
METHODS
published: 19 July 2018

doi: 10.3389/fncom.2018.00055

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2018 | Volume 12 | Article 55

Edited by:

Anke Meyer-Baese,

Florida State University, United States

Reviewed by:

Zhenhu Liang,

Yanshan University, China

Qing Yun Wang,

Beihang University, China

*Correspondence:

Jie Xiang

xiangjie@tyut.edu.cn

Received: 27 March 2018

Accepted: 28 June 2018

Published: 19 July 2018

Citation:

Yang Y, Zhou M, Niu Y, Li C, Cao R,

Wang B, Yan P, Ma Y and Xiang J

(2018) Epileptic Seizure Prediction

Based on Permutation Entropy.

Front. Comput. Neurosci. 12:55.

doi: 10.3389/fncom.2018.00055

Epileptic Seizure Prediction Based on
Permutation Entropy
Yanli Yang 1, Mengni Zhou 1, Yan Niu 1, Conggai Li 2, Rui Cao 3, Bin Wang 1, Pengfei Yan 1,

Yao Ma 1 and Jie Xiang 1*

1College of Information and Computer Science, Taiyuan University of Technology, Taiyuan, China, 2Centre for AI, Faculty of

Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia, 3 Software College, Taiyuan University of

Technology, Taiyuan, China

Epilepsy is a chronic non-communicable disorder of the brain that affects individuals

of all ages. It is caused by a sudden abnormal discharge of brain neurons leading

to temporary dysfunction. In this regard, if seizures could be predicted a reasonable

period of time before their occurrence, epilepsy patients could take precautions

against them and improve their safety and quality of life. However, the potential that

permutation entropy(PE) can be applied in human epilepsy prediction from intracranial

electroencephalogram (iEEG) recordings remains unclear. Here, we described the

novel application of PE to track the dynamical changes of human brain activity from

iEEG recordings for the epileptic seizure prediction. The iEEG signals of 19 patients

were obtained from the Epilepsy Centre at the University Hospital of Freiburg. After

preprocessing, PE was extracted in a sliding time window, and a support vector machine

(SVM) was employed to discriminate cerebral state. Then a two-step post-processing

method was applied for the purpose of prediction. The results showed that we obtained

an average sensitivity (SS) of 94% and false prediction rates (FPR) with 0.111 h−1. The

best results with SS of 100% and FPR of 0 h−1 were achieved for some patients. The

average prediction horizon was 61.93min, leaving sufficient treatment time before a

seizure. These results indicated that applying PE as a feature to extract information and

SVM for classification could predict seizures, and the presented method shows great

potential in clinical seizure prediction for human.

Keywords: epilepsy, electroencephalogram, permutation entropy, prediction, support vector machine (SVM)

INTRODUCTION

Epilepsy is an uncontrollable neurological disease that has a serious impact on patients, their
families and society. It is characterized by sudden and recurrent seizures which are the result
of an excessive and synchronous electrical discharge of a large number of neurons (Beghi et al.,
2005). According to the estimations of the World Health Organization, around 50 million people
worldwide suffer from epilepsy as the most common disorder of the brain activity (Gajic et al.,
2015). Epilepsy can occur in all stages of life, drug and surgical treatments are often used to relieve
the disease in the clinic (Xiang et al., 2015). However, approximately 30% of patients with epilepsy
cannot be treated by either medication or surgery, and these patients must live with seizures
that can occur anytime and anywhere (Fujiwara et al., 2016). Therefore, a successful system for
predicting epileptic seizures is urgently needed for patients, and epilepsy prediction has become a
very practical research topic (Leestma et al., 1984; Schelter et al., 2007).
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In the 1970s, seizure prediction garnered much interest
among scholars around the world, and significant research was
performed from the perspective of dynamics and non-dynamics
by analyzing electroencephalograms (EEGs) (D’Alessandro et al.,
2003; Mirowski et al., 2009). Numerous experiments showed
that the prediction of epileptic seizures is possible, as epileptic
seizures develop over a long period of time and are not sudden.
However, robust seizure prediction remains challenging, as the
EEG patterns are not wide-sense stationary and change from
seizure to seizure, from electrode to electrode, and from patient
to patient (Perucca et al., 2014).

