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Objectives: We evaluated the possibility that a pattern of abnormal microRNA (miRNA) expression could be
fuelling the mechanisms causing HIV-associated lipodystrophy (HAL).

Methods: In this case–control study, samples of subcutaneous adipose tissue from eight consecutive HIV-
infected patients on combination antiretroviral therapy with HAL (cases) were compared with those of eight
HIV-negative subjects (controls). Human miRNA microarrays were used to probe the transcriptomes of the
samples. Analysis of differentially expressed miRNAs was performed using DataAssist v2.0 software, applying
a paired Student’s t-test.

Results: Data showed that 21 miRNAs out of 754 were overexpressed in the patient group. Ten of these (i.e. miR-186,
miR-199a-3p, miR-214, miR-374a, miR-487b, miR-532-5p, miR-628-5p, miR-874, miR-125-b-1* and miR-374b*)
were up-regulated to a significant degree (fold change .2.5; P,0.01). Eleven other miRNAs (i.e. miR-let-7d, miR-
24, miR-30c, miR-125a-3p, miR-149, miR-191, miR-196-b, miR-218, miR-342-3p, miR-452 and miR-454*) were 2- to
2.5-fold more expressed in HIV+ samples than in controls. Levels of mRNA for lipin 1, the target of miR-218, were
significantly lower in subcutaneous adipose tissue from HIV patients.

Conclusions: In adipocytes of HIV-infected patients, the up-regulation of specific miRNAs could lead to an increased
‘activation’ that might contribute to the pathogenesis of HAL by increasing cell turnover and/or promotion of
apoptosis.
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Introduction
Lipodystrophy syndrome (LS) is an adipose tissue redistribution
reported in subjects with HIV infection who have been treated
with combination antiretroviral therapy (cART).1 It is characterized
by morphological alterations including peripheral lipoatrophy (loss
of subcutaneous fat in the cheeks, extremities and buttocks), fat
accumulation (intra-abdominal region, trunk, neck and subcutane-
ous lipomas) and mixed forms and metabolic alterations such as
dyslipidaemia and altered glucose metabolism.2 –4 The pathogen-
esis of LS is multifactorial.5 Various drug classes have been asso-
ciated with LS; in particular, lipoatrophy has been associated with
mitochondrial toxicity induced by treatment with thymidine analo-
gues, whereas visceral fat accumulation has been partially corre-
lated with protease inhibitor use.2 The clinical relevance of this
condition is characterized by metabolic derangements and
increased risk of severe cardiovascular diseases; moreover, the

patient has to deal with the highly negative perception of this dis-
figuring and stigmatizing condition, which can lead to erosion of
body image and involuntary disclosure of HIV status.6 Few studies
have focused on the role of abnormalities in adipose tissue differ-
entiation in LS. Adipocytes derive from mesenchymal stromal pro-
genitor/stem cells (MSCs), a rare population of non-haematopoietic
stromal cells.7 MSCs are capable of differentiation into mesenchy-
mal tissues such as bone, cartilage, adipose tissue and muscle.8

It has been proposed that HIV can interact directly with MSCs,
resulting in alteration of their differentiation potential towards
the adipocyte lineage.9

MicroRNAs (miRNAs) are short (�22 nt) non-coding RNA mole-
cules that regulate gene expression at the post-transcriptional
level through sequence alignment mechanisms.10 They have
been implicated in muscle, adipose tissue and osteogenic differ-
entiation and in commitment of MSCs towards the adipocyte
lineage.11 – 13
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In this study, we investigated whether the subcutaneous adi-
pose tissue of HIV+ patients treated with cART is characterized by
an miRNA expression profile different from that of HIV2 subjects.
Our working hypothesis was that specific miRNAs could play a key
role in the pathogenesis of LS by altering the differentiation of adi-
pose tissue progenitor cells.

Materials and methods

Samples and miRNA array analysis
Abdominal subcutaneous adipose tissue fragments were obtained from
HIV+ patients (male, n¼8) on cART and HIV2 subjects (male, n¼8) and
stored at 2208C in RNAlater (Sigma–Aldrich, St Louis, MO, USA). The study
protocol was approved by the Ethics Committee of the San Gerardo
Hospital. All subjects gave written informed consent before being enrolled
in the study.

