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Neurofeedback training, which enables the trainee to learn self-control of the EEG
activity of interest based on online feedback, has demonstrated benefits on cognitive
and behavioral performance. Nevertheless, as a core mechanism of neurofeedback,
learning of EEG regulation (i.e., EEG learning) has not been well understood. Moreover,
a substantial number of non-learners who fail to achieve successful EEG learning have
often been reported. This study investigated the EEG learning in alpha down-regulation
neurofeedback, aiming to better understand the alpha learning and to early predict
learner/non-learner. Twenty-nine participants received neurofeedback training to down-
regulate alpha in two days, while eight of them were identified as non-learners who failed
to reduce their alpha within sessions. Through a stepwise linear discriminant analysis, a
prediction model was built based on participant’s eyes-closed resting EEG activities in
broad frequency bands including lower alpha, theta, sigma and beta 1 measured before
training, which was validated in predicting learners/non-learners. The findings would
assist in the early identification of the individuals who would not likely reduce their alpha
during neurofeedback.
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INTRODUCTION

Neurofeedback (NF) training is a type of brain training where neural activity of interest is measured
and fedback to the trainee in real time by visual, auditory, or visual-auditory representation in
order to facilitate self-regulation of the putative neural substrates that underlie a specific behavior
or pathology (Sitaram et al., 2017). Over the years, an increasing number of studies have utilized
NF training as a non-invasive tool to enhance cognition, affection and creativity in healthy people
(Gruzelier, 2014a,b; Enriquez-Geppert et al., 2017), to normalize patients’ abnormal brain activity
for treatment of symptoms in brain disorders such as attention deficit hyperactivity disorder
(ADHD) and stroke rehabilitation (Sitaram et al., 2017), to improve brain-computer interface
(BCI) performance (Wan et al., 2016; McWhinney et al., 2017), as well as to investigate the causality
between neural activity and cognition/behavior (Enriquez-Geppert et al., 2017).
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In NF training, learning of EEG self-regulation (or called
EEG learning) is the core mechanism and a marker of specific
NF effects (Baumeister et al., 2016). Specifically, it has been
found that EEG learning is closely related to the improvement
of performance after training in a variety of NF protocols (Egner
and Gruzelier, 2003; Ros et al., 2009; Keizer et al., 2010; Nan et al.,
2012; Gruzelier, 2014a), and it influences the transfer effects of NF
from laboratory to real-world conditions (Sitaram et al., 2017).
Although many trainees can gain successful learning to regulate
the brain activity of interest in a desired direction, a substantial
portion of subjects have been reported unsuccessful in EEG
learning, regardless of the NF protocol and subject population
(Lubar et al., 1995; Kotchoubey et al., 1999; Hanslmayr et al.,
2005; Kropotov et al., 2005; Doehnert et al., 2008; Weber et al.,
2011; Zoefel et al., 2011; Kouijzer et al., 2013; Enriquez-Geppert
et al., 2014; Schabus et al., 2014; Reichert et al., 2015; Baumeister
et al., 2016; Hsueh et al., 2016; Quaedflieg et al., 2016). The rates
of this type of so-called non-learners vary, up to around 50%
in some studies (Hanslmayr et al., 2005; Doehnert et al., 2008;
Okumura et al., 2017). What is more, the non-learners often show
less improvement on behavior/symptoms than learners (Lubar
et al., 1995; Kropotov et al., 2005) or even no improvement after
NF training (Hanslmayr et al., 2005; Kouijzer et al., 2013; Hsueh
et al., 2016), which seriously affects the efficacy of NF training.

Some researchers attempted to explore the individual
difference of EEG learning from different aspects (Gruzelier,
2014c; Zuberer et al., 2015; Sitaram et al., 2017). By a
computation-theoretic approach, Davelaar (2017) showed a
critical role of the striatum in learning to up-regulate alpha
activity. Additionally, several studies investigated whether and
how the psychological factors such as mental strategies, control
beliefs, concentration, mood, locus of control and motivation
influence the learning in different NF protocols (Gruzelier et al.,
1999; Nijboer et al., 2010; Nan et al., 2012; Kober et al., 2013;
Witte et al., 2013; Enriquez-Geppert et al., 2014; Sitaram et al.,
2017).

Some other research efforts have been paid to identifying
neurophysiological predictors for EEG learning, which can
assist in predicting the EEG learning, avoiding time consuming
sessions on non-learners and understanding the underlying
mechanism of individual difference in EEG learning. For
instance, in sensorimotor rhythm (SMR) learning, predictors
were the SMR power in the middle process of training (Weber
et al., 2011), the SMR power at resting baseline before NF
(Reichert et al., 2015), and the different brain structural properties
(Ninaus et al., 2015). Similarly, theta learning was reported
predictable by the brain structural properties (Enriquez-Geppert
et al., 2013), while beta/theta ratio learning could be predicted by
resting and initial training beta activity (Nan et al., 2015).