Seizure prediction uses pattern recognition methods to
distinguish preictal samples from interictal samples in real
time. Some studies have employed extensive methods to raise
seizure alarms. Features are first extracted from the preprocessed,
windowed EEG signals and then classified into preictal/non-
preictal states. Finally, a seizure prediction algorithm is created to
trigger a seizure alarm (Mirowski et al., 2009). In these methods,
many feature types have been applied to enhance seizure
predictability power, including the largest Lyapunov exponent
(Iasemidis et al., 1990), correlation dimension (Lehnertz and
Elger, 1998), dynamic similarity index (Le et al., 2003), entropy
(Van et al., 2003; Li et al., 2007), and phase synchronization
(Mormann et al., 2003; Kuhlmann et al., 2010).

The extracted features have an important influence on
prediction performance. Permutation entropy (PE) has been used
in several application to study epilepsy activity for determinism
detection and dynamical changes in EEG signals. In the study
withMammone et al. (2015), PE was used to identify the different
phases of epilepsy activity in childhood absence epilepsy. Bruzzo
et al. applied PE to detect vigilance changes and preictal
states from scalp EEG in epileptic patients. They evaluated the
separability of the interictal and preictal phases was found, and
PE was shown on be sensitive to changes in vigilance state
(Bruzzo et al., 2008). Nicolau et al. investigated the use of PE
as a feature for automated epileptic seizure detection (Nicolaou
and Georgiou, 2012). Mateos et al. developed a method based
on PE to characterize EEG from different stages in the treatment
of a chronic epileptic patient (Mateos et al., 2014). These studies
suggest that PE is a useful tool for the study of epilepsy.

PE was also used in prediction, Li et al. proved that PE can be
used not only to track the dynamical changes of EEG data, but
also to successfully detect pre-seizure states for the population
of rats (Li et al., 2007). Compared with rats, human have
great individual differences leading by various of ages, seizure
focus, types of seizure and so on. Meanwhile, few studies have
investigated PE as a tool to predict seizures from human by using
intracranial electroencephalogram (iEEG) recordings. Therefore,
it is necessary to explore the potential of PE in human. In the
present study, we used an open-source database, provided by the
Epilepsy Centre at the University Hospital of Freiburg, Germany.
PE was used as the feature to analyze the transition process from
normal to seizure state and a two-step post-processing method
was used for epileptic seizure prediction.

The paper is organized as follows: the second section includes
the data, specific method proposed and performance indices.
The third section contains detailed experimental results. The

fourth section analyzes the results. The last section discusses the
conclusions of the study.

MATERIALS AND METHODS

Figure 1 presents a block diagram of the seizure prediction
process. After preprocessing (the second block) from raw signals
(the first block), we compute PE per channel considering an
epoch (the third block). Then, we apply a SVM to learn a decision
function based on training (the fourth block). After the learning
phase, the testing set is classified using the trained model, and a
post-processing stage is applied to generate alarms and reduces
the influence of false positives (the fifth block). The following
sections describe the methodologies applied in detail. In this
paper, we use three different sliding windows: sliding window
(5-s sliding window without overlap), short window (2-min
sliding windowwithout overlap) and long window (6-min sliding
window without overlap).

