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Low-intensity MR-guided focused ultrasound in combination with intravenously injected

microbubbles is a promising platform for drug delivery to the central nervous system

past the blood-brain barrier. The blood-brain barrier is a key bottleneck for cancer

therapeutics via limited inter- and intracellular transport. Further, drugs that cross the

blood-brain barrier when delivered in a spatially nonspecific way, result in adverse effects

on normal brain tissue, or at high concentrations, result in increasing risks to peripheral

organs. As such, various anti-cancer drugs that have been developed or to be developed

in the future would benefit from a noninvasive, temporary, and repeatable method of

targeted opening of the blood-brain barrier to treat metastatic brain diseases. MR-guided

focused ultrasound is a potential solution to these design requirements. The safety,

feasibility and preliminary efficacy of MRgFUS aided delivery have been demonstrated in

various animal models. In this review, we discuss this preclinical evidence, mechanisms

of focused ultrasound mediated blood-brain barrier opening, and translational efforts to

neuro-oncology patients.

Keywords: focused ultrasound (MRgFUS), blood brain barrier (BBB) disruption, neuro-oncology–surgical,

intracranial metastatic disease, drug deliver-system

INTRODUCTION

Intracranial metastatic disease (IMD) is the most common type of brain tumors (1, 2) with over
20% of all oncology patients expected to have a metastatic brain lesion, and an annual incidence of
170,000 in the United States alone (1, 3–6). The rates of IMD are on the rise, which may be partially
explained by improved imaging modalities facilitating earlier detection and prolonged survival of
cancer patients due to advances in oncological care (7). Primary lung, breast andmelanoma cancers
are the most likely to metastasize to the brain, accounting for 67–80% of all brain metastases (3).

Surgery and radiation therapy are the cornerstones for management of IMD, with most
intracranial metastases considered chemo-resistant (8, 9). The median survival period of untreated
patients runs from the order of weeks to a few months, and can be prolonged to 4–6 months
with the use of whole brain radiation therapy (WBRT) (10). For patients with a single brain
metastasis <3 cm in size, surgical resection or stereotactic radiosurgery (SRS) have shown survival
benefit (11–14). The evidence and indications for surgical resection in patients with multiple brain
metastases are much less established. Radiosurgery is favored for treatment of multiple lesions and,
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historically, patients with more than 4 lesions were treated
with WBRT (15). However, SRS has become a viable option in
this setting, as WBRT is associated with greater neurocognitive
adverse effects (e.g., immediate memory, delayed memory,
attention, and executive functions), and without significant
added benefit in overall survival (16–21).

Chemotherapies that effectively treat the primary cancer and
extracranial metastases remain largely ineffective for treatment
of IMD (22). The function of the blood-brain barrier (BBB)
and efflux transporters play a major role in suppressing
the effectiveness of chemotherapies in the brain. The BBB
excludes many chemotherapeutic agents from access to the
brain, and the drugs that are able to penetrate may do so in
insufficient concentrations. Another potential explanation for
the ineffectiveness of chemotherapies in the brain is that IMD
arises from chemoresistant clones (23). The primary cancer is
often treated with chemotherapeutic agents, and thus only the
chemoresistant clonesmetastasize to the brain. However, patients
with IMD and are naive to chemotherapeutic agents continue
to demonstrate decreased intracranial response rates compared
to extracranial response rates, suggesting that chemoresistant
clones alone do not explain this phenomena (23, 24). The BBB is,
also, thought to confer an immune privileged microenvironment
in the central nervous system, preventing access of surveilling
immune cells to the tumor cells (25).

The BBB is a highly selective semi-permeable membrane
formed by tight junctions between endothelial cells that primarily
separates the circulating blood from the central nervous system
(CNS). In addition to endothelial cells, the BBB is augmented
by pericytes, astrocyte projections (also known as glia limitans),
and neurons to provide biochemical support (26). The BBB is
largely permeable to lipophilic compounds smaller than ∼400
Da. The BBB is essential in protecting the CNS from circulating
pathogens. At the same time, it is a key impediment for cancer
therapeutics to effectively treat IMD. For example, doxorubicin,
a common chemotherapeutic, is ∼540 Da in size, albumin
is 66.5 kDa in size, and most targeted or immunotherapies
are of even larger size, such as trastuzumab at 148 kDa.
These agents would have difficulty traversing a normal BBB. In
addition, the penetration of therapeutics into the parenchyma
is limited by the presence of p-glycoprotein 1 (P-gp) bound to
the surface of endothelial cells. P-gp is responsible for efflux
of chemotherapeutic agents, and is particularly abundant in
cancerous tissue (27, 28). Thus, the BBB substantially limits the
bioavailability of chemotherapies in treating IMD.

