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Abstract. With the eddy covariance (EC) technique, net
fluxes of carbon dioxide (CO2) and other trace gases as well
as water and energy fluxes can be measured at the ecosys-
tem level. These flux measurements are a main source for
understanding biosphere–atmosphere interactions and feed-
backs through cross-site analysis, model–data integration,
and upscaling. The raw fluxes measured with the EC tech-
nique require extensive and laborious data processing. While
there are standard tools1 available in an open-source envi-
ronment for processing high-frequency (10 or 20 Hz) data
into half-hourly quality-checked fluxes, there is a need for
more usable and extensible tools for the subsequent post-
processing steps. We tackled this need by developing the
REddyProc package in the cross-platform language R that
provides standard CO2-focused post-processing routines for
reading (half-)hourly data from different formats, estimat-
ing the u∗ threshold, as well as gap-filling, flux-partitioning,
and visualizing the results. In addition to basic processing,
the functions are extensible and allow easier integration in
extended analysis than current tools. New features include
cross-year processing and a better treatment of uncertainties.
A comparison of REddyProc routines with other state-of-
the-art tools resulted in no significant differences in monthly
and annual fluxes across sites. Lower uncertainty estimates
of both u∗ and resulting gap-filled fluxes by 50 % with the

1http://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-
of-softwarepackages-for-flux-related-data-processing/, last access:
17 August 2018

presented tool were achieved by an improved treatment of
seasons during the bootstrap analysis. Higher estimates of
uncertainty in daytime partitioning (about twice as high) re-
sulted from a better accounting for the uncertainty in es-
timates of temperature sensitivity of respiration. The pro-
vided routines can be easily installed, configured, and used.
Hence, the eddy covariance community will benefit from the
REddyProc package, allowing easier integration of stan-
dard post-processing with extended analysis.

1 Introduction

The availability of ecosystem-level observations of net
ecosystem exchange (NEE) of carbon dioxide (CO2) and
other gases and latent heat (LE) and sensible heat (H )
fluxes measured by the eddy covariance (EC) method (Aubi-
net et al., 2000) greatly advanced ecosystem understand-
ing at site to global scales (Baldocchi et al., 2017). The
EC method provides half-hourly or hourly records of tur-
bulent fluxes between an entire ecosystem and the atmo-
sphere. These data are derived from high-frequency mea-
surements (10 or 20 Hz) of wind speed and direction to-
gether with measurements of air scalar characteristics such
as CO2 and water vapor concentration, and temperature.
Methods to compute fluxes from high-frequency measure-
ments, methods for the quality checks and quality assess-
ment (QA/QC), and methods for the storage corrections have
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been consolidated in recent decades (Rebmann et al., 2012;
Foken et al., 2012; Aubinet et al., 2012) and are available as
open-source software2. Although measured continuously, the
(half-)hourly EC data contain gaps due to instrument mal-
functioning or records which are not representative of the
ecosystem because of micrometeorological conditions under
which the assumptions of the EC technique are not met (de-
tails in e.g., Foken and Wichura, 1996; Foken et al., 2004,
2012; Göckede et al., 2004). Hence, (half-)hourly records are
marked with different quality flags and need further extensive
post-processing as described by Papale et al. (2006).

NEE records from periods with low friction velocity (u∗)
(Aubinet et al., 2012) need to be detected and filtered out
to avoid systematic biases in nighttime NEE (Papale et al.,
2006). The screened flux time series with gaps need to be
filled (Reichstein et al., 2005a) using the available flux data
and meteorological measurements. Additional information
can be obtained from NEE thanks to flux-partitioning meth-
ods that provide model estimates of gross primary production
(GPP) and ecosystem respiration (Reco) (Reichstein et al.,
2005a). These gross fluxes are important to understand land–
atmosphere interactions.

All these post-processing steps need to be performed rou-
tinely for EC data. Hence, it is desirable to have automated
and reproducible post-processing tools available that can
be easily used, extended, and integrated into researchers’
own workflow. For this purpose we have compiled all rou-
tines for the important CO2-focused post-processing steps
in the REddyProc package in the free and cross-platform
R language. The REddyProc package loads time series of
quality-checked and storage-corrected fluxes and the basic
set of meteorological variables and provides a software envi-
ronment to perform u∗ threshold detection and filtering, gap
filling, and partitioning. Furthermore, a series of other func-
tionalities like data import routines and data visualization are
provided.

The objectives of the paper are to

1. provide a reference that describes the methodology of
the processing used in the REddyProc package, and

2. show that the obtained results do not differ sys-
tematically from results obtained with standard post-
processing implemented in the FLUXNET community
(based on Papale et al., 2006; Reichstein et al., 2005a;
Lasslop et al., 2010; Pastorello et al., 2017).

Appendix C explains abbreviations used. The first part
of the paper (Sect. 2) describes the post-processing meth-
ods. The second part (Sect. 3) presents the benchmarks
of the REddyProc implementation with standard post-
processing tools. It details differences in the implementa-

2http://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-
of-softwarepackages-for-flux-related-data-processing, last access:
17 August 2018

tions and possible consequences in obtained results and ag-
gregated fluxes. Appendices A–B provide an overview of the
package with the general design, an example of the post-
processing, and links to resources that get readers started
with post-processing their own data.

2 Methods of post-processing

The post-processing relies on half-hourly or hourly measure-
ments of NEE and ancillary meteorological data of u∗, global
radiation (Rg), air or soil temperature (Tair, Tsoil), and vapor
pressure deficit (VPD). The fluxes should be quality-checked
and, if applicable, storage-corrected before their use in the
package.

The post-processing follows a specific workflow:

1. determination and filtering of periods with low turbulent
mixing (u∗ filtering),

2. replacement of missing data in the half-hourly/hourly
records (gap filling), and

3. partitioning of NEE into the gross fluxes GPP and Reco
(flux partitioning).

Usage of the REddyProc package follows this data post-
processing workflow (Fig. 1). The following sections explain
the steps in more detail.

2.1 u∗ filtering

Determining periods with low turbulent mixing is a critical
step in the EC data post-processing. Standard steady-state
and integral turbulence characteristics tests in the initial pro-
cessing exclude the most problematic records of H , LE, and
CO2 fluxes (Foken and Wichura, 1996). However, it is well
known (summarized in Aubinet et al., 2012, chap. 5), that
such a quality-checking strategy is not sufficient, especially
in the case of CO2. Stable stratification that is present of-
ten during the nighttime dampens turbulence and leads to
an underestimation of the nighttime NEE, i.e., the ecosys-
tem respiration (van Gorsel et al., 2007). Massman and Lee
(2002) proposed that unfavorable conditions could be de-
tected by inspecting the relationship of nighttime NEE versus
u∗. Within a similar time period and similar environmental
conditions respiration should not be dependent on the u∗. At
low u∗ values, a negatively biased respiration is measured.
A heuristic class of methods, which is widely accepted, as-
sumes that a threshold of u∗ can be established above which
nighttime fluxes are considered valid. Hence, the u∗ thresh-
old is the minimum u∗ above which respiration reaches a
plateau (Fig. 2). This threshold is specific for each season
of a site year. Uncertainties in the u∗ threshold estimate rep-
resent one of the largest uncertainty components in the post-
processing of NEE.
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Figure 1. The workflow starts with importing the half-hourly (or
hourly) data, in this example the year 1998 of the DE-Tha site.
Next, a probability distribution of u∗ threshold is estimated for each
season. Gap filling and flux partitioning are performed for several
quantiles of this distribution for an estimate of uncertainty. Finally
the results are exported.

