machine
learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’)
AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic imaging’/exp. OR ‘diagnostic
imaging’) AND ([english]/lim) stratified by radiology subspeciality/body parts.
Values were obtained including only “article”, “article in press” and “conference
paper” as publication type. EMBASE was accessed on April 24, 2018
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This is crucial because not all abnormalities are repre-
sentative of disease and must be actioned. AI systems
learn on a case-by-case basis. However, unlike CAD sys-
tems, which just highlight the presence or absence of
image features known to be associated with a disease state
[15, 16], AI systems look at specific labelled structures and
also learn how to extract image features either visible or
invisible to the human eye. This approach mimics human
analytical cognition, allowing for better performance than
that obtained with old CAD software [17].
With the irreversible increase in imaging data and the

possibility to identify findings that humans can or can-
not detect [18], radiology is now moving from a subject-
ive perceptual skill to a more objective science [12]. In
fact, the radiologist’s work is currently limited by sub-
jectivity, i.e. variations across interpreters, and the
adverse effect of fatigue. The attention to inter- and
intra-reader variability [19] and the work committed to
improve the repeatability and reproducibility of medical
imaging over the past decades proves the need for repro-
ducible radiological results. In a broader perspective, the
trend toward data sharing also works in this case [20].
The key point is that AI has the potential to replace
many of the routine detection, characterisation and
quantification tasks currently performed by radiologists
using cognitive ability, as well as to accomplish the inte-
gration of data mining of electronic medical records in
the process [1, 7, 21].
Moreover, the recently developed DL networks have led

to more robust models for radiomics, which is an emerging
field that deals with the high-throughput extraction of
quantitative peculiar features from radiological images
[22–26]. Indeed, data derived from radiomics investigation,
such as intensity, shape, texture, wavelength, etc., can be
extracted from medical images [23, 27–31] and extracted
by or integrated in ML approaches, providing valuable
information for the prediction of treatment response, differ-
entiating benign and malignant tumours, and assessing
cancer genetics in many cancer types [23, 32–34]. Because
of the rapid growth of this area, numerous published radio-
mics investigations lack standardised evaluation of both the
scientific integrity and the clinical relevance [22]. However,
despite the ongoing need for independent validation data-
sets to confirm the diagnostic and prognostic value of
radiomics features, radiomics has shown several promising
applications for personalised therapy [22, 23], not only in
oncology but also in other fields, as shown by recent
original articles that have proved the value of radiomics in
the cardiovascular CT domain [35, 36].
Finally, AI applications may enhance the reproducibil-

ity of technical protocols, improving image quality and
decreasing radiation dose, decreasing MRI scanner time
[39] and optimising staffing and CT/MRI scanner util-
isation, thereby reducing costs [1]. These applications
will simplify and accelerate technicians’ work, also
resulting in an average higher technical quality of exami-
nations. This may counteract one of the current limita-
tions of AI systems, i.e. the low ability to recognise the
effects of positioning, motion artefacts, etc., also due to
the lack of standardised acquisition protocols [15, 33,
34]. In other words, AI needs high-quality studies, but
its application will lead towards better quality. The holy
grail of standardisation in radiology may become attain-
able, also increasing productivity.
The quicker and standardised detection of image

findings has the potential to shorten reporting time
and to create automated sections of reports [2]. Struc-
tured AI-aided reporting represents a domain where
AI may have a great impact, helping radiologists use
relevant data for diagnosis and presenting it in a con-
cise format [40].
Recently, the radiological community has discussed

how such changes will alter the professional status of ra-
diologists. Negative feelings were expressed, reflecting
the opinions of those who are thinking that medicine
will not need radiologists at all [21, 41, 42]. Should we
consider closing postgraduate schools of radiology, as
someone suggested [12, 21]? No. Healthcare systems



Fig. 5 Number of publications indexed on EMBASE obtained using the search query (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR
‘machine learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’) AND (‘radiology’ OR ‘diagnostic imaging’). EMBASE was
accessed on April 24, 2018. For each year, the number of publications was subdivided separating opinion articles, reviews and conference
abstracts from original articles in seven main subgroups considering subspecialty or body part. Other fields of medical imaging different
from those listed above are grouped under the “other topics” label (e.g. dermatology, ophthalmology, head and neck, etc.)
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would not be able to work without radiologists, particu-
larly in the AI era. This answer is not based on a prejudi-
cial defence of radiology as a discipline and profession.
Two main ideas should guide this prediction: first, “The
best qualification of a prophet is to have a good memory”
(attributed to Marquis of Halifax) [43]; and second, “One
way to predict the future is to create it” (attributed to
Abraham Lincoln) [44].
Radiologists were on the forefront of the digital era in

