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Abstract: In this paper, we consider a supply chain network that includes multiple plants, collection centers, 
demand markets, and products, where a multi-objective mixed integer programming model has been developed to 
minimize cost and maximize some environmental issues by Amin and Zhang (2013a). Due to the uncertainty of  the 
demands and returns, the robust counterpart of  the model is discussed under interval uncertainty. According to 
some numerical results, the percentage changes of  robust and stochastic models are compared relative to 
deterministic models in different cases. The numerical results show that the robust model in comparison with the 
stochastic programming model gives a closer fit to the results of  the deterministic model. 
Keyword — Closed-loop supply chain, Mixed-integer linear programming, Multi-objective programming, Robust 
Optimization. 

 
 
 

1. INTRODUCTION 
 

Closed loop supply chain (CLSC) network aims at reducing the waste and generating profit for enterprises through 
integrating forward and reverse logistics. CLSC has been considered as one of  the sustainable practice to push 
conventional open-loop systems to closed-loop ones by Elahi and Franchetti (2014). Reusing returned products by 
recycling process, prevents depleting resources, reduces environmental pollution and optimizes utility by Guide Jr. 
and Van Wassenhove (2006). Therefore, considering the process of  handling the product returns in supply chain is 
of  significant importance by Zareian Jahromi et al. (2014).  Due to its various aspect importance such as 
environmental, limited resources, it is the focus of  current research, Ayres et al (1997), Bloemhof  and Corbett (2010), 
De Giovanni (2014), Mohajeri and Fallah (2014), Paksoy and Ozceylan (2014), and several mixed integer 
programming models are developed to optimize CLSC. However, due to the conflict between economic 
optimization and environmental protections, several research has considered multi-objective and goal programming 
approach for CLSC. For example, in Amin and Zhang (2013a), a mixed integer linear programming (MILP) model is 
proposed that minimizes the total cost. Besides, the model is extended to consider environmental factors by weighed 

sums and �-constraint methods. 
Since in a CLSC network, in particular, in reverse flow, some parameters might be uncertain, many researchers 

have used different approaches to deal with it. El-Sayed et al. (2010) developed an MILP model for a CLSC network 
in the presence of  uncertainty in demand. Pishvaee et al. (2011) formulated an MILP model in the existence of  
uncertainty in demands, returns and transportation costs parameters based on Ben-Tal and Nemirovski approach 
(1998), (2000). An enhanced version of  the uncertain model in Pishvaee et al. (2011) is given in Makrooni and Salahi 
(2016) that has much less constraints when demands, returns and transportation costs between facilities are uncertain. 
Salema et al. (2007) extended the reverse logistics model of  Fleischmann et al. (2001) in order to take into account 
uncertainty in demands.  Francas and Minner (2009) proposed a two-stage stochastic model to design a closed-loop 
network under uncertain demands and returns. Pishvaee et al. (2009) proposed a deterministic optimization model 
for a reverse logistics network. However, environmental factors have not been taken into account in the model. Lee 
and Dong (2009) proposed a two-stage stochastic programming model for CLSC network. They also developed a 
solution approach by simulated annealing. Pishvaee and Torabi (2010) developed a possibilistic mixed integer 
programming model to deal with uncertainty in CLSC configuration. Shi et al. (2010) proposed a model to maximize 
the profit of  a remanufacturing system using a Lagrangian relaxation method. Wang and Hsu (2010) proposed an 
interval programming model where the uncertainty is in the form of  fuzzy numbers. Shi et al. (2011) studied a 
production planning problem for a multi-product closed-loop system. The authors considered uncertain demands 
and returns by stochastic programming. Amin and Zhang (2013b) developed an optimization model under uncertain 
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demands and decision environment for a CLSC. Vahdani et al. (2012) applied fuzzy multi-objective robust 
optimization to configure a CLSC network. Amin and Zhang (2013a) have investigated the impact of  demands and 
returns uncertainties on the network configuration by stochastic programming (scenario-based). In this paper our 
focus is on the model of  Amin and Zhang (2013a). We consider interval uncertainty in returns and demands and 
present the robust counterpart of  the model in Amin and Zhang (2013a). Moreover, on several examples, the robust 
approach is compared with stochastic programming approach of  Amin and Zhang (2013a) showing that the robust 
approach performs better. 