There are at least two methods of estimating the u∗ thresh-
old: the moving point method (Reichstein et al., 2005c;
Papale et al., 2006), which is currently more routinely used,
and the breakpoint detection method (Barr et al., 2013).

2.1.1 Moving point method for u∗

The method of Papale et al. (2006) detects a plateau in the
relationship of nighttime NEE versus u∗ among all records
within a temperature subset by a moving point test of records
binned into different u∗ bins.

The nighttime data (default: Rg< 10 Wm−2) are split into
different times of year, here called seasons, to account for
differing surface roughness. Then the data of each season are
split into default six temperature subsets of equal size (ac-
cording to quantiles). Within each temperature subset, data
are split into 20 about equally sized u∗ bins. The default mov-
ing point method, called Forward2, determines the thresh-
old based on these u∗ bins. It checks for each bin if the mean
NEE is higher than 0.95 times the mean of the following 10
bins. If this also holds true for the next bin, the mean u∗ of

the bin is reported as the threshold. There are often subsets of
data in which no clear threshold can be detected. Hence, there
are quality criteria for whether the estimate of a given sub-
set is used in subsequent aggregation. One quality criterion
specifies that temperature and u∗ should not be correlated
within the temperature subset; another requires a minimum
number of valid records within a subset. Next, the u∗ esti-
mates for different temperature classes and seasons (details
in Sect. 3.2.1) are aggregated to derive a robust u∗ estimate.
Within one season, the median is taken across the estimates
of different temperature subsets. Within 1 year, the maximum
is taken across the associated seasons.

Records during the nighttime with u∗ smaller than the es-
timated threshold are flagged as invalid and are replaced in
the subsequent gap-filling processing step. In addition, each
half hour after records with u∗ smaller than the threshold is
flagged to be invalid.

2.1.2 Breakpoint detection method for u∗

Alternatively, breakpoint detection can be applied to the
unbinned data, which avoids the sensitivity of the moving
point method to the specifics of the binning schemes (Barr
et al., 2013). REddyProc provides this method by estimat-
ing the breakpoint based on unbinned records within the sea-
sons/temperature subsets using the segmented R-package
(Muggeo, 2003, 2008). However, REddyProc differs from
Barr et al. (2013) by keeping the same aggregating scheme of
seasonal/temperature estimates to annual thresholds as with
the moving point method.

2.1.3 Bootstrapping uncertainty of the u∗ threshold

Estimates of the u∗ threshold are often sensitive to the
specifics of the combination of methods and the data, e.g.,
the binning, minimum number of records within a season or
temperature subset, and criteria in aggregation. Therefore, a
bootstrap (resampling with replacement) is applied to gener-
ate 200 artificial replicates of the dataset, and for each repli-
cate the threshold is estimated (Efron and Tibshirani, 1986;
Davison and Hinkley, 1997). The 5th, 50th, and 95th per-
centile of the estimates are reported as a range of threshold
estimates. The subsequent post-processing steps of gap fill-
ing and partitioning are then repeated using those different
thresholds to propagate the uncertainty of u∗ threshold esti-
mation to derived quantities such as annual NEE, GPP, and
Reco.

2.2 Gap-filling methods

After quality checks and u∗ filtering, the dataset of half-
hourly NEE fluxes may contain up to 50 % gaps (sometimes
this fraction is even higher, depending on the site conditions).
For the benchmark datasets used in this paper, the percent-
age of gaps before u∗ filtering was on average 32 % and after
u∗ filtering 60 % and 48 % for upper and lower u∗ threshold
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Figure 2. Concept of the u∗ filter: nighttime NEE at low u∗ is biased towards lower NEE values compared to cases with higher u∗. Unbiased
NEE should scatter around the same plateau because environmental conditions are similar. The u∗ threshold (dashed line), i.e., the value
below which this bias is considered significant, is estimated by a moving point method on u∗ bins (crosses) across half-hourly records
(circles). The example uses a subset of data from DE-Tha.

estimates, respectively. Filling of gaps in half-hourly NEE
data is necessary to obtain complete time series for the cal-
culation of daily averages or balances such as monthly or
seasonal sums. The following three gap-filling methods are
implemented in REddyProc.

2.2.1 Look-up tables

In the look-up table (LUT) approach, the fluxes are binned by
the meteorological conditions within a certain time window.
Within the chosen time window and respective bin, each me-
teorological variable deviates less than a fixed margin to en-
sure similar meteorological conditions. The missing value of
the flux is then calculated as the average value of the binned
records and its uncertainty estimated from their standard de-
viation.

The original LUT of Falge et al. (2001) consisted of fixed
periods over a year, while in REddyProc the meteorolog-
ical conditions are sampled with a moving window around
the gap to be filled.

2.2.2 Mean diurnal course

NEE fluxes have a mean diurnal course (MDC) that follows
the course of the sun with only respiration during nighttime
and a combination of respiration and photosynthesis during
daytime. This autocorrelation of the fluxes is exploited by
taking the average value at the same time of day within a
moving time window of adjacent days (Falge et al., 2001). In
REddyProc the same time of day also includes the fluxes
of the adjacent hour (±1 h).

Though the MDC method only showed a medium perfor-
mance in the gap-filling comparison for net carbon fluxes by
Moffat et al. (2007), it has the advantage that this approach
can be used even if no meteorological information is avail-
able.

2.2.3 Marginal distribution sampling

The so-called marginal distribution sampling (MDS) by
Reichstein et al. (2005b) exploits the covariation of the
fluxes with the meteorological variables and their temporal
autocorrelation based on the two methods LUT and MDC
described above.

The filling of each half-hourly NEE with the MDS algo-
rithm depends on the availability of the meteorological data
of Rg, Tair, and VPD. (1) If all three meteorological vari-
ables are available, LUT will be used with default margins
of 50 Wm−2, 2.5 ◦C, and 5.0 hPa, respectively. (2) If Tair or
VPD are missing, only the variable Rg will be used. (3) If no
meteorology is available, the gaps are filled with MDC. Fol-
lowing a specific sampling procedure, the MDS algorithm
increases the number of days in the vicinity of the gap until
there are enough data points (at least two) for gap filling. A
more detailed description with a flow diagram is provided in
the Supplement.