Dataset Description and Preprocessing
This paper uses the dataset recorded by the Epilepsy Centre
at the University Hospital of Freiburg, Germany. The database
contains iEEG recordings of 21 patients suffering from medically
intractable focal epilepsy. The data were recorded during invasive
pre-surgical epilepsy monitoring. To obtain a high signal-to-
noise ratio and fewer artifacts and to record directly from
focal areas, intracranial grid-, strip-, and depth-electrodes were
utilized. The EEG data were acquired using a Neurofile NT
digital video EEG system with 128 channels, 256Hz (data from
patient 12 was sampled at 512Hz but downsampled to 256Hz)
sampling rate (Zhang and Parhi, 2016), and a 16-bit analog-to-
digital converter. Patients with fewer than three seizures were
not analyzed in this paper because training using preictal data
from only one seizure is likely to lead to model overfitting to
that particular seizure and may not be able to predict others.
Therefore, at least two seizures must be selected in the training
set and the other seizure is used for testing (Zhang and Parhi,
2016). All patients in the experiment had 3–5 seizures. The
dataset contains 83 seizures from 19 patients, except for patients
8 and 13, who did not qualify. The subjects are in the 10–50
age range with eleven women and eight men. There are three
different seizure types, including simple partial(SP), complex
partial(CP), generalized tonic-clonicand(GTC) and everyone has
at least two types. Among these patients, the epileptic focus of
10 patients was in neocortical brain structures, seven patients in
the hippocampus, and two patients in both. The seizure onset
times and epileptiform activities were annotated by certified
epileptologists from the Epilepsy Centre. The 50Hz power-line
interference is removed from the raw EEG data by applying a
notch filter.

Feature Extraction and Proposed System
Feature Extraction
After preprocessing of the EEG segments, PE was computed for
each EEG channel to measure the complex degree of a time
series (Bandt and Pompe, 2002). The feature is computationally
efficient, with potential for real-time implementation. There
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FIGURE 1 | Block diagram of the proposed seizure prediction method. In the third block, Hab (1 ≤ a ≤ 6,1 ≤ b≤ x) represent PE. The letter a corresponds to the six

channels, and the letter x is the number of samples after computing PE in a 5-s sliding window per channel.

are other three types of PE measures involved in this study,
including Tsallis PE(TPE), Renyi PE(RPE) (Liang et al., 2015)
and Permutation min-entropy(MPE) (Zunino et al., 2015). Here,
we present PE based on Shannon entropy, results for other three
measures can be seen in Supplementary Material. The specific
calculation process of PE is as follows:

For a given scalar time series {x(i), 1 ≤ i ≤ N}, a vector
composed of the m-th subsequent values is constructed as
follows:

X(1) = {x(1), x(1+ λ), · · · , x(1+ (m− 1)λ)}
...

X(i) = {x(i), x(i+ λ), · · · , x(i+ (m− 1)λ)}
...

X(N − (m− 1)λ) = {x(N − (m− 1)λ), x(N − (m− 2)λ), · · · , x(N)}































(1)

where N is the length of a given scalar time series, m is the
embedding dimension, λ is the delay time, and X(i) is the i-th
component.

Reordering X(i) to an ascending order:

X(i) = {x(i+(j1−1)λ) ≤ x(i+(j2−1)λ) ≤ · · · ≤ x(i+(jm−1)λ)}
(2)

where j = 1, 2, · · · ,m. When two elements are equal, we order
according to the values of their corresponding j.

We obtain a set of symbol sequences by each row of the
reconstructed matrix of any time series, with sequences such
as S(l) = {j1, j2, . . . jm}, (l = 1, 2, . . . k, k ≤ m!) where k is
the objective quantity of {j1, j2, · · · jm}. In the sequel, any vector
X(i) is uniquely mapped to (1, 2, . . . ,m) or (2, 1, 3, . . . ,m). . . or
(m,m− 1, . . . , 2, 1) in a total ofm! different situations.