medicine. They guided the process, being the first med-
ical professionals to adopt computer science, and are
now probably the most digitally informed healthcare
professionals [45]. Although the introduction of new
technologies was mostly perceived as new approaches
for producing images, innovation also deeply changed
the ways to treat, present and store images. Indeed, the
role of radiologists was strengthened by the introduction
of new technologies. Why should it be different now?
The lesson of the past is that apparently disrupting tech-
nologies (e.g. non-x-ray-based modalities, such as ultra-
sound and MRI) that seemed to go beyond radiology
were embraced by radiologists. Radiology extended its
meaning to radiation-free imaging modalities, now
encompassing almost all diagnostic medical imaging, as
demonstrated by the presence of the word “radiology” in
numerous journals titles. This historical effect resulted
from the capacity of radiologists to embrace these
radiation-free modalities. In addition, electronic systems
for reporting examination and archiving images were
primarily modelled to serve radiologists.
The reasonable doubt is that we are now facing

methods that not only cover the production of medical
images but also involve detection and characterisation,
properly entering the diagnostic process. Indeed, this
is a new challenge, but also an additional value of AI.
The professional role and satisfaction of radiologists
will be enhanced by AI if they, as in the past, embrace
this technology and educate new generations to use it
to save time spent on routine and monotonous tasks,
with strong encouragement to dedicate the saved time
to functions that add value and influence patient care.
This could also help radiologists feel less worried
about the high number of examinations to be reported
and rather focus on communication with patients and
interaction with colleagues in multidisciplinary teams
[46]. This is the way for radiologists to build their
bright future.
We are at the beginning of the AI era. Until now, the

clinical application of ML on medical imaging in terms of
detection and characterisation have produced results lim-
ited to specific tasks, such as differentiation of normal
from abnormal chest radiographs [41, 42, 47] or mammo-
grams [48, 49]. The application of AI to advanced imaging
modalities, such as CT and MRI, is now in its first phase.
Examples of promising results are the differentiation of
malignant from benign chest nodules on CT scans [50],
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the diagnosis of neurologic and psychiatric diseases [51,
52], and the identification of biomarkers in glioblastoma
[53]. Interestingly, MRI has been shown to predict survival
in women with cervical cancer [54, 55] and in patients
with amyotrophic lateral sclerosis [56].
However, AI could already be used to accomplish tasks

with a positive, immediate impact, several of them
already described by Nance et al. in 2013 [57]:

1. Prioritisation of reporting: automatic selection of
findings deserving faster action.

2. Comparison of current and previous examinations,
especially in oncologic follow-up: tens of minutes are
needed for this currently; AI could do this for us;
we will supervise the process, extracting data to be
integrated into the report and drawing conclusions
considering the clinical context and therapy regimens;
AI could also take into account the time interval
between examinations

3. Quick identification of negative studies: at least in
this first phase, AI will favour sensitivity and
negative predictive value over specificity and
positive predictive value, finding the normal studies
and leaving abnormal ones for radiologists [36].
This would be particularly useful in high-volume
screening settings; this concept of quick negative
should also represent a helpful tool for screening
programmes in underserved countries [10, 37].

4. Aggregation of electronic medical records, allowing
radiologists to access clinical information to adapt
protocols or interpret exams in the full clinical
context.

5. Automatic recall and rescheduling of patients: for
findings deserving of an imaging follow-up.

6. Immediate use of clinical decision support systems
for ordering, interpreting, and defining further
patient management.

7. Internal peer-review of reports.
8. Tracking of residents’ training.
9. Quality control of technologists’ performance and

tracked communication between radiologists and
technologists.

10. Data mining regarding relevant issues, including
radiation dose [38].

In the mid-term perspective, other possibilities are
open, such as:

1. Anticipation of the diagnosis of cancerous lesions in
oncologic patients using texture analysis and other
advanced approaches [58].

2. Prediction of treatment response to therapies for
tumours, such as intra-arterial treatment for
hepatocellular carcinoma [59].
3. Evaluation of the biological relevance of borderline
cases, such as B3-lesions diagnosed at pathology of
needle biopsy of breast imaging findings [60].

4. Estimation of functional parameters, such as the
fractional flow reserve from CT coronary
angiography using deep learning [61].

5. Detection of perfusion defects and ischaemia, for
example in the case of myocardial stress perfusion
defects and induced ischaemia [62].

6. Segmentation and shape modelling, such as brain
tumour segmentation [63] or, more generally, brain
structure segmentation [64].

7. Reducing diffusion MRI data processing to a single
optimised step, for example making microstructure
prediction on a voxel-by-voxel basis as well as
automated model-free segmentation from MRI
values [39].