There is a pressing need for improved therapeutic delivery or
effective circumvention of the BBB to improve the management
of IMD with therapies that have been effective against the
primary lesion. Existing methods to circumvent the BBB include
convection enhanced therapy with intracranial injections or
modification of the drug such as with nanoparticles to help
penetrate the BBB. Convection enhanced delivery, however,
requires implantation of intracranial catheter and results still
in limited diffusion of drug from the catheter tip (29). Current
nanoparticles and therapeutic modifications may also result in
peripheral toxicity, such as unwanted accumulation in other
end organs (30). The BBB permeability is also known to be

increased by radiation therapy. In such a case it improves
effectiveness of concurrent chemotherapy (31, 32). However, this
approach is limited by the unpredictable temporal characteristics
of radiation-induced BBB disruption and a radiation-induced
injury to the surrounding normal brain tissue such as gliosis,
necrosis, or demyelination (31). Furthermore, drugs that are
delivered across the BBB in a spatially nonspecific manner can
increase the risk to normal brain tissue.

Accordingly, a non-invasive, temporally, and spatially
controlled BBB opening that is repeatable could significantly
improve the management of IMD. Low-intensity MR-
guided focused ultrasound (MRgFUS), in combination with
intravenously injected microbubbles, fulfill these design
requirements. In this review, we discuss the preclinical evidence
of the circumvention of the BBB with low-intensity MRgFUS.
Recent translational efforts and potential applications, along
with critical areas for improvement.

FOCUSED ULTRASOUND

Transcranial MRgFUS is an emerging image-guided, surgical
modality that enables accurate steering of ultrasound energy
into discrete targets within the brain. This technology utilizes a
phased array of transducers to exert either thermal or mechanical
effects on target tissue depending on the acoustic parameters,
with higher intensity and frequency settings used for thermal
effects. Currently, high-intensity MRgFUS operating at 650 kHz
is approved by US Food and Drug Administration (FDA) for
thalamotomy, an option for patients with essential tremor.
At these parameters, ultrasound sonications rapidly result in
temperature rise above 56◦C, and well-circumscribed coagulative
necrosis in the targeted region (33). In addition, sonications at
the sub-lesional temperatures can result in transient neurological
effects, to ensure accurate target selection.

Historically, Patrick et al. first found BBB disruption in
the periphery of high-intensity focused ultrasound (FUS)
lesions (34), with subsequent studies demonstrating BBB
opening induced by low intensity protocols without damage
to surrounding neuronal structures (35–37). Currently, clinical
studies are conducted using a MRgFUS device operating at
220 kHz. MRgFUS opens the BBB primarily through two
mechanisms: (1) disruption of the tight junction and (2) induced
transcytosis. Cavitation, a biological effect of ultrasound, occurs
through oscillation of gas bubbles formed within vessels after
exposure to ultrasound energy, resulting into disruption of the
tight junctions between endothelial cells, which has been shown
via immunoelectron microscopy. This disruption is temporary
and is restored after ∼4 h (38). It permits the paracellular
passage of molecules (38). There is also the evidence that the
physical stress on the vessels leads to cellular changes that
increase paracellular and transcellular transport of molecules
across the BBB (38, 39), along with increased caveolins, an
integral membrane proteins involved in receptor-independent
endocytosis, and decreased P-gp visualized after FUS (38, 40, 41).

To further augment the cavitation process, exogenous
microbubbles can be introduced into the blood system by
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intravenous administration ahead of sonication. The addition of
exogenous microbubbles has been found to reduce the energy
required to initiate cavitation by 100-fold, and increase the
permeability lasting ∼6–8 h. Sonications are typically initiated
within half a minute of injection to allow sufficient circulation of
the microbubbles (42). Consequently, ultrasound sonication can
be made safer with a minimal injury to the surrounding tissue.
The most commonly studied molecules are gadolinium-based
contrast agents, which makes it easy to confirm the successful
BBB opening using MR imaging due to the gadolinium now
crossing the BBB and to assess the size of treated region (36, 43,
44) (Figure 1). Serial gadolinium scans showcased full closures
of the BBB in 90% of cases at the 6-h mark post treatment,
while the remaining rats displayed considerable decrease in the
enhancement of the BBB opening and complete resolution at the
24-h mark post procedure (46).