 
 

2. PROBLEM DEFINITION 
 

In this section, a general CLSC network is described that includes plants, collection centers, and demand markets (Fig. 
1) Amin and Zhang (2013a). The plants can manufacture new products and remanufacture returned products. The 
products are sent to demand markets by plants. Then, the returned products are sent to collection centers, where 
collecting used products from demand markets, determining the condition of  them by inspection and/or separation 
to find out whether they are recoverable or not. Then sending recoverable returns to the plants and unrecoverable 
returns to the disposal center. The goal is to know how many and which plants and collection centers should be 
open, and which products and in which quantities should be stock in them in order minimize the cost. Moreover, we 
assume that 

• The network is for a single period. 

• All returned products from demand markets are collected in collection centers. 

• Locations of demand markets are fixed. 

• Locations and capacities of plants and collection centers are known in advance 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The closed loop supply chain network Amin and Zhang (2013a) 

 
3. MATHEMATICAL MODEL 

 
The network is formulated as an MILP problem, where sets, parameters and decision variables are defined as follows 
Amin and Zhang (2013a): 
Sets 

I =  set of  potential manufacturing and remanufacturing plants locations ( )i I… …1, , , ,  

J =  set of  products ( )j J… …1, , , ,  

K =  set of  demand markets locations ( )k K… …1, , , ,  

L =  set of  potential collection centers locations ( )l L… …1, , , ,  

Parameters 

j
A =  production cost of  product j  

j
B =  transportation cost of  product j  per km between plants and demand markets 

j
C =  transportation cost of  product j  per km between demand markets and collection centers 

j
D =  transportation cost of  product j  per km between collection centers and plants 

1,… , �, … , � 

Plants 

Disposal Center 

1,… , �, … , � 

Collection 
centers 

1,… , 	, … ,
 

Demand 
markets 



55 
Makrooni and Salahi: Robust Multi-Objective Facility Location Model of Closed-Loop Supply Chain Network under Interval Uncertainty 
IJOR Vol. 14, No. 2, 53−63 (2017) 

 
 
 
1813-713X Copyright © 2017 ORSTW 
 
 

j
O =  transportation cost of  product j  per km between collection centers and disposal centers 

i
E =  fixed cost for opening plant i  

l
F =  fixed cost for opening collection center l  

j
G = cost saving of  product j  (because of  product recovery) 

j
H = disposal cost of  product j  

ij
P = capacity of  plant i  for product j  

lj
Q = capacity of  collection center l  for product j  

ik
t =   the distance between location i  and k  generated based on the Euclidean method (

kl
t  and 

li
t  are 

defined in the same way).  

l
t = is the distance between collection center l  and disposal center 

kj
d =  demand of  customer k  for product j  

kj
r =  return of  customer k  for product j  

j
α =  minimum disposal fraction of  product j  

Variables 

ikj
X =  quantity of  product j  produced by plant i  for demand market k  

klj
Y =  quantity of  returned product j  from demand market k  to collection center  l  

lij
S =  quantity of  returned product j  from collection center l  to plant i  

lj
T =  quantity of  returned product j  from collection center l  to disposal center 

i
Z =  1, if  a plant is located and set up at potential site i , 0, otherwise 

l
W = 1, if  a collection center is located and set up at potential site l , 0, otherwise 

 

( ) ( )