The MDS algorithm is optimized for carbon dioxide and
water fluxes and can also be used to estimate the uncer-
tainty of the half-hourly fluxes. In the comparison of gap-
filling methods by Moffat et al. (2007), the MDS algorithm
performed well for different artificial gap scenarios ranging
from single half-hours to several days. Due to its flexibil-
ity in dealing with missing meteorological input data and
its fast and highly automated routines available as an online
tool (BGC16, Sect. 3), the MDS gap-filling method has been
widely used.

2.3 Flux-partitioning methods

The gross fluxes of GPP into the land system and Reco
out of the land system are the two opposing parts of NEE:
NEE= Reco−GPP. Availability of GPP and Reco is pivotal
as they are the two biggest terms of the carbon cycle (e.g.,
Chapin et al., 2006; Jung et al., 2011). Moreover, under-
standing their sensitivity to environmental drivers (e.g., ra-
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diation, temperature, and soil moisture) is important to in-
terpret land–atmosphere interactions and to improve earth
system models (Reichstein et al., 2012). Therefore several
methods were developed to partition NEE into these two
components (Reichstein et al., 2005c; Lasslop et al., 2010;
Moffat, 2012; Wehr and Saleska, 2015; Desai et al., 2008;
Stoy et al., 2006).

The two most widely used methods are the so-called night-
time partitioning and daytime partitioning (Reichstein et al.,
2012). The nighttime partitioning (Reichstein et al., 2005c)
relies on the temperature response function of nighttime NEE
fluxes that are representative of Reco. It assumes that this re-
lationship is also applicable to daytime data. The relationship
is then used to predict Reco from measured temperature and
GPP is computed as a difference between Reco and NEE. This
method is currently the most widely used approach. Alterna-
tively, the daytime partitioning (Lasslop et al., 2010) fits a
model to observations of daytime NEE and global radiation,
accounting for the effects of radiation and VPD on GPP as
well as the effects of temperature on Reco.

2.3.1 Nighttime flux partitioning

The method of Reichstein et al. (2005c) estimates a tem-
porally varying respiration–temperature relationship from
nighttime data. First nighttime data are selected by a thresh-
old of Rg< 10 Wm−2, which is congruent with the BGC on-
line tool (BGC16, Sect. 3), but differs from the 20 W m−2 re-
ported in Reichstein et al. (2005c). Additionally, nighttime
data are constrained between computed sunset and sunrise.

Next, temperature sensitivity, E0, of the Lloyd and Taylor
(1994) relationship (Eq. 1) is estimated by fitting the model
to successive 15-day periods of nighttime data, and the re-
sulting E0 series is aggregated to an annual estimate.

Reco(T )= RRef exp
[
E0

(
1

TRef− T0
−

1
T − T0

)]
, (1)

where T0 is kept constant at −46.02 ◦C (Lloyd and Taylor,
1994) and where the reference temperature TRef is 15 ◦C,
which is congruent with the BGC online tool (BGC16,
Sect. 3), but differs from the 10 ◦C reported in Reichstein
et al. (2005c). For robustness each fit is repeated on a
trimmed dataset excluding records with residuals outside the
5 %–95 % residual distribution. The annual aggregate is the
mean across the three valid estimates with the lowest uncer-
tainty in the fit. Single estimates of E0 are considered valid
if there were a minimum of six records, temperature ranged
across at least 5 ◦C, and estimates were inside the range of
30 to 450 K.

Subsequently, the respiration at reference temperature,
RRef, is re-estimated from nighttime data using the annualE0
temperature sensitivity estimate for 7-day windows shifted
consecutively for 4 days. The estimated value is then as-
signed to the central time point of the 4-day period and

linearly interpolated between periods. Hence, the obtained
respiration–temperature relationship varies across time.

Finally, Reco is estimated for both day- and nighttime from
the temporarily varying Reco–temperature relationship, and
daytime GPP is computed as Reco–NEE.

2.3.2 Daytime flux partitioning

The method of Lasslop et al. (2010) models NEE using the
common rectangular hyperbolic light-response curve (LRC)
(Falge et al., 2001):

NEE=
αβRg

αRg+β
+ γ, (2)

where α (µmolCO2 J−1) is the canopy light utilization effi-
ciency and represents the initial slope of the light-response
curve, β (µmolCO2 m−2 s−1) is the maximum CO2 uptake
rate of the canopy at infinite Rg, and γ (µmolCO2 m−2 s−1)
is a term accounting for ecosystem respiration. The hyper-
bolic light-response curve is modified to account for the
temperature dependency of respiration after Gilmanov et al.
(2003) by setting respiration γ to the Lloyd and Taylor res-
piration model (Lloyd and Taylor, 1994) (Eq. 1). Further, the
constant parameter β in Eq. (2) is replaced by an exponen-
tial decreasing function (Körner, 1995) at higher VPD values
(Eq. 3).

β =

{
β0 exp[−k(VPD−VPD0)] if VPD > 10hPa

β0 otherwise
, (3)

where the VPD0 threshold is 10 hPa in accordance with ear-
lier findings at the leaf level (Körner, 1995), ignoring poten-
tial vegetation specific differences.

Parameter T0 in Eq. (1) was fixed as in the nighttime par-
titioning (Sect. 2.3.1). Parameter TRef was fixed in each win-
dow to the median temperature within the window. The other
parameters (E0,RRef,α,β0,k) of the model are estimated by
the following steps. (1) A time-varying temperature sensitiv-
ity E0 is estimated from nighttime data for a window shifted
by 2 days. (2) The E0 estimates are smoothed across suc-
cessive windows by fitting a Gaussian process (Rasmussen
and Williams, 2006; Menzer et al., 2013) using the mlegp
R-package that also estimates uncertainty of the smoothed
E0. Next, a prior respiration, RRef, for reference temperature
TRef = 15 ◦C is re-estimated from nighttime data for each
window with smoothed E0. (3) Parameters of the rectangular
hyperbolic light-response curve (RRef, α, β0, k) are fitted us-
ing only daytime data and the previously determined temper-
ature sensitivity (E0) for each window. (4) Finally, for each
NEE record, GPP and Reco are estimated with the parame-
ter set of the previous valid window and the parameters of
the next valid window, and the two results are interpolated
linearly by the time difference to the window centers. The
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Supplement reports necessary technical details about these
steps.

Note, that contrary to the nighttime-based flux partition-
ing, both GPP and Reco are model predictions and do not add
up exactly to observed NEE.