Let the probability of occurrence of distinct symbols be:

Pg(g = 1, 2, · · · k) (3)

The PE of orderm≥2 is defined as the Shannon entropy for the k
distinct symbols:

Hp(m) = −

k
∑

g=1

Pg ln Pg (4)

Hp = Hp(m)/ ln(m!) (5)

PE measures the departure of the time series from a completely
random process: a smaller PE indicates a more regular time
series. The embedding dimension m = 3, 4 . . . , 7 have been
recommended. In this experiment, we selected m = 4 and λ =

1 to extract most information. The selection of the appropriate
parameters is based on related experiments. The details of
the selection process is shown in Supplementary Material. In
addition, the parameter pairs is also chosen in a similar study (Li
et al., 2007).

In this study, PE was computed using a 5-s sliding window
without overlap (Cook et al., 2013; Bandarabadi et al., 2015).
For the purpose of seizure prediction, we consider a 5-s interval
suitable to represent variations in the iEEG data that is a good
compromise between a longer window and the need to assume
stationarity of the EEG segment (Direito et al., 2017).

If the length of raw time series is L for each channel, the
number of samples after computing PE is:

x =

⌊

L

5 ∗ 256

⌋

(6)

Classifier Training
Following the feature extraction stage, each 5-s EEG segment
described by a set of features was labeled as one of two possible
states: preictal or interictal. For classification, a classifier should
be able to improve prediction performance because it takes all
extracted features into consideration simultaneously. SVM has
been extensively used in the current study (Aaruni et al., 2015;
Song and Zhang, 2016). And it is considered the most powerful
and favorable classifier in binary classification (Vapnik, 2002;
Park et al., 2011).

The dataset of each subject was divided into two parts: a
training set and a testing set. The testing set was not used in
the optimization of the SVM models. In terms of the number
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of samples per class, the training set is highly unbalanced. To
alleviate the effect, we undersample the inter-preictal set by
random selection (Chawla et al., 2004). In this study, we use the
RBF as the kernel. The RBF kernel is used since it can nonlinearly
map the data into a higher dimensional feature space. The linear
kernel is a special case of RBF (Fu et al., 2015). In the study by
Babak Sharif, who also used the Freiburg EEG dataset, a detailed
explanation is given for the use of RBF (Sharif and Jafari, 2017).

The SVM complexity parameter C is known as cost and
represents the tradeoff between the classification margin and
non-separable patterns. To prevent the overtraining of classifiers,
it is estimated via six-fold cross validation of the training set. The
parameter g defines the influence of a single training example;
low values mean “far” and high values mean “close.” The (C,g) is
optimized using a grid search in our experiment (Liu et al., 2010;
Kaya and Kaya, 2014).

Postprocessing
After training the learning model, a prediction system is used
to transform the output of the model into an appropriate
alarm generator. In theory, an alarm could be raised whenever
the output of the model is preictal. However, this behavior is
unrealistic in actual scenarios. A firing power (FP) approach
is more “conservative” for raising alarms due to its particular
constraints on the times when alarms are possible (Teixeira et al.,
2012). The post-processing method we use is similar to the FP
approach. Here, we provide Figure 2 to illustrate the prediction
process. The meanings of expressions and letters in the figure is
as follows. First, the output of the SVM classifier is transformed
into a binary label that binaries the output according to:

tgi =

{

1, if preictal
0, if interictal

(1 ≤ i ≤ x) (7)

where tgi is the label of the i-th 5-s sliding time window, and
x corresponds to formula (6). For S1 in Figure 2, there are x
rectangles, and each rectangle represents 5 s in the raw signals.
The numbers 0 and 1 in each rectangle correspond to tgi.

Second, a 2-min short window was set to quantify the number
of samples classified as preictal according to:

numpre[t] =
∑mt

m(t−1)+1
tgi (8)

m is 24 because 2min contains 24 sliding windows when
computing the feature, and numpre[t] corresponds to the number
of preictal samples at the t-th short window.