For each subject, height, weight, waist circumference and systolic and
diastolic blood pressure data were collected. The inclusion criteria were as
follows: age 25–65 years; documented HIV infection (for HIV+group); facial
lipoatrophy with or without peripheral lipoatrophy (only for HIV+ group);
body mass index (BMI) 18–30; fasting glucose values ,126 mg/dL; and
absence of hypolipidaemic therapy and steroid use. HIV+ patients were in
therapy with the following cART: four patients were on a non-nucleoside
reverse transcriptase inhibitor (NNRTI) regimen (efavirenz or nevirapine),
three patients were on a protease inhibitor regimen (lopinavir/ritonavir or
atazanavir/ritonavir) and one patient was on an NNRTI+ integrase inhibitor
regimen (etravirine+raltegravir). NNRTI and protease inhibitor regimens also
included a combination of nucleoside reverse transcriptase inhibitors
(tenofovir+emtricitabine or abacavir+ lamivudine).

Total RNAs, including miRNAs, were isolated from subcutaneous adi-
pose tissue using the mirVana miRNA isolation kit (Ambion, Austin, TX,
USA), reverse transcribed, pre-amplified and subsequently amplified in
TaqMan Array MicroRNA Card (A and B) v 3.0 using the TaqMan MicroRNA
Reverse Transcription Kit and TaqMan Universal PCR Master Mix (Applied
Biosystems) on an ABI PRISM 7900 HT sequence detector, following the
manufacturers’ instructions.

The results were analysed using RQ Manager 1.2 software (Applied
Biosystems), applying the comparative Ct method (DDCt) and using a
0.2 threshold. Ct (threshold cycle) is generally assumed as a relative meas-
ure of the concentration of target in the PCR reaction. miRNA expression
levels were normalized to an internal control (MammU6) and plotted as
fold changes on a log2 ratio scale; undetermined Ct or Ct .35 were not
considered.

Lipin 1 mRNA expression analysis
Total RNA from subcutaneous adipose tissue was digested with DNase I
(Fermentas, Glen Burnie, MD, USA), reverse transcribed with the
SuperScript VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA) and
amplified in triplicate using TaqMan Universal PCR Master Mix (Applied
Biosystems). TaqMan probes were used for lipin 1, and 18S rRNA, taken
as endogenous control (Hs00299515_m1 and Hs03928990_g1; Applied
Biosystems). Lipin 1 gene expression was calculated using the DDCt
method and expressed as the fold change (RQ).

Bioinformatic and statistical analysis
Analysis of differentially expressed miRNAs was performed using
DataAssist v2.0 software (Applied Biosystems), applying a paired
Student’s t-test. Functional analysis of miRNAs and predicted target
genes was determined using myMIRsite (www.itb.cnr.it/micro/index.
html). The predicted miRNA target genes were then analysed using
GeneCodis2.0 software.14,15

Analysis of lipin 1 expression was performed using RQ Manager 1.2 soft-
ware (Applied Biosystems), applying a paired Student’s t-test.

Unless otherwise specified, data are expressed as mean+SD. Values
of P,0.05 were considered to be statistically significant.

Results

Clinical and metabolic data

All clinical, metabolic and anthropometric parameters were almost
superimposable between HIV+ patients and HIV2 subjects
(Table 1). In particular, the subjects did not differ in fasting glucose
levels (hyperglycaemia was among the exclusion criteria), BMI and
waist circumference. In the HIV+ group, the patients were treated
with the following cART: four patients (50%) were on an NNRTI regi-
men, three patients (37%) were on a protease inhibitor regimen
and one patient (13%) was on an NNRTI+ integrase inhibitor regi-
men (NNRTI+raltegravir). The CD4 cell count was .400 cells/mm3

for all patients and HIV-RNA was undetectable (,50 copies/mL).