3 Benchmarking REddyProc post-processing steps

The post-processing steps’ implementations of
REddyProc were benchmarked with the post-processing
tools widely used in the FLUXNET processing. Specifically,
REddyProc (version 0.8.1) u∗-filtering results were com-
pared with results by a C implementation from Dario Papale
(Papale et al., 2006), referred to here as DP06. Results of
REddyProc (version 1.1.3) gap filling and flux partitioning
were compared with results obtained by the 2016 version
web-based tool provided by the Max Planck Institute for
Biogeochemistry, Jena, best described in Reichstein et al.
(2005a). The tool was accessed in 2016 (29 July 2016) and is
hereafter referred to as BGC16. Here, annually and monthly
aggregated values refer to the mean across all valid values
in a month or a year, which can differ from real annual or
monthly budgets in the presence of large gaps. The first
section describes the dataset used for benchmarking for
each processing step implemented in the package. Within
each of the following sections for the processing steps,
subsections describe differences in the code, report the
results of benchmarking, and discuss them. The Supplement,
additionally, provides more detailed results and statistics.

3.1 Dataset used for benchmarking

Data of 25 sites of the LaThuile FLUXNET dataset3, which
have an open data policy, were used for benchmarking. The
sites are located in different climate zones and belong to a
variety of plant functional types (Table 1) to guarantee test-
ing of different conditions (i.e., presence of snow, manage-
ment such as cuts and crop rotation, sites disturbed) and
ecosystem types (e.g., deciduous versus evergreen forests,
grasslands and croplands). For each site the following vari-
ables were used: NEE already filtered for quality flags (Fo-
ken and Wichura, 1996), despiked and u∗-filtered (Papale
et al., 2006), random error of NEE computed as described by
Reichstein et al. (2005a), Tair, Tsoil, Rg, and VPD. More-
over, NEE time series before the u∗ filtering and the u∗
data were downloaded from AMERIFLUX and the European
Flux Database to test the u∗ threshold estimation. Finally,
time series of gap-filled NEE (NEEf) and GPP partitioned
with the nighttime-based method (GPPNT) (Reichstein et al.,
2005a) were downloaded from the LaThuile dataset, while
GPP partitioned with the daytime method (GPPDT) was com-
puted with BGC16.

3http://www.fluxdata.org, last access: 17 August 2018

Table 1. Description of sites and times used for benchmarking
REddyProc.

Site Year Lat Long Land covera Climateb

CA-NS7 2004 56.64 −99.95 OSH Dfc
CA-TP3 2005 42.71 −80.35 ENF Dfb
CH-Oe2 2004 47.29 7.73 CRO Cfb
DE-Hai 2002 51.08 10.45 DBF Cfb
DE-Tha 1998 50.96 13.57 ENF Cfb
DK-Sor 2006 55.49 11.65 DBF Cfb
ES-ES1 2000 39.35 −0.32 ENF Csa
ES-VDA 2005 42.15 1.45 GRA Cfb
FI-Hyy 1998 61.85 24.29 ENF Dfc
FI-Kaa 2001 69.14 27.30 WET Dfc
FR-Gri 2006 48.84 1.95 CRO Cfb
FR-Hes 1998 48.67 7.06 DBF Cfb
FR-Lq1 2006 45.64 2.74 GRA Cfb
FR-Lq2 2006 45.64 2.74 GRA Cfb
FR-Pue 2003 43.74 3.60 EBF Csa
IE-Dri 2004 51.99 −8.75 GRA Cfb
IL-Yat 2005 31.34 35.05 ENF BSh
IT-Amp 2004 41.90 13.61 GRA Cfa
IT-MBo 2005 46.02 11.05 GRA Cfb
IT-SRo 2001 43.73 10.28 ENF Csa
PT-Esp 2004 38.64 −8.60 EBF Csa
RU-Cok 2004 70.62 147.88 OSH Dfc
SE-Nor 1997 60.09 17.48 ENF Dfb
US-Ton 2004 38.43 −120.97 WSA Csa
VU-Coc 2002 −15.44 167.19 EBF Af

a Abbreviations for land cover type from International Geosphere-Biosphere Programme
(IGBP) classification: CRO: cropland, DBF: deciduous broadleaf forest, EBF: evergreen
broadleaf forest, ENF: evergreen needleleaf forest, GRA: grassland, OSH: open shrubland,
WET: permanent wetland, WSA: woody savanna. b Abbreviations for climate from
Köppen–Geiger classification: Af: equatorial, rainforest; BSh: hot arid steppe; Cfa: humid,
warm temperate, hot summer; Cfb: humid, warm temperate, warm summer; Csa: summer
dry, warm temperate, hot summer; Dfb: cold, humid, warm summer; Dfc: cold, humid, cold
summer.

3.2 u∗ filtering: benchmarking with DP06

Estimation of the u∗ threshold by REddyProc using the de-
fault moving point method (Sect. 2.1.1) was benchmarked
to estimation based on Papale’s DP06 C implementation
(Papale et al., 2006). The benchmark applied a bootstrap
sample of size 60 and recorded lower, median, and upper
quantiles of 10 %, 50 %, and 90 % instead of the default 5 %
and 95 % based on a larger sample size to save computing
time.

The different estimates of the u∗ threshold have potential
consequences for the inferred fluxes. To explore these conse-
quences, we used the different resulting thresholds to mark
gaps, gap-fill the data, and compute the annual NEE based
on the gap-filled time series. NEE uncertainty was estimated
by the difference between NEE based on the lower quantile
u∗ and NEE based on the upper quantile u∗ estimate.

3.2.1 Differences in code

The biggest difference of REddyProc compared to DP06
is that REddyProc by default employs seasons that can
span across years. With the within a year classification op-
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tion, which is also employed by DP06, records of December
are associated with the same season as January and Febru-
ary of the same year. With the default continuous classi-
fication, seasons start the same as in DP06 by default in
March, June, September, and December. However, Decem-
ber is treated in the same season as January and February of
the next year to avoid discontinuities at year boundaries. The
annual u∗ threshold is then applied according to those con-
tinuous seasons spanning year boundaries. For example, the
processing of 2014 data would by default use data from win-
ter 2014 (starting in December 2013) to autumn 2014 (end-
ing in November 2014). REddyProc also allows more flex-
ibility with the user-specified classification into seasons as
explained below.

There are further slight differences between
REddyProc and DP06. Both methods bin in a way
such that the number of records in each bin is similar. If
there are numerically equal u∗ values, they are sorted into
the same bin, resulting in bins with unequal record numbers.
In DP06 sometimes no records are sorted into the subsequent
bins, hampering the moving point detection. Conversely, the
binning with REddyProc ensures that there are a minimum
number of records in all bins. This often results in fewer
bins. Moreover, differing from DP06, REddyProc employs
several more quality criteria. First, when comparing the
threshold bin to NEE in the following bins, it makes sure
that there are least three bins to infer a plateau in NEE. Next,
when aggregating the thresholds of different temperature
classes to season, it ensures that a threshold was found in
at least 20 % of the temperature classes. For those seasons
during which no threshold could be determined, the annual
estimate is used. When there are too few records within
a year, a single season comprising all records is used for
threshold estimation.