The states can be determined in the 2-min window using the
numpre[t] according to:

state[t] =

{

Preictal, if numpre[t] ≥ p
Interictal, if numpre[t] < p

(9)

where p is an arbitrary threshold value in reality, which in this
work assumed the values {1, 2, ..., 11, 12}, and state[t] represents
the condition of the t-th short window. In other words, if
numpre[t] ≥ p, the subject stayed in the preictal period for the
past 2min. This step corresponds to S2 in Figure 2.

Finally, a long window of 6min (formed by combining three
consecutive short windows) is applied for a final decision to
obtain a lower false prediction rate. If at least one (or two or three,
depending on the subject) of the three consecutive short windows
is classified as preictal, the system makes actual predictions and
an alarm is generated. For S3 in this figure, we assume that when
at least two short windows are preictal, an alarm is generated.

In post-processing, a short window (2min) and a long window
(6min) are used to predict an impending seizure by analyzing
preictal and interictal EEG signals. This process is called a two-
step FP method in the rest of this paper. Only a one-step time
window is applied in the original FP method, i.e., the state[t], to
make a final decision for the following segments. We contrasted
both two-step FP (short window= 2min, long window= 6min)
and one-step FP (the unique window= 6min) in our study.

Here, we use the first seizure of patient 17 as an example
to illustrate the application of two-step FP and one-step FP on
SVM outputs. In Figure 3, the time interval between two white
circles on the horizontal axis represents a long window, and the
interval of two adjacent scales represents a short window. Purple
columns represent the classification output using SVM [tgi in
formula (7)]. Its value corresponds to the main vertical axis. The
almond columns represent the number of samples classified as
preictal in the short window (numpre[t] in formula (8)), and its
value corresponds to the minor vertical axis. The black dotted
lines represent the threshold lines, i.e., p in formula (9) (threshold
= 7, the best model).When at least two almond columns in a long
window appear across the threshold lines, there will be an alarm.
Seizure onset is marked by the vertical green line with a polygonal
star. The vertical red arrow represents an alarm. In Figure 3B, the
0-point on the horizontal axis indicates the beginning of the long
window in which the seizure begins. The negative value on the
horizontal axis indicates the preictal segments.

Figure 3A, time 30min, presents a normal situation that does
not generate an alarm. In all almond columns, the maximum
value is 2, below the threshold line; i.e., no short window is
considered preictal. As there is no preictal state during this time,
there is no alarm. For Figure 3B, there are four times that the
almond columns cross the threshold line before onset, and the
first two are in a long window. According to the best model, if at
least two short windows are considered preictal in a long window,
an alarm will be generated. In other words, there is an alarm at
(−6) min (vertical red arrows) during the preictal period, and
seizure onset at 0.548min (vertical green line with polygonal
star). The alarm outside the preictal period is considered a false
alarm.

Prediction Performance Indices
To evaluate the method, we measured seizure prediction horizon
(SPH), sensitivity (SS), and false prediction rates (FPR). SPH is
defined as the time interval between the predictive alarm and
seizure onset. SS is the ability of the system to correctly predict
seizures and is defined as:

SS = Nc/Nt (10)
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FIGURE 2 | Prediction system. In-ic = Interictal; Pre-ic = Preictal.

FIGURE 3 | Demonstration of classified output after SVM classification and proposed regularization using iEEG signals from the first seizure of patient 17. (A) Shows a

normal situation with no alarm in two-step FP. (B) Shows the application of post-processing during the preictal period in two-step FP.
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where Nc is the number of correctly predicted seizures, Nt is the
total number of seizures.

FPR corresponds to the number of false predictions per time
interval. It can be defined as:

FPR = Nf /NT (11)

Where Nf is the number of inaccurately predicted seizures, and
NT is the total time of EEG signals.

SS and FPR are the popular criteria used to evaluate
performance of the techniques for prediction of epileptic seizure
(Parvez and Paul, 2016).