For the prediction of alpha learning, our prior work found
that the learning of alpha up-regulation was related to the
resting alpha amplitude in both eyes-open and eyes-closed resting
condition (Wan et al., 2014). Contrary to up-regulation, in down-
regulation protocol that could induce cortical activation (Ros
et al., 2010, 2013), the investigation of alpha learning is rare.
Although some studies reported that alpha amplitude was smaller
in one 30-min session when compared with resting baseline

(Ros et al., 2013) or it reduced across two 15-min NF sessions
(Wan et al., 2016), the within-session learning that describes
alpha dynamic change within sessions is not clear yet. Moreover,
previous work mainly reported the alpha learning at the group
level whereas the inter-individual difference in alpha learning was
little known (Ros et al., 2010, 2013, 2014b, 2016; Wan et al., 2016).

In summary, learning down-regulation of alpha through
NF training has not been well understood yet, especially the
within-session learning, its individual difference and predictors.
Therefore, this study investigated the learning of alpha down-
regulation for better understanding the learning process and
identifying the neurophysiological predictors of learner/non-
learner. Twenty-nine participants performed NF training to learn
down-regulation of their alpha activity in two consecutive days
through real-time visual feedback. Inspired by the importance
of resting EEG activities in prediction of EEG learning in other
protocols (Wan et al., 2014; Nan et al., 2015; Reichert et al., 2015),
we focused on the resting EEG activities measured before NF
to predict learner and non-learner in alpha down-regulation NF
training.

MATERIALS AND METHODS

Participants
A total of 29 healthy volunteers (9 females) aged from 22 to
32 years participated in the experiment. All the participants
had no history of psychiatric or neurological disorders, no
psychotropic medications or addiction drugs, and with normal
or corrected-to normal vision. They signed an informed consent
form before experiment and received monetary compensation
for their participation after experiment. The protocol was in
accordance with the Declaration of Helsinki and approved by the
local Research Ethics Committee (University of Macau).

Experiment
Since alpha down-regulation NF training at Oz showed positive
effects on BCI performance enhancement in Wan et al. (2016),
this study utilized the same training location. EEG signal at
Oz channel was acquired by an amplifier of g.USBamp (Guger
Technologies, Graz, Austria) with a sampling rate of 256 Hz. The
ground electrode was placed on the forehead and the reference
location was the left mastoid. The impedance was kept below
10 k�.

Each participant performed one training session per day in
two consecutive days. Each session consisted of five blocks,
and each block had three 1-min trials with an interval of
5 s between two consecutive trials. Resting EEG signals were
recorded before and after training, denoted as Baseline 1 and
Baseline 2, respectively. Each baseline consisted of four 30-s
epochs with eyes open and four 30-s epochs with eyes closed.

Since large individual differences have been found in the
alpha frequency (Klimesch, 1999), the NF training focused on
the individualized alpha frequency band based on the peak
alpha frequency (PAF) that was the frequency with the largest
amplitude located within 7.5 to 12.5 Hz in the eyes-closed
Baseline 1 (Klimesch, 1999). The alpha frequency band ranged
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from low transition frequency (LTF: PAF-2 Hz) to high transition
frequency (HTF: PAF+2 Hz) (Dekker et al., 2014). For real-
time feedback, a band-pass filter (0.5–30 Hz) was applied to
avoid the high frequency noise, baseline drift as well as powerline
interference.

The training parameter was the relative alpha amplitude
calculated from equation (1), where X(k) was the frequency
spectrum amplitude calculated by fast Fourier transformation
(FFT) with a 1-s sliding window that shifted forward every
0.125 s, 1f was the frequency resolution of FFT and k was the
spectrum index (Wan et al., 2016).

Relative alpha amplitude =

HTF/1f∑
k=LTF/1f

X
(
k
)

HTF − LTF

/ 30/1f∑
k=0.5/1f

X
(
k
)

30− 0.5
(1)

A sphere and a cube displayed on a computer screen were utilized
for real-time visual feedback. The radius of the sphere reflected
a real-time feedback of the training parameter. If the training
parameter was below a pre-defined threshold (Goal 1), the sphere
changed its color from white to purple, and its size increased
as the training parameter decreased. The cube height increased
whenever the feedback parameter stayed below the threshold for
more than 2 s (Goal 2). Thus, participants were asked to perform
spontaneous mental thoughts in order to achieve the goals for
their alpha reduction (Wan et al., 2016).