Differentially expressed miRNA in the subcutaneous
adipose tissue of HIV1 patients on cART therapy

The complete profiling of 754 human mature miRNAs in subcutane-
ous adipose tissue samples was obtained. Gene expression analysis
performed with microfluidic cards A and B revealed that 309
miRNAs (41%) were not detectable both in HIV+ patients and
HIV2 subjects. It is likely that these miRNA species are not
expressed in adipose tissue or were not detectable in our samples
due to their relatively low expression (data not shown). The box plot
analysis displays that the Ct value distributions are homogeneous in
both card A (Figure 1a) and card B (Figure 1b) for HIV+ patients and
HIV2 subjects, indicating no significant intra- and inter-variation
among biological replicates.

Among the detectable 445 miRNAs (59%), we observed a differ-
ent expression for 21 of them (4.7% of the measurable miRNAs),
with all being significantly up-regulated (fold change≥2; P,0.01)
in HIV+ patients compared with controls. Volcano plots showed
that most of the miRNA whose levels were higher in the HIV+
group are found on card A (Figure 1c), whereas few of them from
card B where highly expressed (Figure 1d).

Ten of these (i.e. miR-186, miR-199a-3p, miR-214, miR-374a,
miR-487b, miR-532-5p, miR-628-5p, miR-874, miR-125-b-1* and
miR-374b*) were up-regulated to a statistically significant degree

Table 1. Clinical, metabolic and anthropometric parameters of the HIV+
patients and HIV2 subjects

Variables
HIV2 (n¼8),
mean+SD

HIV+ (n¼8),
mean+SD

Age (years) 44.75+11.658 52.875+9.062
Body weight (kg) 71.25+8.464 74.75+11.78
Height (cm) 169.75+10.511 176.5+8.701
BMI (kg/m2) 24.7125+0.601 23.912+2.761
Waist circumference (cm) 89.125+2.695 91.5+10.350
Systolic blood pressure (mmHg) 107.5+13.887 116.875+15.569
Diastolic blood pressure (mmHg) 81.25+6.943 81.25+8.345
Blood glucose level (mg/dL) 89+10.198 84.875+6.311
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(fold change .2.5; P,0.01). Eleven other miRNAs (i.e. miR-let-7d,
miR-24, miR-30c, miR-125a-3p, miR-149, miR-191, miR-196-b,
miR-218, miR-342-3p, miR-452 and miR-454*) were 2- to 2.5-fold
more expressed in HIV+ samples than in controls (Figure 1e).

Since diabetes and obesity were among the exclusion criteria,
no significant correlations were observed between differentially
expressed miRNAs and BMI or fasting glucose levels in the two
groups (data not shown).

The heat map of the miRNA expression categorized two well-
defined clusters that correspond to samples from HIV+ patients
and HIV2 subjects (Figure 2).

To identify downstream genes dysregulated as a consequence
of miRNA alterations, the 21 differentially expressed miRNAs were
analysed using the myMIRsite program, a tool that provides meta-
predictions based on integration, filtering and reranking of outputs
by using several other available software, such as TargetScan,
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Figure 1. miRNA expression analysis. (a and b) Ct values were determined using RQ Manager 1.2 (Applied Biosystems) and then analysed using DataAssist
software (Applied Biosystems). Box plots (DataAssist) show the overall range of Ct distribution, displayed by samples and sorted by group. (a) Data from card
A (samples 1–8 are from HIV+patients and samples 9–16 are from HIV2 subjects). (b) Data from card B (samples 1–7 are from HIV+patients and samples
9–16 are from HIV2 subjects). Every box contains the middle 50% of the data (Ct values). The black horizontal line indicates the median Ct value and the
black dot represents the mean Ct. The ends of the vertical lines indicate the minimum and the maximum Ct values. The points outside the ends of vertical
lines are outliers. (c and d) Volcano plots (DataAssist) display P values versus fold change or groups based on input fold change boundary and P values. Fold
change boundary of 2 (2-fold change) and a P value of 0.01 were used. (c) Data from card A. (d) Data from card B. (e) miRNA expression levels are normalized
to an internal control (MammU6) and plotted as fold changes in terms of log2 (RQ) scale [log2 (RQ)¼1 means 2-fold up-regulation]. Data are expressed as
mean+SD (n¼8). All the represented miRNAs (21 of the 754 analysed miRNAs) showed P values ,0.01 and fold changes over 2.
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Figure 1. Continued
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RNAHybrid, miRanda, Pictar, DIANA-microTand PITA. The outputs of
the predicted target genes were subsequently uploaded to the
GeneCodis2.0 software,16 in order to better understand the func-
tional role of the predicted genes, the pathways and the processes
in which they are involved (Table 2). GeneCodis analysis showed that
several gene targets of altered miRNAs are involved in transport,
gene expression and regulation of metabolic processes (Table 2).