In order to find the best trained SVM model for each patient,
the Euclidean distance is calculated according to another study
(Bandarabadi et al., 2015). The best model is selected by the
minimum Euclidean distance. The specific calculation process of
distance is as follows:

(1) To limit the effect of narrow range and very low FPR(FPR
is easily near 0), the normalized FPR is used instead of the
actual FPR. The normalized FPR is defined as:

fprn(u) =
fpr(u)

fprmax
∗ 100, u = 1, . . . , n (12)

fprmax = max(fpr(u)), u = 1, . . . , n (13)

where the fpr(u) is the FPR of the u-th SVM model, and n is the
number of SVM used.

(2) The Euclidean distance is calculated as:

ed(u) =

√

(ss(u)− 100)2 + (fprnorm(u))
2, u = 1, . . . , n

(14)

where the ss(u) is the SS of the u-th SVM model. We select the
SVMmodel which provides the minimum ed(u).

RESULTS

We tested our patient-specific seizure prediction method on the
iEEG of interictal recordings and 19 patients with 83 seizure
events. Here, we use some datasets as examples to present the
results.

Results of Feature Extraction
Figure 4 shows PE for the first seizure of patient 17 (this dataset
has five recorded leading seizures). The length of time presented
in the figure is extracted from the 300 s before onset until the
end of the seizure. From the figure, the PE of the preictal
segment (before the first blue lines) is between approximately
0.5 and 0.75. In terms of the patient, the feature rises at first
and then sharply declines in the ictal period (interval between
two blue vertical lines). The other four seizures also have similar
changes. The PE during interictal period is between 0.75 and
0.8, higher than the preictal period and ictal period. So the
behavior of this feature changed dramatically from interictal
period to ictal period. We also observed noticeable changes for
other patients.

SS and FPR of All Patients
Table 1 reports the best results for each patient in one-step FP
and two-step FP, obtained from the proposed methods. The best
results were selected so that SS and FPR can be near-optimal
(SS = 100%, FPR = 0 h−1). Using the two-step FP method, an
average of 94.0% of seizures were successfully predicted, with an
average FPR of 0.111 h−1. The best predictions with SS of 100%
and FPR of 0 h−1 were achieved, such as in patient 4, to reach
an ideal state. Of course, some patients had poor results, such
as patient 5. Both SS and FPR have very unsatisfactory results
with 80.0% and 0.525 h−1. Overall, the one-step FP method
can predict 93.8% of seizures correctly and 0.423 h−1 FPR was
obtained.

FIGURE 4 | It represents PE for the first seizure of patient 17, in which the interval between the two blue vertical lines is ictal period. There are six different lines, each

colored broken line represents changes in PE for one channel. The red triangle represents the range of PE during the interictal period.
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SPH of All Patients
Table 1 also shows the average SPH for each patient. In two-step
FP, the longest average SPH was 80.53min, and the shortest was
34.50min. For all seizures, the average SPH was 61.93min. In
addition, almost all patients had an average predicting time of 40
to 80min according to Figure 5. Thus, our method successfully
distinguished iEEG at 40–80min prior to seizures from interictal
recordings. In one-step FP, the average SPH was 65.40min.

Euclidean Distance
Figure 6 shows both the minimum Euclidean distance for each
patient selected by the best model and the average distance.
The average distances are 11.46 in two-step FP and 22.89 in
one-step FP.

DISCUSSION

The Advantages of PE
Feature extraction covers linear and nonlinear methods recently
(Navarro et al., 2002). The linear method usually has a
lower computational burden, but it has poor robustness which
makes it difficult to show a great advantage in reflecting the
dynamic changes of the brain electrical signals. Compared
with linear analysis methods, nonlinear analysis methods
show higher classification accuracy and better robustness in
previous studies. The entropy of the EEG may act as a
reliable indicator of changes in cortical neuronal interactions
and truly reflect the intra-cortical information flow. PE

has some advantages over other commonly used entropy
measures, such as approximate entropy and sample entropy,
including its simplicity, low complexity in computation without
further model assumptions, and robustness in the presence of
observational and dynamical noise (Bandt and Pompe, 2002).
It is also a feature with only one dimension, So the proposed
method may be highly appropriate for online and real-time
analysis.