According to our experimental experience, the threshold in
the first training block was set to equal to or slight higher than
the resting alpha in the eyes-open Baseline 1. For the remaining
blocks, the threshold would be decreased by 0.1 if the percent
time below threshold was above 60%.

EEG Amplitude Offline Calculation
Considering that the absolute EEG amplitude is easily influenced
by many factors such as anatomical and neurophysiological
properties of the brain, cranial bone structure and electrode
impedances (Kropotov, 2010), relative EEG amplitude (relative
to 0.5–30 Hz, EEG amplitude for short) was calculated in order to
ensure comparability across participants and across training time
(Reichert et al., 2015). For both eyes-open and eyes-closed resting
baseline before and after NF, the EEG amplitude was computed
in not only alpha but also theta (4–8 Hz), lower alpha (PAF-2
to PAF), upper alpha (PAF to PAF+2), sigma (12–16 Hz), beta 1
(16–20 Hz), and beta 2 (20–28 Hz) frequency bands. During NF
training, the alpha amplitude in each 1-min trial was calculated,
and then the averaged alpha in three trials was taken as block
activity for following analyses.

Alpha Learning Assessment
The alpha learning was evaluated within sessions. To quantify
within-session learning for each participant, the mean alpha
change of Block 2 to Block 5 compared to Block 1 within one
session averaged over two sessions was taken as the learning
index, which described the average learning ability in short term
(Wan et al., 2014). As the training objective was to decrease alpha
over training time, the participant with negative learning index

was defined as learner and the participant with positive learning
index was defined as non-learner.

Statistical Analysis
The following statistical analysis was conducted by SPSS 22
Software. Firstly, paired t test was employed to examine the
amplitude difference between Baseline 1 and Baseline 2 in each
frequency band. Furthermore, repeated-measures ANOVA with
Block (5 levels: Block 1 to Block 5) and Session (2 levels:
Session 1 and Session 2) as within-subjects factors was performed
on alpha amplitude to examine alpha change during training.
Greenhouse-Geisser adjustments were used if Mauchley’s test
showed violations of the sphericity assumption.

Two-tailed Pearson correlation test was applied to examine
the relationship between the learning index and EEG features in
Baseline 1. Furthermore, in order to predict learners and non-
learners, we employed a stepwise linear discriminant analysis
(LDA) that is widely applied in the class prediction (Kleih and
Kubler, 2013; Reichert et al., 2015). This method consists of two
process stages. Firstly, the useful features are selected from all
input variables by a stepwise process based on their effects on
the separation between the two groups. Here, all of the input
variables were the amplitudes in all frequency bands in Baseline
1. Secondly, the coefficients of selected feature variables are
determined in the discriminant function to achieve maximum
separation of two groups (Chan et al., 1995). As a result, a
discriminant function is formulated as a linear combination of
the useful feature variables. As shown in the equation 2, n is the
number of useful feature variables Xi, whose coefficients ai are
calculated in order to achieve a maximum separation between
the distributions of the discriminant scores, D, of the two groups
(Chan et al., 1995).

D =a0 +

n∑
i=1

aiXi (2)

RESULTS

Resting Baseline Change
Neither eyes-open nor eyes-closed resting alpha amplitude
showed significant difference between Baseline 1 and Baseline
2 (all p > 0.05). Likewise, the amplitudes in other frequency
bands including theta, lower alpha, upper alpha, sigma, beta 1,
and beta 2 had no significant difference between Baseline 1 and
Baseline 2 in the eyes-closed resting state (all p > 0.05). But it was
not the case for the eyes-open resting baseline. Theta amplitude
showed significant reduction [t(28) =−2.15, p = 0.04] and beta 1
amplitude had significant enhancement [t(28) = 2.271, p = 0.031]
in the eyes-open Baseline 2 compared to Baseline 1.

Alpha Change in NF Training
As shown in Figure 1, the alpha amplitude had a decrease trend
over training periods. Repeated ANOVA revealed a significant
main effect of Session [F(1,28) = 4.446, p = 0.044, partial
η2 = 0.137], indicating that alpha in Session 2 (M = 0.907,
SEM = 0.062) was smaller than that in Session 1 (M = 0.943,
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FIGURE 1 | The mean alpha curves across all periods. S indicates session and B indicates block, e.g., S1B1 indicates the first block in Session 1. Baseline 1 and
Baseline 2 represent the eyes-open baseline before and after NF, respectively. The error bars represent the standard error of the mean (SEM).