Differently to DP06, REddyProc only resamples data
within seasons instead of across the entire year during the
bootstrap, in order to protect periods of a similar u∗–NEE
relationship and to avoid seasonal biases in resampling.

3.2.2 Benchmark results

The general relationship in the estimation of the u∗ threshold
was retained between the two methods (Fig. 3), although in-
dividual threshold estimates differed. The exceptionally high
threshold value of > 0.6 ms−1 for site FR-Pue was very
probably an overestimate by DP06. However, one has to re-
member that each estimate has a high uncertainty, and the
differences between the two methods were in the range of
this uncertainty (Supplement). The estimate of the uncer-
tainty of the u∗ thresholds with REddyProc was, however,
only half of the uncertainty range estimated by DP06 (Sup-
plement). This increased precision was mainly due to the
modified bootstrapping scheme, which respects the u∗ sea-
sons.
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Figure 3. u∗ thresholds derived using different methods deviate for
single sites. The relationship across site years is retained as indi-
cated by a regression (solid line with shaded uncertainty bound)
close to the 1 : 1 line (dashed).
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Figure 4. Strong correspondence in NEE based on the u∗ thresh-
old estimated by REddyProc and NEE based on the u∗ threshold
estimated by DP06 across site years.

When propagating the differences in u∗ to differences in
annual NEE, there was no bias and decreased scatter across
sites between all the methods (Fig. 4), despite the differences
in u∗ threshold. The absolute differences in annual NEE be-
tween the methods were small (mostly < 20 gCm−2 yr−1),
and mostly lower than half of the uncertainty range estimated
from the bootstrap (Supplement). REddyProc estimates
u∗ thresholds with roughly double the precision compared
to DP06, due to its protecting of seasons during bootstrap
(Supplement).

3.2.3 Discussion of u∗ threshold estimation

The agreement between NEE based on u∗ estimates of
REddyProc moving point implementation and current
FLUXNET standard post-processing (DP06) (Fig. 4) indi-
cates that the sensitivity of NEE to the u∗ threshold estimate
in the inferred ranges is low, which also explains the large
uncertainty of the u∗ threshold estimate. One reason for the
missing effect could be site selection of this study without
many sites affected by advection, which show limited sat-
uration of the NEE–u∗ dependence. Since in such cases the
filtering does not work properly anyway, it should not change
the conclusions for NEE. Hence, we infer that u∗ estimates
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of both DP06 and REddyProc are appropriate due to the
negligible effect on NEE sums. The agreement implies that
both methods can be interchanged in studies that are based
on aggregated values, such as annual carbon budgets or for
upscaling, without the need to reprocess data.

However, the increase in estimated precision, i.e., lower
standard deviation, of the u∗ threshold estimate also yields
an increase in estimated precision of the annual NEE by
50 % (Supplement). This will lead to improved accuracy and
usability of EC measurements and any downstream, post-
processed data products in model–data integration studies.

While the default seasons and their aggregation are in line
with previous approaches, REddyProc allows site-specific
knowledge to be used to derive better threshold estimates.
For example, if there is a disturbance such as harvest, the
u∗ threshold is expected to change and a different thresh-
old should be applied for filtering before and after the dis-
turbance. In this case the user can define a season change at
the harvest date and use season-specific threshold estimates
instead of the annually aggregated estimate (Sect. B7 in Ap-
pendix B).

3.3 Gap filling: benchmark with BGC16

The gap-filling implementation of REddyProc was bench-
marked with the BGC online tool (BGC16, Sect. 3), which
used pvWave code developed by Reichstein et al. (2005c).

3.3.1 Differences in code

Compared to the BGC16, the new implementation of the
MDS algorithm in REddyProc was not limited to single
years, but it filled the gaps with a window moving continu-
ously over all years in the input data. This had the advantage
of smoother gap filling over the end of the year, and this will
especially be of interest for sites in which vegetation is not
dormant during this time. This new feature led to different,
probably more realistic gap-filled NEE values at the begin-
ning and end of the year.

There were also slight differences in the sequence of win-
dow sizes between REddyProc and BGC16. For MDC, the
window size with BGC16 had a few more intermediate day
steps than REddyProc, which affected longer gaps with
missing meteorology. The default meteorological variables
and margins for LUT (see Sect. 4.2.2 above) were the same
in both implementations.

While REddyProc restricts gap filling to the interpola-
tion of gaps, BGC16 also restricted missing records in peri-
ods without measurements.

3.3.2 Benchmark results and discussion for gap filling

In the benchmark, REddyProc gap filling was run using the
same measured NEE as input that passed the QA/QC routines
and u∗ filtering. The annually aggregated values comprised
both filled gaps and originally valid records.
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Figure 5. Predictions of NEE by REddyProc after gap filling
agree with BGC16 both at half-hourly values (a), shown for the
DE-Tha 1998 case, and annual means across sites (b). Larger qual-
ity flags are associated with larger window sizes.

REddyProc gap-filling results agreed with the results of
BGC16. A few discrepancies at a half-hourly timescale were
found mostly during longer gaps due to the usage of fewer
window sizes, as shown for the DE-Tha case (Fig. 5a). At an
annually aggregated timescale, the agreement between meth-
ods was strong (R2

= 0.99) (Fig. 5b). The outlier of site RU-
Cok is due to the availability of only a few months of data for
the whole year. While REddyProc filled gaps in the time
period with available data, BGC16 extrapolated into the time
before and after this period. The seasonal cycle was well re-
produced at each site (Supplement).

The good agreement between NEE based on gap filling by
REddyProc and gap filling by BGC16 (Fig. 5) implies that
both gap-filling tools can be used interchangeably without
the need to reprocess data.

3.4 Nighttime flux partitioning: benchmark BGC16

The nighttime-based flux partitioning was benchmarked to
BGC16, which used pvWave code developed by Reichstein
et al. (2005c).
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Figure 6. Predictions of annually aggregated ecosystem respiration,
Reco, from REddyProc nighttime partitioning agree with the pre-
dictions by BGC16.

3.4.1 Differences in code

The main features of the REddyProc implementation of
the nighttime-based partitioning algorithm were very simi-
lar to BGC16, using a reference temperature of 15 ◦C and
trimming the estimates of temperature sensitivity E0 before
aggregating them (Sect. 2.3.1). REddyProc differed from
BGC16 in computing the potential radiation that is used in
subsetting the nighttime data to derive E0 and RRef (Reich-
stein et al., 2005c). While REddyProc used the exact solar
time for the calculation of the potential radiation, where the
sun culminates exactly at noon, BGC16 used the local win-
ter time, which differs from the solar time depending on the
location within the time zone.