In previous studies, some researchers have focused on
the combination of various features to improve prediction
performance. However, multiple features may lead to lower
time efficiency. For example, Zheng’s study showed that the
combination of phase synchronization and spectral power
features is unnecessary due to increased computation complexity
(Zheng et al., 2016). That is, multiple features may not always
be necessary. In this work, the PE is applied as the unique
feature. So the fewer features can also decrease the computation
cost.

Subject-Specific Modeling
An important property of seizure prediction is subject-specific
data-analytic modeling. Hence, we expect that prediction
quality varies with subject due to the varying quality of
preictal data for different subjects (Shiao et al., 2016). In
this work, all interictal and preictal recordings for particular
subject were divided into training and testing sets, and the
classifier was trained with these particular data. No cross-
testing was done for the data from other subjects. After

TABLE 1 | Results for all patients in two-step FP and one-step FP.

Patient ID Two-step FP One-step FP

SS FPR Average SPH (min) Distance SS FPR Average SPH (min) Distance

1 1.000 0.281 59.00 15.25 0.906 0.406 58.97 18.25

2 0.708 0.042 49.90 29.28 0.708 0.708 56.60 39.45

3 1.000 0.125 63.02 9.26 0.950 0.275 64.52 14.96

4 1.000 0.000 60.17 0.00 1.000 0.000 60.17 0.00

5 0.800 0.525 55.75 36.42 0.825 1.000 58.27 42.94

6 1.000 0.167 59.76 6.67 1.000 1.292 63.01 36.90

7 1.000 0.042 63.26 4.17 1.000 0.458 71.26 25.58

9 1.000 0.000 67.21 0.00 1.000 0.775 67.21 51.67

10 1.000 0.000 75.57 0.00 1.000 0.125 77.52 7.25

11 0.781 0.063 54.23 22.04 0.781 0.250 59.75 23.58

12 1.000 0.125 34.50 26.67 1.000 0.125 34.50 26.67

14 1.000 0.063 48.87 4.65 1.000 0.406 62.74 28.89

15 1.000 0.000 59.38 0.00 1.000 0.438 67.82 15.56

16 0.800 0.200 58.63 24.89 0.800 0.325 64.07 28.28

17 1.000 0.000 77.66 0.00 1.000 0.275 85.46 20.37

18 0.925 0.075 64.29 10.89 0.950 0.250 67.16 10.23

19 0.875 0.250 65.55 17.85 0.906 0.375 62.17 18.44

20 0.975 0.150 79.35 9.70 1.000 0.450 79.54 20.00

21 1.000 0.000 80.53 0.00 1.000 0.100 81.88 5.88

Avg. 0.940 0.111 61.93 11.49 0.938 0.423 65.40 22.86
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FIGURE 5 | SPH and average SPH for 19 patients.

FIGURE 6 | Euclidean distance in two-step FP and one-step FP.

training, the parameters giving highest performance were
obtained for post-processing. In other words, the p (in formula
9) varied from patient to patient in the short window of
two-step FP. If one/two/three consecutive short windows
are referred to as preictal, an alarm is generated. These
practices consider differences between patients for better clinical
considerations.

Two-Step FP vs. One-Step FP
In the exploration stage of the study, we also set a 2-min
window in one-step FP, and the results revealed many isolated
mispredictions despite the relatively high SS. These results

showed that 2min is not sufficient to accurately determine the
current state for a patient. When a 6-min sliding window is
applied, although the performance improved significantly, the
FPR was still unsatisfactory. Therefore, two-step FP was used in
the study.