FIGURE 2 | The participants’ discriminant scores and the prediction results of
learners and non-learners. Each dot represents the discriminant score of each
participant. Green triangle: learner with correct prediction; Green asterisk:
learner with wrong prediction; Red triangle: non-learner with correct
prediction; and Red asterisk: non-learner with wrong prediction.

SEM = 0.056). The main effect of Block was marginally
significant [F(2.864,112) = 2.602, p = 0.06, partial η2 = 0.085],
whereas no interaction between Session and Block was identified
[F(4,112) = 0.654, p = 0.625, partial η2 = 0.023].

Learner and Non-learner
At the individual level, the alpha learning index ranged from
−0.78 to 1.27. The alpha learning index had a positive correlation
with the amplitude in the alpha band in the eyes-closed Baseline
1 (r = 0.394, p = 0.034). In addition, the alpha learning index
was also positively related to the amplitude in the lower alpha
band in both eyes-closed (r = 0.508, p = 0.005) and eyes-open
(r = 0.476, p = 0.009) Baseline 1. Twenty-one participants with
negative learning index were split into the learner group, whereas
eight participants with positive learning index were split into the
non-learner group.

In order to predict the learners and non-learners, the stepwise
LDA was applied to extract useful features and build prediction
model. The results showed that the amplitudes in the lower
alpha, theta, sigma and beta 1 frequency bands together in the
eyes-closed Baseline 1 were the significant predictor variables
of learners and non-learners, with a 86.2% leave-one-out cross-
validation accuracy. More specifically, the discriminant score
of each participant is calculated by the discriminant function
formed by a linear combination of these EEG predictor variables.
In prediction of EEG learning of in total 29 participants, 7
non-learners and 18 learners were successfully predicted with
the resulting prediction model. For visualization, Figure 2
depicts the prediction result, in which each dot represents
one participant, whose horizontal coordinate is the participant’s
calculated discriminant score, and the vertical coordinate is
the learning index. The triangles and asterisks in green denote
learners and the red triangles and asterisks stand for the non-
learner. It can be seen that the found discriminant function
could separate learner and non-learner groups with an acceptable
accuracy.

DISCUSSION

Considering the importance of EEG learning and the non-
learner problem, this study aimed to investigate the learning
of alpha down-regulation through NF training. Twenty-nine
participants completed NF training in two consecutive days. In
accordance with the training goal, most of the participants learnt
to down-regulate their alpha amplitude. Nevertheless, 8 non-
learners occurred, accounting for 27.59% of total participants.
The non-learner phenomenon has been reported in a variety
of NF protocols, and the non-learner rate in this study is
consistent with previous alpha NF studies showing that 20–
50% of participants are not able to regulate their alpha activity
by NF training (Hanslmayr et al., 2005; Zoefel et al., 2011).
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Remarkably, we demonstrated that eyes-closed EEG amplitudes
in broad frequency bands including lower alpha, theta, sigma and
beta 1 measured before NF could be used to predict learners and
non-learners.

For the resting alpha amplitude, neither eyes-open nor eyes-
closed alpha showed significant difference between Baseline
1 and Baseline 2. This result coincided with alpha down-
regulation NF from Ros et al. (2013) in which the alpha in
the first training run with three min in healthy participants
was significant lower than that in the pre-baseline, and the
alpha in the post-baseline after 30 min training rebounded to
pre-baseline level. No significant change in resting alpha may
be attributed to short NF duration or small session number
since only one NF session with about 30 min was performed
in previous studies (Ros et al., 2013, 2016; Alves-Pinto et al.,
2017) and only two 15-min sessions were conducted in this
work. However, multiple NF sessions with much longer training
duration, such as six NF sessions with 20 min each, also showed
no significant changes in resting alpha amplitude (Ros et al.,
2017). To sum up, despite the down-regulation direction, the
resting alpha amplitude was hard to change in this type of
training, which may be independent of session number. As
pointed out by Ros et al. (2014a), NF tunes EEG oscillations
toward a homeostatic set-point, affording an optimal balance
between network flexibility and stability. Nevertheless, it has been
found that stronger “rebound” in alpha is associated with the
greater alpha reduction during NF (Nicholson et al., 2016) (i.e.,
good alpha learning).