In particular, the signalling pathways of MAPK, Wnt, JAK-STAT
and calcium have been found to be a target of abnormal miRNA
expression. In addition, other processes, such as the interaction
between cytokines and their receptors, glycerophospholipids, as
well as metabolism and pancreatic hormones secretion are also
possible targets. Some of these alterations have been documen-
ted in the literature in physiological and pathological conditions
and in different tissues (Table 3).

Lipin 1 mRNA expression

Interestingly, miR-218 was 2.5-fold more expressed in samples of
HIV+ patients compared with HIV2 subjects. Since genes are

expected to be down-regulated when targeted by a specific
miRNA, we quantified by real-time PCR the mRNA levels of one
miR-218 target, lipin 1, in subcutaneous adipose tissue.
Interestingly, lipin 1 mRNA levels were 44% lower in the HIV+
group (normalized Ct: 0.620+0.17 and 1.104+0.19 for HIV+
patients and HIV2 subjects, respectively; P,0.05) compared
with HIV2 subjects (Figure 3), confirming our hypothesis.

Discussion
In this study, we measured the levels of 754 miRNAs in subcuta-
neous adipose tissue samples obtained from lipodystrophic HIV+
patients and HIV2 subjects. Our results confirm the hypothesis
that specific miRNAs could have a role in the development of
metabolic and morphological abnormalities observed in the
HIV-infected population with lipodystrophy.

Lipoatrophy and lipohypertrophy are frequently reported in LS
and they are often combined. Characterization of miRNAs could
give new important information about the steps of lipogenesis
that could be altered by HIV and/or cART. Our hypothesis was
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Table 2. Biological processes and pathways regulated by putative target genes of miRNAs

miRNA Biological process KEGG pathways

miR-99a apoptotic process
negative regulation of transcription from RNA polymerase II promoter
cellular protein metabolic process

Wnt signalling pathway
cadherin signalling pathway
Wnt signalling pathway, cadherin signalling pathway

miR-874 regulation of transcription, DNA-ST
multicellular organism development

endocytosis
glycerophospholipid metabolism
inositol phosphate metabolism

miR-628-5p signal transduction
synaptic transmission
ion transport, synaptic transmission

neuroactive ligand–receptor interaction
protein processing in endoplasmic reticulum
amyotrophic lateral sclerosis

miR-199a-3p apoptotic process
blood coagulation
negative regulation of cell proliferation

MAPK signalling pathway
RNA degradation
adherens junction

miR-214 signal transduction
multicellular organism development
positive regulation of transcription from RNA polymerase II promoter

pathways in cancer
MAPK signalling pathway
endocytosis

miR-125-b-1* multicellular organism development
ion transport
transmembrane transport

MAPK signalling pathway
Wnt signalling pathway
cell adhesion molecules

miR-487-b positive regulation of transcription from RNA polymerase II promoter
blood coagulation
positive regulation of transcription, DNA-ST

pathways in cancer
insulin signalling pathway
adipocytokine signalling pathway

miR-374a multicellular organism development
ion transport
transmembrane transport

neuroactive ligand–receptor interaction
RIG-I-like receptor signalling pathway

miR-532-5p regulation of transcription, DNA-ST
apoptotic process

pathways in cancer
chemokine signalling pathway
neurotrophin signalling pathway

miR-186 regulation of transcription, DNA-ST
anterior/posterior pattern specification

chemokine signalling pathway
Wnt signalling pathway
melanogenesis

miR-452 positive regulation of cell proliferation
negative regulation of transcription, DNA-dependent
positive regulation of transcription from RNA polymerase II promoter