3.4.2 Benchmark results and discussion for nighttime
flux partitioning

Annual aggregated values of Reco predicted by REddyProc
were in very good agreement (R2

= 0.99; slope ≈ 1) with
BGC16 as shown in Fig. 6 and in the Supplement.

In order to evaluate the effects of the differences intro-
duced in the code described above, we also computed Reco
by prescribing either E0, or a selection of nighttime data, or
both from BGC16 output in REddyProc. Results are re-
ported in the Supplement and showed that the most impor-
tant factor affecting the Reco computed with REddyProc
was the different selection of nighttime data, though the dif-
ferences were almost negligible at an annual timescale.

The two implementations agreed very well for most sites
at an annual timescale. Because of no systematic deviations
across sites, the spatial upscaling of fluxes should not be af-
fected by REddyProc implementation. However, for some
sites, such as IT-Amp, the relative errors that are quite large
indicate problems related to the selection of nighttime data
and problems due to large gaps in the dataset.

3.5 Daytime flux partitioning: benchmark with BGC16

The daytime flux partitioning was benchmarked with results
of the BGC online tool (BGC16, Sect. 3), which is based on
pvWave code developed by Lasslop et al. (2010) and used
in the processing of the 2015 FLUXNET release (Pastorello
et al., 2017).

3.5.1 Differences in code

BGC16 differed from REddyProc (Sect. 2.3.2), mainly in
aspects of separation of nighttime data, estimation of temper-
ature sensitivity from nighttime data, uncertainty estimation,
treatment of missing values, and optimization library code.

While for separating nighttime data REddyProc used the
exact solar time, where the sun culminates exactly at noon,
BGC16 used the local winter time.

For the estimation of temperature sensitivity E0 from
nighttime data, BGC16 used a reference temperature of
15 ◦C, instead of the median temperature inside the window.
Hence, it estimated stronger correlations between parameters
for windows with a different temperature range. Moreover,
it omitted smoothing of the estimated E0 across time, often
leading to large fluctuations of the E0 estimates across a few
days (Supplement), larger estimates of its uncertainty, and
differences in subsequent estimation of LRC parameters.

For uncertainty estimation, BGC16 relied on the curvature
of the LRC fit’s optimum instead of a bootstrap procedure.
Hence, it could not take into account the uncertainty of E0
estimated from nighttime data before the daytime LRC fit.
Moreover, during interpolation of fluxes based on previous
and subsequent valid estimates, the distance weights differed.
While REddyProc assigned the estimates to the time of the
mean of valid record in a window, BGC16 assigned it to the
start of the third day, also if there were only valid data for the
first day in the window.

For weighting the records in the LRC fit, BGC16 used
the raw estimated NEE uncertainty of each record. It did
not check for high leverage of spurious low NEE uncer-
tainty estimates. Its estimates, therefore, were in some win-
dows very strongly influenced by a few records, and failed
if a NEE uncertainty estimate of zero was provided. More-
over, when there were missing values or values below zero
in a given NEE uncertainty, it set all uncertainty to 1, while
REddyProc filled the gaps by setting the missing uncer-
tainty to the maximum of 20 % of respective NEE but at least
0.7 µmolCO2 m−2 s−1.

Treatment of missing values was not considered by
BGC16 and assumed to be handled prior to the processing.
Hence, it did not handle missing VPD values and did not
retry the LRC fit without the VPD effect in order to also use
records with missing VPD. Moreover, as described above,
when there were missing values of NEE uncertainty, weight-
ing records in the LRC fit were omitted.
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Figure 7. Prediction of annually aggregated GPP from
REddyProc daytime partitioning agree with BGC16 across
sites.

For compatibility with BGC16, the above code differences
can be disabled in REddyProc. But differences in opti-
mization library code and specifically the conditions of non-
convergence on scattered data could not be eliminated, which
led to differences in results as shown in the following section.

3.5.2 Benchmark results for daytime partitioning

Annually GPP predictions of both implementations showed
no significant bias across the test sites (Fig. 7), although
there was some scatter among individual predictions. Sim-
ilar scatter was observed when comparing the predictions of
the default REddyProc options to the predictions with com-
patibility options. Most of the differences were caused by
decreasing the unreasonable high influence of NEE records
with small NEE uncertainty (Supplement).

The largest differences in aggregated fluxes between im-
plementations were due to the extrapolation of fitted pa-
rameters to periods where no parameter fits were obtained.
In many of these cases, there were fits at the boundaries
of these periods, whose validity was questionable. Whether
these fits passed the quality check or not had a large in-
fluence on the extrapolation and hence on the aggregated
values. For example, at RU-Cok parameter estimates for
valid periods agreed between implementations. However, no
valid parameters could be obtained for winter months. While
REddyProc reported missing values, BGC16 also reported
GPP values based on summer parameterizations for periods
further away from summer, which in turn led to higher annual
GPP estimates.

Uncertainty estimates of gross fluxes approximately dou-
bled with REddyProc due to the accounting for uncer-
tainty in temperature sensitivity estimates from nighttime
data (Supplement).

3.5.3 Discussion of daytime flux partitioning

Agreement between aggregated fluxes predicted by the day-
time method and absence of bias for the test sites (Fig. 7)
suggest that the methods can be used interchangeably for
upscaling, although differences in results of influential sites
can potentially propagate to differences in upscaled esti-
mates. REddyProc provides a quality flag for the results
of the daytime partitioning, which allows less reliable data to
be excluded in upscaling studies. For the results associated
with good quality flags, we have greater confidence in the
REddyProc-based estimates.

The daytime flux partitioning is quite sensitive to the de-
tails of the LRC fit. Small changes in treatment of extreme
or missing NEE uncertainty estimates or changes in pre-
processing and treatment of missing values cause different
estimates of LRC parameters and propagate to predicted
fluxes of GPP and Reco. Although we put much effort in try-
ing to reproduce the results of BGC16, we were not able to
eliminate all differences, especially in the subtle details in the
parameter optimization library codes. The differences in pre-
dicted half-hourly fluxes, however, average out across sites
and across time (Supplement), making this issue less severe
at larger scales.

The estimated uncertainties are even more sensitive. Both
implementations occasionally produce unreasonably high
outliers that affect the aggregated values. REddyProc, in
general, estimates higher uncertainties of predicted fluxes be-
cause it accounts for uncertainty in temperature sensitivity.
Note that the uncertainty introduced to annually aggregated
fluxes due to flux partitioning is smaller than uncertainty due
to an uncertain u∗ threshold estimate. Hence, differences or
difficulties in uncertainty estimation caused by flux partition-
ing do affect conclusions of the overall uncertainty estimates
to a lesser extent.