The radiologists’ role and cooperation with
computer scientists
The key point is the separation of diagnosis and predic-
tion from action and recommendation. Radiologists will
not be replaced by machines because radiology practice
is much more than the simple interpretation of images.
The radiologist’s duties also include communication of
diagnosis, consideration of patients’ values and prefer-
ences, medical judgment, quality assurance, education,
policy-making, interventional procedures, and many
other tasks that, so far, cannot be performed by com-
puter programmes alone [2].
Notably, it must be understood that the clinical role of

radiologists cannot be “saved” only by performing inter-
ventional procedures. Even though interventional radi-
ology is a fundamental asset to improve the clinical profile
of radiology [45, 65–67], radiologists must act more as cli-
nicians, applying their clinical knowledge in answering
diagnostic questions and guiding decision-making, which
represent their main tasks. Radiologists should keep their
human control in the loop, considering clinical, personal
and societal contexts in ways that AI alone is not able to
do. So far, AI is neither astute nor empathic. Thus, physi-
cians (i.e., we say here radiologists) remain essential for
medical practice, because ingenuity in medicine requires
unique human characteristics [40, 68]. If the time needed
for image interpretation were shortened, radiologists
would be able to focus on inference to improve patient
care. If AI is based on a huge increase in information, the
hallmark of intelligence is in reducing information to what
is relevant [69].
However, it is impossible to exclude that the efficiency

gain provided by AI may lead to a need for fewer radiolo-
gists. Of note, in the United States the competition for
residency positions in radiology has decreased over time
[70], potentially allowing for a better match between
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supply and demand for residency positions. However, also
the opposite hypothesis cannot be excluded: AI-enhanced
radiology may require more professionals in the field, in-
cluding radiologists. In general, the history of automation
shows that jobs are not lost. Rather, roles are reshaped;
humans are displaced to tasks needing a human element
[12]. The gain in efficiency provided by AI will allow radi-
ologists to perform more value-added tasks, such as inte-
grating patients’ clinical and imaging information, having
more professional interactions, becoming more visible to
patients and playing a vital role in integrated clinical teams
[46]. In this way, AI will not replace radiologists; yet, those
radiologists who take advantage of the potential of AI will
replace the ones who refuse this crucial challenge.
Finally, we should remember that AI mimics human

intelligence. Radiologists are key people for several
current AI challenges, such as the creation of
high-quality training datasets, definition of the clinical
task to address, and interpretation of obtained results.
Many labelled studies and findings provided by experi-
enced radiologists are needed; those datasets are diffi-
cult to find and are time-consuming, implying high
costs [3]. However, even if crucial, the radiologist’s role
should not be confined to data labelling. Radiologists
may play a pivotal role in the identification of clinical
applications where AI methods may make the difference.
Indeed, they represent the final user of these technologies,
who knows where they can be applied to improve patient
care. For this reason, their point of view is crucial to opti-
mise the use of AI-based solutions in the clinical setting.
Finally, the application of AI-based algorithms often leads
to the creation of complex data that need to be inter-
preted and linked to their clinical utility. In this scenario,
radiologists may play a crucial role in data interpretation,
cooperating with data scientists in the definition of useful
results.
Radiologists should negotiate the supply of these valu-

able datasets and clinical knowledge with a guiding role in
the clinical application of AI programmes. This implies an
increasing partnership with bioengineers and computer
scientists. Working with them in research and develop-
ment of AI applications in radiology is a strategic issue
[45]. These professionals should be embedded in radio-
logical departments, becoming everyday partners. Creating
this kind of “multidisciplinary AI team” will help to ensure
patient safety standards are met and creates judicial trans-
parency, which allows legal liability to be assigned to the
radiologist component human authority [71].
Another topical issue that needs to be faced are the

legal implications of AI systems in healthcare. As soon
as AI systems start making autonomous decisions about
diagnoses and prognosis, and stop being only a support
tool, a problem arises as to whether, when something
‘goes wrong’ following a clinical decision made by an AI
application, the reader (namely, the radiologist) or the
device itself or its designer/builder is to be considered at
fault [72]. In our opinion, ethical and legal responsibility
for decision making in healthcare will remain a matter
of the natural intelligence of physicians. From this view-
point, it is probable that the multidisciplinary AI team
will take responsibility in difficult cases, considering
relevant, but not always conclusive, what AI provided. It
has been already demonstrated that groups of human
and AI agents working together make more accurate
predictions compared to humans or AI alone, promising
to achieve higher levels of accuracy in imaging diagnosis
and even prognosis [71].
Although the techniques of AI differ from diagnosis to

prognosis, both applications still need validation, and
this is challenging due to the large amount of data
needed to achieve robust results [73]. Therefore, rigor-
ous evaluation criteria and reporting guidelines for AI
need to be developed in order to establish its role in
radiology and, more generally, in medicine [22].
Conclusions
AI will surely impact radiology, and more quickly than
other medical fields. It will change radiology practice
more than anything since Roentgen. Radiologists can
play a leading role in this oncoming change [74].
An uneasiness among radiologists to embrace AI may

be compared with the reluctance among pilots to em-
brace autopilot technology in the early days of auto-
mated aircraft aviation. However, radiologists are used to
facing technological challenges because, since the begin-
nings of its history, radiology has been the playfield of
technological development.
An updated radiologist should be aware of the basic

principles of ML/DL systems, of the characteristic of
datasets to train them, and their limitations. Radiologists
do not need to know the deepest details of these sys-
tems, but they must learn the technical vocabulary used
by data scientists to efficiently communicate with them.
The time to work for and with AI in radiology is now.
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