According to our results, two-step FP gave better predictions
for almost all test segments or patients than one-step FP. In
addition, the three indices showed better performance for all
patients, except for SPH. In particular, the average FPR in our
results is satisfactory and lower than the chance level of 0.15 h−1

(Sharif and Jafari, 2017). Some patients have the same accuracy
using both methods, but the two-step FP method has a lower
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TABLE 2 | Comparison to prior work.

References SS/FPR

Sharif and Jafari, 2017 91.8–96.6/0.05-0.08

Zheng et al., 2014 80/0.17

Williamson et al., 2012 90.8/0.095

Aarabi and He, 2014 92.6/0.15

Ayinala and Parhi, 2012 94.37/0.14

Ozdemir and Yildirim, 2014 96.55/0.21

Park et al., 2011 97.5/0.27

Wang and Lyu, 2015 98.8/0.054

Chisci et al., 2010 100/0.17

This work 94/0.111

false alarm rate than the one-step FP method, e.g., in patient 7.
Almost all patients have higher SS or lower FPR after applying
two-step FP than one-step FP. According to Figure 6, two-step
FP is always equal or lower than one-step FP except for patient
18 in terms of Euclidean distance. For average SPH, two-step
FP is slightly shorter than one-step FP, but it performs well
enough for clinical application. The results for SPH coincide
with previous studies, and the interval can leave enough time
for clinical treatment (Chisci et al., 2010; Williamson et al.,
2012).

Comparison With Others
Many other methods are also proposed by other researchers
for epileptic seizure prediction. Table 2 compares the
results of the proposed method and other methods. Only
methods using the same data are incorporated for a realistic
comparison.

According to Table 2, compared with studies of Zheng et al.
and Aarabi et al. our study obtained better SS and FPR. Although
some studies obtained better SS (Chisci et al., 2010; Park et al.,
2011; Ayinala and Parhi, 2012; Ozdemir and Yildirim, 2014), we
obtained a lower FPR. Similarly, Williamson’s study (Williamson
et al., 2012) had lower FPR, but we got higher SS. Wang’s
prediction systems and Sharif ’s method involved a much larger
number of features than this work, and finally, achieved better SS
and FPR. For a single feature, it has some limitations in extracting
features. This work has realized equal results with other studies
to some extent. In comparison, the method proposed in this
study not only demonstrated equal overall performance, but also
produced feature vectors with lower dimension.

Existing literature illustrated that the time range of prediction
is from few seconds to tens of minutes. In the study with Li
et al., the average anticipation time is around 4.9 s for 28 rats
with absence seizures (Li et al., 2007). Navarro et al. obtained
a mean anticipation time of 7.5min in human neocortical
partial epilepsy (Navarro et al., 2002). Van Drongelen et al.
even got longer anticipation time and the maximum time is
40min (Van et al., 2003). All these studies were based on a
specific type of seizure and the results were significantly different.
So different type of seizure may have different challenge in
prediction time. Some other factors (like ages, sex, seizure focus)

may also lead to different forecast time. In this study, although
every patient has great individual differences, we still realized
longer forecast time than other methods based on the same
data.

CONCLUSIONS

This paper investigated the predictability of an epileptic
seizure from iEEG for human. A prediction model based on
PE and nonlinear SVM was obtained for each patient. To
accurately evaluate the predictive analytics, we explored the
methods by considering specific patients. The predictability
varied significantly across patients, demonstrating the variety of
abnormal brain activities and potential advantages of patient-
specific methods for seizure predictions.

The present study was limited by some factors. One persistent
difficulty in assessing seizure prediction algorithms is the
scarcity of long-duration recordings with an adequate number
of spontaneous seizures and adequate duration of interictal data.
In addition, the non-abruptness phenomena and inconsistency
of the signals, along with different brain location, patient age,
patient sex, and seizure type, are challenging issues that affect the
consistency of performance in terms of advanced SS and FPR
with existing methods for all types of patients. Further study
is necessary to determine the cause of low predictability for
some patients. We are currently exploring the method that can
potentially apply in real-time seizure prediction.
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