4 Conclusions

The REddyProc software provides a set of tools for the
CO2-focussed post-processing of eddy covariance flux data
including u∗ filtering, gap filling, and flux partitioning, and
propagation of the uncertainty from the u∗ filtering to the
gap-filled NEE and partitioned GPP and Reco.

The freely available R-package enables researchers to in-
tegrate the flux data processing into their own offline environ-
ment or work stream without the need of uploading data. This
seamless integration allows overall workflow to be improved,
processing routines to be sped up, and ultimately cleaner, re-
producible scientific results to be generated.

The compatibility of the implemented methods with the
available standard tools provides continuity of the data anal-
ysis when adopting REddyProc for processing EC data.
REddyProc can closely reproduce results of the widely
used BGC online tool (BGC16, Sect. 3).
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A number of enhancements provide more flexibility to the
user in the processing of their data. For instance, the new pro-
cessing allows multi-year data to be treated without breaks
at annual boundaries that can significantly affect sites in the
Southern Hemisphere or sites characterized by vegetation ac-
tivity in winter. Another new feature of REddyProc is the
flexibility to define different seasons for the application of
the u∗-filtering and gap-filling routines, which is important
for sites with discontinuous surface cover associated with
snowmelt, dry seasons, or harvest.

Sensitivity of the results to subtle details of the implemen-
tation, however, calls for caution when interpreting results.
This is especially true for u∗ threshold estimation and the
daytime flux partitioning, and especially for data with long
gaps.

Continued integration of new methodological develop-
ments into the package will support research using EC data.
We strive to provide new developments in a basic and exten-
sible manner, while paying attention to compatibility with
results of reference implementations.

In summary, research using (half-)hourly eddy covariance
data can benefit from building blocks for standardized and
extensible post-processing provided by REddyProc.

Code and data availability. REddyProc version 1.1.3 is available
at https://doi.org/10.5281/zenodo.1171248 (Wutzler et al., 2018).
Access of benchmark data and tools is described in Sect. 3.
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Appendix A: The REddyProc package

The REddyProc processing tool is freely available in two
options: (a) online as a web service4 with a smaller range
of user options, and (b) as a package of the open-source R
environment with a larger set of user options and with each
of the steps and methods available independently.

The REddyProc package can be installed by typing the
following at the R-terminal.
install.packages("REddyProc")
library(REddyProc)
?REddyProc
Alternatively, there is an automatically built docker image
(Metzger et al., 2017) at the docker hub that allows RStudio
to be run with REddyProc from a browser without any other
installations besides the docker. Regarding installation issues
and docker images, we refer the reader to the GitHub project
homepage5.

Some general principles and choices in the design of
REddyProc that lead to trade-offs between robustness and
flexibility are explained in the Supplement.

Appendix B: Example application

This section reports an example R session using
REddyProc. Code is shown in a shaded area and cor-
responding output with monospace font.

B1 Importing the half-hourly data

The workflow starts with importing the half-hourly data. The
example reads a text file with data of the year 1998 from
the DE-Tha site and converts the separate decimal columns
year, day, and hour to a POSIX timestamp column. Next, it
initializes the sEddyProc class.
#+++ load libraries used in this vignette
library(REddyProc)
library(dplyr)
#+++ Load data with 1 header and 1 unit row from
# (tab-delimited) text file
fileName <- getExamplePath(

'Example_DETha98.txt', isTryDownload = TRUE)
EddyData.F <- if (length(fileName))

fLoadTXTIntoDataframe(fileName) else
Example_DETha98

#+++ Add time stamp in POSIX time format
EddyDataWithPosix.F <- fConvertTimeToPosix(

EddyData.F, 'YDH', Year.s = 'Year',
Day.s = 'DoY',Hour.s = 'Hour')

#+++ Initalize R5 reference class sEddyProc for
# post-processing of eddy data
# with the variables needed later
eddyC <- sEddyProc$new(

'DE-Tha', EddyDataWithPosix.F,
c('NEE','Rg','Tair','VPD', 'Ustar'))

4http://www.bgc-jena.mpg.de/bgi/index.php/Services/
REddyProcWeb, last access: 17 August 2018

5http://github.com/bgctw/REddyProc, last access: 17 Au-
gust 2018

B2 Estimating the u∗ threshold distribution

The second step is the estimation of the distribution of u∗
thresholds to identify periods of low friction velocity (u∗),
where NEE is biased low. Discarding periods with low u∗ is
one of the largest sources of uncertainty in aggregated fluxes.
Hence, several quantiles of the distribution of the uncertain
u∗ threshold are estimated by a bootstrap.

The friction velocity, u∗, needs to be in a column of the
input dataset named “Ustar”.
uStarTh <- eddyC$sEstUstarThresholdDistribution(

nSample = 100L, probs = c(0.05, 0.5, 0.95))
uStarTh %>%

filter( aggregationMode == "year") %>%
select( uStar, "5%", "50%", "95%")

## uStar 5% 50% 95%
## 1 0.41625 0.3712164 0.4546667 0.5811667

The output reports u∗ estimates of 0.42 for the original
data and 0.37, 0.44, 0.62 for lower, median, and upper quan-
tiles of the estimated distribution. The threshold can vary be-
tween periods of different surface roughness, e.g., before and
after harvest. Therefore, there are estimates for different time
periods of the year, called seasons, reported as different rows.
These season estimates can be aggregated to entire years or
to a single value across years, reported by rows with corre-
sponding aggregation mode.

The subsequent post-processing steps will be repeated us-
ing the three quantiles of the u∗ distribution. They require a
u∗ threshold to be specified for each season as well as a suffix
to distinguish the outputs related to different thresholds.

For this example of an evergreen forest site, the same
annually aggregated u∗ threshold estimate will be chosen
for each of the seasons within a year. In order to dis-
tinguish the automatically generated columns, the column
names of the estimation results are written for the variable
uStarSuffixes.
uStarThAnnual <-

usGetAnnualSeasonUStarMap(uStarTh)[-2]
uStarSuffixes <- colnames(uStarThAnnual)[-1]
print(uStarThAnnual)

## season U05 U50 U95
## 1 1998001 0.3712164 0.4546667 0.5811667
## 2 1998003 0.3712164 0.4546667 0.5811667
## 3 1998006 0.3712164 0.4546667 0.5811667
## 4 1998009 0.3712164 0.4546667 0.5811667
## 5 1998012 0.3712164 0.4546667 0.5811667

B3 Gap filling

The second post-processing step is filling the gaps using in-
formation from the valid data. In this case, the same annual
u∗ threshold estimate is used for each season, as described
above, and the uncertainty will also be computed for valid
records (FillAll).
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eddyC$sMDSGapFillAfterUStarDistr('NEE',
UstarThres.df = uStarThAnnual,
UstarSuffix.V.s = uStarSuffixes,

FillAll = TRUE
)

The screen output (not shown here) already shows that the
u∗ filtering and gap filling was repeated for each given esti-
mate of the u∗ threshold, i.e., column in uStarThAnnual,
with marking 22 % to 38 % of the data as a gap.