Although overly high sonication powers can result in inertial
cavitation and capillary damage, BBB opening is inducible
at lower settings, at which results have been shown to be
reproducible in large animal models (e.g., nonhuman primates)
without any significant adverse events (47, 48). Successful
weekly whole-hemisphere BBB openings for 4 weeks in elderly
beagles was demonstrated using MRgFUS (49). This group,
according to neuroimaging and histology analysis, reported no
significant or enduring damage to any brain tissue targeted
by MRgFUS. This discovery is significant evidence to support
the safety of FUS administered treatments for brain metastases,
as clinical utilization commonly requires several BBB openings
for treatment. These MRgFUS parameters and study findings
indicate its application-based significance that is capable of being
translated to future clinical studies.

MRgFUS holds numerous benefits over other methods of
drug delivery system. Paired with MRI guidance, FUS is capable
of millimeter spatial accuracy of targeted regions within the
brain, including the brain stem region (50). This precision allows
targeted delivery of cytotoxic drugs only to abnormal tissue or
specific areas in the tumor, which advanced imaging techniques

can further help identify (51). Additionally, MRgFUS permits
uniform delivery, in contrast to other intracranial treatments,
such as convection-enhanced delivery. Lastly, the parameters
of BBB opening can be adjusted by modulating ultrasound
parameters to further customize treatment.

CHEMOTHERAPIES

Traditional chemotherapies for extracranial cancers have not
generally been effective for brain tumors. A possible exception
is temozolomide which is used for treatment of glioblastoma
due to its limited side effect profile and central nervous
system bioavailability. This is demonstrated by a group that
used FUS-aided BBB disruption in a rat model to enhance
temozolomide delivery to treat glioblastoma (52). In addition,
another study displayed similar effects to improve drug delivery
of temozolomide to treat a glioma in a mice model (53).
Doxorubicin, an inhibitor of topoisomerase II, blocks DNA
and RNA synthesis, and is effective in treatment of a broad
range of tumors (54). Doxorubicin cannot cross the BBB to
any appreciable extent and, as a result, demonstrates little
effectiveness in treating CNS malignancies when administered
systemically (55, 56). Further dose escalation is limited by
cardiac toxicity. In preclinical studies, doxorubicin is effective
against glial tumors in vitro and in animal models, and when
administered intratumorally to patients via an Ommaya reservoir
(57). While doxorubicin with FUS has predominantly been
investigated in an animal model of malignant glioma, the results
of significantly improved tissue concentration (e.g., 21 times in
one study) and antineoplastic effects show promise for IMDs (58,
59). Further supportive survival data from the same group has
recently been published and demonstrated a significant survival
advantage in a rat glioblastomamodel when using doxorubicin in
combination with ultrasound-mediated BBB disruption. Delivery
of doxorubicin to a brainstem was also recently shown to be
feasible and safe for animals after histological and behavioral
tests (50). Other chemotherapies investigated in conjunction

FIGURE 1 | Demonstration of MR-guided focused ultrasound mediated blood-brain barrier opening in an animal model of intracranial breast metastasis. (A) Diagram

of experimental set-up shows administration of ultrasound through the intact skull. (B) Representative example of focused ultrasound induced blood-brain barrier

opening, as demonstrated by increased gadolinium (arrow) and tryphan blue extravasation. Hematoxylin and eosin stained tissue demonstrated preservation of gross

tissue integrity and lack of macroscopic hemorrhage. COR, coronal scan; AX, axial scan; HE, hematoxylin and eosin. (C) The change in MR image intensity over time

in the sonicated vs. non-sonicated regions. Bars represent standard deviation. Reprinted with permission from Kinoshita et al. PNAS 2006 (45), copyright 2006

National Academy of Sciences.
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with MRgFUS BBB opening in small (e.g., rat, rabbit) to
large (e.g., nonhuman primates) animals include paclitaxel (60),
methotrexate (61, 62), doxorubicin (50, 63, 64), cisplatin (65),
bevacizumab (66), and carmustine (67) (Table 1).