MAPK signalling pathway
adherens junction
pathways in cancer, prostate cancer

miR-30c regulation of transcription, DNA-dependent
positive regulation of transcription from RNA polymerase II promoter
cell cycle

focal adhesion
ubiquitin-mediated proteolysis
bacterial invasion of epithelial cells

miR-196-b negative regulation of transcription from RNA polymerase II promoter
anterior/posterior pattern specification
embryonic limb morphogenesis

neuroactive ligand–receptor interaction
focal adhesion
cell adhesion molecules

miR-let-7d regulation of transcription, DNA-dependent
cell adhesion
apoptotic process

pathways in cancer
MAPK signalling pathway
Jak-STAT signalling pathway

miR-342-3p regulation of transcription, DNA-ST
multicellular organism development

MAPK signalling pathway
axon guidance
purine metabolism

miR-125-a-3p regulation of transcription, DNA-ST
transmembrane transport

pathways in cancer
MAPK signalling pathway
endocytosis

miR-218 apoptotic process
transmembrane transport
cellular lipid metabolic process

miR-191 regulation of transcription, DNA-dependent
apoptotic process
negative regulation of transcription from RNA polymerase II promoter

pathogenic Escherichia coli infection

Continued
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that miRNA abnormalities could be involved in the development of
metabolic alterations observed in the HIV population on cART. It is
known that miRNAs regulate gene expression and that their up- or
down-regulation plays a key role in physiological processes such
as cell proliferation, apoptosis and tissue differentiation.17

Reportedly, miRNAs operate in a complex functional network in
which each miRNA can control several genes and, on the other
hand, a single gene could be regulated by multiple miRNAs.18

Interestingly, those miRNAs whose expression was altered in
HIV+ samples in our study were all up-regulated compared with
controls, confirming the literature data about overexpression of
miRNAs in HIV-infected patients on therapy with viral suppres-
sion,19 in contrast to miRNA down-regulation in patients with
uncontrolled HIV viral load.20,21 To gain further insight into the
underlying molecular mechanisms behind this dysregulation, we
attempted to infer the functional consequences of the up-regulation
of those miRNAs that we have found to be increased in HIV+
samples.

Lipoatrophy could be a consequence of a reduction in the dif-
ferentiation of adipose cells. And yet, in our study, we discovered
an up-regulation of miR-24, which prompts commitment
towards adipose differentiation in murine MSCs exposed to bone

morphogenic protein 2.13 These data and the reported localiza-
tion of MSCs in adipose tissue indicate that MSCs of adipose tis-
sues of HIV-infected subjects would preferentially differentiate
into adipocytes rather than osteoblasts, myocytes and chondro-
cytes. These results also suggest that the factors responsible for
stimulating differentiation towards adipose cells are conserved in
the subcutaneous adipose tissue of HIV+ patients on cART.
Moreover, we found an up-regulation of some miRNAs that are typ-
ically overexpressed during adipocyte maturation phases, such as
miR-30c, miR-125a, miR-125b and miR-99a, suggesting that the
normal conversion from pre-adipocytes into adipocytes is not
affected.22 – 25 These results point towards an overproduction or
an increased activation of maturation processes of adipocytes.

However, the decreased amount of subcutaneous adipose tis-
sue in lipoatrophic HIV+ patients clearly indicates that other regu-
latory mechanisms are operating as well, but in the opposite way.
Reportedly, lipoatrophic subjects have a reduced number of adi-
pose cells and an increased number of apoptotic cells, suggesting
an increased turnover of adipose cells.26 – 28

It has been suggested that lipodystrophy might be the result of
an alteration in the steady-state of adipose tissue related to an
immune dysregulation and that it is promoted by cART.29 In

Table 2. Continued

miRNA Biological process KEGG pathways

miR-454 cell cycle
RNA splicing
embryo development

pathways in cancer
endocytosis
focal adhesion

miR-149 regulation of transcription, DNA-ST
multicellular organism development

axon guidance
calcium signalling pathway
dilated cardiomyopathy

miR-24 signal transduction
multicellular organism development
positive regulation of transcription from RNA polymerase II promoter

pathways in cancer
endocytosis
calcium signalling pathway

KEGG, Kyoto Encyclopedia of Genes and Genomes; DNA-ST, DNA-dependent signal transduction.
Computational analysis of target genes of altered miRNA was performed using myMIRsite (www.itb.cnr.it/micro/index.html). Putative target genes were
then analysed using the bioinformatic tool GeneCodis2.0 (http://genecodis.dacya.ucm.es).