For each of the different u∗ threshold estimates, a sep-
arate set of output columns of filled NEE and its uncer-
tainty is generated, distinguished by the suffixes given with
uStarSuffixes. Suffix “_f” denotes the filled value and
“_fsd” the estimated standard deviation of its uncertainty.

## [1] "NEE_U05_f" "NEE_U50_f" "NEE_U95_f"
## [1] "NEE_U05_fsd" "NEE_U50_fsd" "NEE_U95_fsd"

grep("NEE_.*_f$",names(eddyC$sExportResults())
, value = TRUE)

grep("NEE_.*_fsd$",names(eddyC$sExportResults())
, value = TRUE)

B4 Partitioning net flux into GPP and Reco

The third post-processing step is partitioning the net flux
(NEE) into its gross components GPP and Reco. The parti-
tioning algorithm needs a precise criterion between night-
time and daytime. Therefore, geographical coordinates and
the time zone need to be provided to allow the exact solar
time of sunrise and sunset to be computed. Further, missing
values in the meteorological data used need to be filled.
eddyC$sSetLocationInfo(

Lat_deg.n = 51.0, Long_deg.n = 13.6,
TimeZone_h.n = 1)

eddyC$sMDSGapFill('Tair', FillAll.b = FALSE)
eddyC$sMDSGapFill('VPD', FillAll.b = FALSE)

Now we are ready to invoke the partitioning, here by
the nighttime approach, for each of the several filled NEE
columns.
#variable uStarSuffixes was defined above at
# the end of uStar threshold estimation
resP <- lapply(uStarSuffixes, function(suffix){

eddyC$sMRFluxPartition(Suffix.s = suffix)
})

The results are stored in columns Reco and GPP_f, mod-
ified by the respective u∗ threshold suffix.
grep("GPP.*_f$|Reco",

names(eddyC$sExportResults()), value = TRUE)

## [1] "Reco_U05" "GPP_U05_f" "Reco_U50"
## [4] "GPP_U50_f" "Reco_U95" "GPP_U95_f"

The visualizations of the results in a fingerprint plot give a
compact overview.

eddyC$sPlotFingerprintY('GPP_U50_f', Year = 1998)
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B5 Estimating the uncertainty of aggregated results

First, the mean of the GPP across all the years is computed
for each u∗-scenario and converted from µmolCO2 m−2 s−1

to gCm−2 yr−1.
FilledEddyData.F <- eddyC$sExportResults()
#sfx <- uStarSuffixes[2]
GPPAgg <- sapply( uStarSuffixes, function(sfx){

GPPHalfHour <-
FilledEddyData.F[[paste0("GPP_",sfx,"_f")]]

mean(GPPHalfHour, na.rm = TRUE)
})
print(GPPAgg)

## U05 U50 U95
## 5.008512 5.154538 5.013863

The difference between these aggregated values is a first
estimate of the uncertainty range in GPP due to uncertainty
of the u∗ threshold.
(max(GPPAgg) - min(GPPAgg)) / median(GPPAgg)

In this run of the example a relative error of about 4.7 % is
inferred.

For a better but more time-consuming uncertainty esti-
mate, specify a larger sample of u∗ threshold values, re-
peat the post-processing for each, and compute statistics
from the larger sample of resulting GPP columns. This can
be achieved by specifying a larger sequence of quantiles
when calling sEstUstarThresholdDistribution
in Sect. B2.
sEstUstarThresholdDistribution(

nSample = 200
, probs = seq(0.025,0.975,length.out = 39) )
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B6 Storing the results in a csv file

The results still reside inside the sEddyProc class. To ex-
port them to an R Data.frame, the newly generated columns
need to be appended to the columns with the original input
data. Then this data.frame is written to a text file in a tempo-
rary directory.
FilledEddyData.F <- eddyC$sExportResults()
CombinedData.F <- cbind(

EddyData.F, FilledEddyData.F)
fWriteDataframeToFile(

CombinedData.F, 'DE-Tha-Results.txt'
, Dir.s = tempdir())

B7 Specifying seasons where the u∗ threshold differs

With changing surface roughness, e.g., during harvest or leaf
fall, the u∗–NEE relationship can also change. Therefore the
u∗ threshold needs to be re-estimated at different times of the
year, called seasons. The default uses continuous seasons;
for details see Sect. 3.2.1. In order to yield results corre-
sponding to DP06, the user can specify seasonFactor.v
= usCreateSeasonFactorMonthWithinYear(
EddyData.C$sDATA$sDateTime, startMonth=
c(3,6,9,12)) as an argument to the routine
sEstUstarThreshold. By default the annual ag-
gregate of the season thresholds, i.e., maximum across
seasons, is used to identify unfavorable conditions, but the
seasonal estimates can also be used instead.

Moreover, the users can also specify other user-defined
seasons, e.g., when harvest dates are known (see package
vignette DEGebExample). They can create a grouping by
specifying exact starting days of the periods by the function
usCreateSeasonFactorYdayYear, or they can pro-
vide a column with the data that indicate, e.g., the same group
for two wet seasons. Each season is associated with the year
corresponding to the center day between the first and last day
of the season.

With all methods, there is a required minimum number of
160 records within a season. If there are too few records, the
data of the seasons within a year are combined and the u∗
threshold for these seasons is set to the estimate obtained for
the data of the entire year.

Appendix C: Abbreviations used repeatedly in the paper

Symbol Description
EC eddy covariance
CO2 carbon dioxide
NEE net ecosystem exchange towards the atmo-

sphere in µmolCO2 m−2 s−1 (aggregated in
gCm−2 yr−1)

GPP gross primary productivity (same units as
NEE)

Reco ecosystem respiration (same units as NEE)
H , LE sensible and latent heat flux in Wm−2

u∗ friction velocity in ms−1

Rg shortwave incoming global radiation in
Wm−2

Tair air temperature in ◦C
Tsoil soil temperature in ◦C
VPD vapor pressure deficit in hPa
LUT look-up table (Sect. 2.2.1)
MDC mean diurnal course (Sect. 2.2.2)
MDS marginal distribution sampling (Sect. 2.2.3)
E0 temperature sensitivity parameter in Eq. (1)
RRef respiration at reference temperature parameter

Eq. (1)
LRC light-response curve (Sect. 2.3.2)
DP06 C implementation of the u∗ threshold estima-

tion by Dario Papale (Sect. 3)
BGC16 2016 version of the online tool provided by the

MPI-BGC in Jena (Sect. 3)
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