TARGETED THERAPY

Technological advances and greater understanding of molecular
biology have made an increased number of targeted therapies
a standard of care for cancer patients. Targeted therapies
address specific molecular aspects of cancer biology. Human
epidermal growth factor 180 receptor 2 (HER2) is addressed
when trastuzumab has been administered, and specific inhibition
of mutated BRAF, a proto-oncogene is addressed when
vemurafenib is administered. Trastuzumab has been found to
be highly effective in controlling local and distal breast cancer
lesions (45, 69, 70). BRAF inhibitors such as vemurafenib
and dabrafenib are effective in extending the progression
free survival of BRAF-mutant melanomas which are present
in 50% of melanomas and is associated with significantly
higher incidence of CNS involvement (71). The development
of targeted therapies has been the cornerstone of precision
medicine. Many targeted therapies have been approved for
clinical use and may be used in combination to inhibit
simultaneouslymultiple pathways which are important for tumor
growth.

Trastuzumab is ∼150 kDa in size, which makes it too large to
pass through the BBB. In a rodent study, the tissue concentration
of trastuzumab after systemic administration was undetectable
(< 780 ng/g), whereas after sonication, the concentration
increased to 3257 ng/g of tissue (45). This significant increase
in trastuzumab concentration in tissue using FUS was further
corroborated in a xenograft rodent model (70). Notably repeated
dose of FUS greatly increased the concentration yield (70).
In another HER2/neu-positive human breast cancer xenograft
model, 6 weekly treatment of FUS plus trastuzumab led to
what appeared to be complete resolution on MRI (69). The
group where trastuzumab was administered along with FUS had
significantly slower growth rate than controls. In another study

TABLE 1 | Representative change in therapeutic’s concentration in tumor in

sonicated relative to non-sonicated regions after systemic administration of

therapeutic.

Therapeutic References Approximate relative

change

Doxorubicin Treat et al. (58) 21 x

Liposomal paclitaxel Shen et al. (60) 2 x

Cisplatin-loaded BPN Timbie et al. (65) 30 x

Liposomal methotrexate Wang et al. (62) 9 x

Trastuzumab Kinoshita et al. (45) 2 x

Interleukin-12 Chen et al. (68) 2 x

Bevacizumab Liu et al. (66) Range 5.7 x-56.7 x

Carmustine Liu et al. (67) 2 x

BPN, brain penetrating nanoparticles.

of HER2-positive cells derived from cancer patients, 6 weekly
treatments of trastuzumab and pertuzumab along with FUS led to
a response in 4 out of 10 rats compared to none in the antibodies
only group (72). These studies have paved the way for clinical
translation in MRgFUS mediated BBB opening for patients with
IMD.

IMMUNOTHERAPY

Immunotherapy directly helps or stimulates the patient’s
immune system to treat cancer. For instance, checkpoint
inhibitors support T-cell surface receptor recognition and
activation against cancer cells. Other types of immunotherapy
include immunization, cytokines (e.g., interleukins), and cell
therapy (e.g., CAR T-cell therapy) (68, 73, 74). Ipilimumab,
a monoclonal antibody to T-lymphocyte-associated protein 4
(CTLA-4), another checkpoint in the immune system, is used
in the treatment of unresectable and metastatic melanomas.
These drugs have shown some preliminary efficacy in phase
II studies in patients with IMD from lung cancer and
melanoma, with ∼20–30% 1-year survival rate. Several animal
studies have established the safety and feasibility of delivering
both cell-based (e.g., NK-92 cells) and cytokine (e.g., IL-
12) in rodent models, with preliminary evidence of efficacy.
Specifically, a repeated, biweekly treatment paradigm of NK-92
cells administered by MRgFUS BBB opening, resulted in long-
term survival in 50% of animals injected with HER2 amplified
tumors.