Table 3. Documented or postulated effects on adipose tissue maturation of miR-24, miR-30c, miR-196, miR-99a, miR-125a, miR-125b, miR-342,
miR-191 and miR-214

Cell type miRNA Documented or postulated effect Reference(s)

Murine MSCs exposed to bone
morphogenic protein 2

miR-24 commitment towards adipocyte cell line 13

Murine adipose tissue up-regulation in white adipose tissue differentiation
Human subcutaneous

pre-adipocytes
miR-30c, miR-196, miR-99a,

miR-125a, miR-125b
up-regulated in mature adipocytes compared with

pre-adipocytes and/or differentiation process
22–25

Murine adipose tissue miR-342 up-regulated in obesity 36
Human subcutaneous

pre-adipocytes
miR-125b down-regulated in mature adipocytes versus pre-adipocytes 8,12

Murine adipose tissue of
hyperglycaemic rats

miR-125a, miR-191 up-regulated in hyperglycaemic rats 8,23

Human PBMCs miR-214 up-regulated in hyperglycaemia and chronic renal failure 32
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particular, an increased release of TNF-a might be responsible for
the inhibition of adipose cell differentiation and triglyceride ester-
ification, reduced deposition of fat within adipose cells and pro-
motion of lipolysis.

The dysregulation of miRNA expression might be directly asso-
ciated with the origin of metabolic and morphological alterations
or be the result of an inflammatory pathway.

Subcutaneous adipose tissue of HIV+ patients was previously
defined as a site of inflammation, with production of several cyto-
kines.30,31 This could be one of the reasons for the increased turn-
over of adipocytes. This hypothesis was confirmed by the
up-regulation of miR-214, which reportedly is associated with
monocyte inflammatory responses in other clinical conditions in
which fat redistribution has also been reported, such as hypergly-
caemia and chronic renal disease.32 Abnormal adipose cell differ-
entiation and morphology have been described in HIV+ patients
and correlated with altered expression of sterol regulator
element-binding protein 1, which in turn could induce increased
insulin resistance.33 miR-125a and miR-191 are frequently
found to be up-regulated in hyperglycaemic rats,34 a result con-
sistent with the association between miRNA dysregulation and
metabolic disturbances which we observed in the adipose tissue
of our patients.

The complex perturbation of metabolism and maturation is
also confirmed by significantly reduced levels of lipin 1 in the adi-
pose tissue of HIV-infected patients with lipodystrophy.35 Lipin 1 is
expressed both in pre-adipocytes and adipocytes and promotes
the expression of adipogenic transcription factors including
CAAT-enhancer-binding protein a and peroxisome proliferator-
activated receptor g, as well as that of genes involved in lipogen-
esis and lipid storage in mature adipocytes. Reduction of lipin 1
synthesis could lead to changes in the maturation processes of
adipocytes and pre-adipocytes. We demonstrated an inverse cor-
relation between lipin 1 mRNA levels and those of miR-218,

supporting a role for miRNA dysregulation in determining severe
metabolic and morphological consequences.

Our study has some limitations. Lipodystrophy diagnosis
was based only on clinical signs and so it could be inaccurate.
Moreover, the interpretation of miRNA level abnormalities is
difficult due to multiple functions attributed to each single miRNA.

The results of the study provide a detailed analysis of miRNA
expression in subcutaneous adipose tissue, adding new insights
into the pathogenesis of LS in HIV+ patients.

Lipin 1 was confirmed to be one of the most important factors
linked to LS pathogenesis, its down-regulation being mediated by
the up-regulation of miR-218.

Further experiments involving in vitro miRNA silencing are
needed to confirm the role of miRNA dysregulation in adipocyte
differentiation and maturation.
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