The assessment of EEG learning is diverse in the literature.
In general, EEG learning is usually evaluated by the training
parameter change within sessions, across sessions, or within
sessions compared to baselines (Gruzelier, 2014c; Wan et al.,
2014; Nan et al., 2015; Reichert et al., 2015; Zuberer et al., 2015).
With respect to alpha down-regulation NF, although Ros and
colleagues did not directly use the term “alpha learning” or
“NF learning,” they reported the comparison of alpha amplitude
between NF session and resting baseline (Ros et al., 2010, 2013,
2016), which was actually one type of alpha learning assessment.
Since it has been observed that alpha also shows reduction
in sham NF group compared to resting baseline (Ros et al.,
2013) whereas this study did not include sham NF group for
comparison, the alpha change between NF session and resting
baseline may increase the difficulty to identify real NF effects on
alpha. What is more, the sustained alpha reduction during NF
was the objective of NF training. Thus, we paid more attention on
the alpha change during NF training. More specifically, the alpha
learning was only examined from alpha change within sessions
rather than across sessions due to the following considerations.
Firstly, within-session learning calculated based on the training
parameter within one session averaged over multiple sessions
may smooth the overall sampling error variance and result in
a more robust indicator of learning dynamics (Gruzelier et al.,
2014). Secondly, the session number in this study was relatively
small. Zuberer et al. (2015) argued that only a small number
of single sessions for the calculation of across-session learning
is often problematic since some external variables unrelated
to the training such as day-to-day events, fluctuating arousal

levels and sleep patterns may lead to biased performance of
a single session. Thirdly, it has been suggested that focusing
on within sessions changes may be a more useful approach in
identifying alpha changes resulting from NF training (Dempster
and Vernon, 2009). Therefore, this study focused on the within-
session learning only.

Overall, the significant main effect of Session and the marginal
significant effect of Block indicated that the participants could
learn to down-regulate their alpha amplitude over training
periods. From this point of view, we can say that the training
was successful. However, at the individual level, large individual
difference in learning was presented. Contrary to the training
goal, 27.59 % of participants failed to show alpha reduction within
sessions, which was similar with the sham group performance
from Ros et al. (2013) in which the feedback signal was from
a NF-successful participant rather than the trainee’s own EEG
activity.

To our knowledge, the quantitative analysis of alpha learning
at the individual level is rare in alpha down-regulation NF. Ros
et al. (2017) reported the individual alpha learning under six
21-min NF sessions. In the first session, only one participant
successfully learnt down-regulation of alpha in the seven training
runs compared to pre baseline. This further confirmed the large
individual difference in learning of alpha down-regulation by NF
training.

A moderately positive correlation was found between alpha
learning index and resting alpha activity, which implies that
an individual with lower resting alpha activity would have a
relatively lower learning index value or say relatively better
learning in alpha down-regulation. This is interesting when
comparing with the result from Wan et al. (2014) where higher
resting alpha activity was related to better learning in alpha up-
regulation. Taken both studies together, we speculate that the
participants with larger alpha amplitude in the eyes-closed resting
state might be more difficult to down-regulate alpha. Further
efforts are needed to investigate both alpha up-regulation and
down-regulation jointly.

Nevertheless, the correlation is only at a moderate level,
it could not provide precise prediction of learner/non-learner.
In order to predict whether a participant is a learner or not,
a prediction model with more useful features are required.
Therefore, we utilized a stepwise LDA to find out significant
predictor variables and build a prediction model. As a result,
the amplitudes in theta, lower alpha, sigma and beta 1 frequency
band in the eyes-closed resting baseline before NF were identified
as the significant predictor variables, suggesting the importance
of eyes-closed resting EEG activities in prediction of alpha
learning. The leave-one-out cross-validation accuracy of 86.2%
indicated the high performance of the prediction model. To
some extent, our result is consistent with previous findings
that resting EEG activities predict the within-session learning
in other NF protocols (Wan et al., 2014; Reichert et al.,
2015).

The future work may include the following issues. First, we
would investigate the learning in the alpha down-regulation
NF on other populations, with up-regulation jointly, so as to
summarize and compare all the results of both up and down
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directions among different populations to find commons and
differences, and ultimately reveal the underlying mechanism of
the alpha NF. Second, besides the EEG learning during NF
training, it is interesting to see whether the learning effects
could sustain in situations outside training sessions. No-feedback
retention or transfer tests would be helpful to answer this
question. Finally, it is ultimately important to explore the learning
effects on functional changes.

Taken together, the learning to down-regulate alpha had
large inter-individual difference, indicating the importance of
analyzing learning individually for deep understanding the NF
and validation of NF efficiency. Importantly, we found that the
broad band EEG activities in the eyes-closed resting baseline
before NF training could predict the learner/non-learner. From
NF practical aspect, the findings can provide a simple and easy
way to predict alpha learning, as it only needs two min of eyes-
closed resting EEG recording at the training location. Moreover,
it would be very helpful for non-learners to save time and provide
a better basis for adapting the training protocol accordingly.
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