CARRIERS

Once the delivered drug therapies have penetrated the BBB
they are confronted by the extracellular space (ECS) of the
brain, which extensively dictates and restricts the movement
of the therapeutics in the brain. The ECS consist of mixed
hydrophobic and electrostatically charged areas that comprises
about 15–20% of the entire brain volume. Initially to penetrate
the targeted brain parenchyma and deliver the appropriate
drugs, brain-penetrating nanoparticles (BPNs) coated densely
with poly(ethylene-co-glycol) (PEG) was explored, which has
superior stability in the bloodstream (75). However, PEGylated
BPNs results in reduced cell absorption or exchange through the
BBB. Although it may potentially be used in combination with
MRgFUS BBB opening.

A research group had recently explored this concept in
rodents and reported the evidence of the successful first time
use of MRgFUS and microbubbles with a biodegradable BPN
platform which could penetrate and effectively transport
therapeutic agents within the targeted areas of the CNS
(76). It was also discovered that higher pressures of FUS
modify the dispersal of the BPNs in the CNS, permitting
more coverage and improving further the penetration
within the targeted regions of the brain. Another study in
rodent model of the breast IMD demonstrated substantial
growth inhibition after one treatment of intravenously
delivered PEGylated liposomal doxorubicin nanoparticles
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with FUS-induced hyperthermia without BBB opening (76).
We may conclude that, the addition of carriers to existing
therapeutic agents delivered through a BBB opening may
provide some additional advantages for drug distribution in the
parenchyma.

Other Applications of Focused Ultrasound
FUS creates a transient, targeted opening of the BBB that allows
bidirectional communication between the systemic circulation
and the central nervous system milieu. Shedding cancerous cells
or cells’ components is another possible result of the application
of FUS. Blood-based analysis of circulating tumor cells, DNA,
micro RNA, and extracellular vesicles hold the promise of
improving upon histopathologic examinations or obviating the
need for tissue biopsy (77). However, the challenges in these
approaches lie in their uniform lack of sensitivity, with tumor
DNA representing <1% of total circulating DNA, and significant
advance technology required for analysis (78). A proof of concept
study in rat glioma model using fluorescent markers shows
promise, but it remains to be demonstrated how this may be
clinically applied (79). Finally, non-thermal ablation of tumor
tissue using low-intensity focused ultrasound is being developed
as a viable alternative to high-intensity focused ultrasound, where
energy required to ablate large tissue volumes limits its safety and
feasibility (80–82).

CLINICAL APPLICATIONS AND
LIMITATIONS OF FUS IN IMD

The feasibility and preliminary efficacy of focused ultrasound-
assisted targeted delivery of cancer therapeutics have been
demonstrated in various animal models. Clinically, there is
now preliminary data regarding safety and feasibility of focused
ultrasound BBB opening with co-administration of carboplatin
in patients with gliomas (83). Doxorubicin and temozolomide
delivery studies using MRgFUS are underway for neuro-
oncology patients (NCT02343991, NCT03322813). For other

neurological disorders, a pilot study of MRgFUS BBB opening
in patients with Alzheimer’s disease (84) was recently reported
to have demonstrated safety and feasibility. Finally, a study
for patients with amyotrophic lateral sclerosis is also underway
(NCT03321487).

Notwithstanding the potential advantages to MRgFUS for
therapeutic delivery for patients with IMD, there are important
limitations. They include the need for pre-procedural removal
of hair, the substantial operating time of the procedure, and
the use of a stereotactic frame, which may represent limitations
for widespread utilization and tolerability. In addition, clinical
experience with MRgFUS induced BBB opening is preliminary
with side effect profile (e.g., microhemorrhage, ischemia) in
human subjects still to be characterized. Furthermore, essential
technical data is urgently needed regarding the feasibility in
tissues of various interstitial pressures, tissue, and vascular
properties, and pathologies, such as in the case of peritumor
edema. Future modifications of this technique may include
controller based on acoustic feedback will likely significantly
shorten operating time while preserving the uniformity of
BBB opening (85). Finally, the specific treatment protocol
and dosing remain to be elucidated for each anti-neoplastic
agent. MRgFUS will most likely be most beneficial for patients
with IMD and relatively well controlled systemic disease
burden. MRgFUS is a drug delivery platform, where in the
age of precision medicine and with the increasing availability
of advanced imaging, it opens up exciting opportunities for
induction of the precisely targeted delivery of drugs to the
brain. Although still in the early investigational stages, this
minimally invasive technology for targeted BBB opening has
the potential to revolutionize the care of neuro-oncology
patients.
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