( )

i i l l j j ik ikj j kl klj j j li lij

i l i k j k l j l i j

j j l lj

l j

Z E Z FW A B t X C t Y G D t S

H O t T

= + + + + + − + +

+

∑ ∑ ∑∑∑ ∑∑∑ ∑∑∑

∑∑

1
min

  

ikj kj

i

s t X d k j≥ ∀∑. . , ,  (1) 

lij ikj i ij

l j k j j

S X Z P i+ ≤ ∀∑∑ ∑∑ ∑ ,  (2) 

klj ikj

l i

Y X k j≤ ∀∑ ∑ , ,   (3) 

j klj lj

k

Y T l jα ≤ ∀∑ , ,   (4) 

klj l lj

k j j

Y W Q l≤ ∀∑∑ ∑ ,   (5) 

klj lij lj

k i

Y S T l j= + ∀∑ ∑ , ,  (6) 

klj kj

l

Y r k j= ∀∑ , ,  (7) 

{ }i l
Z W i l∈ ∀0, ,1, ,  (8) 

ikj klj lij lj
X Y S T i k j l≥ ∀, , , 0, , , ,   (9) 
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The objective function is minimization of  the total cost. The first and second terms are the fixed costs of  
opening plants and collection centers, respectively. The third term is the production and transportation costs of  the 
new products. The forth term is related to product recovery and transportation costs of  returned products.  The 
fifth term represents the total recovery and transportation costs of  returned products from collection centers to 
plants. Finally, the sixth term is the disposal and transportation costs. 

The constraint (1) guarantees that the total number of  each manufactured product for each demand market is 
equal or greater than the demand. Capacity constraint of  plants is given by (2). Constraint (3) indicates that forward 
flow is greater than reverse flow. Constraint (4) enforces a minimum disposal fraction for each product. Constraint (5) 
gives capacity constraint of  collection centers. Constraint (6) tells that the quantity of  returned products from 
demand market is equal to the quantity of  returned products to plants and quantity of  products in disposal center 
for each collection center and each product. Constraint (7) represents the returned products. Constraints (8) and (9) 
are the binary and non-negative decision variables. 

Beside the total costs which is minimized, the author in Amin and Zhang (2013a) considered environmental 

issues in the model. To do so, new parameters are defined. 
ij

M  is parameter of  using environmental friendly 

materials by plant i  to produce product j  and 
lj

N   is parameter of  using clean technology by collection center 

l  to process product  j .  Thus the second objective function can be written as follows: 

 

ij ikj lij lj klj lij lj

i j k l l j k i

Z M X S N Y S T
       = + + + +        

∑∑ ∑ ∑ ∑∑ ∑ ∑2
max   

 
To solve this multi-objective optimization problem ε -constraint method is used in Amin and Zhang (2013a) 

as follow.  
 

( ) ( )

( )

i i l l j j ik ikj j kl klj j j li lij

i l i k j k l j l i j

j j l lj

l j

Z E Z FW A B t X C t Y G D t S

H O t T

= + + + + + − + +

+

∑ ∑ ∑∑∑ ∑∑∑ ∑∑∑

∑∑

min

  

ij ikj lij lj klj lij lj

i j k l l j k i

s t M X S N Y S T ε
       + + + + ≥        

∑∑ ∑ ∑ ∑∑ ∑ ∑. .  (10) 

ikj kj

i

X d k j≥ ∀∑ , ,   (11) 

lij ikj i ij

l j k j j

S X Z P i+ ≤ ∀∑∑ ∑∑ ∑ ,   (12) 

klj ikj

l i

Y X k j≤ ∀∑ ∑ , ,   (13) 

j klj lj

k

Y T l jα ≤ ∀∑ , ,  (14) 

klj l lj

k j j

Y W Q l≤ ∀∑∑ ∑ ,   (15) 

klj lij lj

k i

Y S T l j= + ∀∑ ∑ , ,  (16) 

klj kj

l

Y r k j= ∀∑ , ,  (17) 

{ }i l
Z W i l∈ ∀0, ,1, ,  (18) 

ikj klj lij lj
X Y S T i k j l≥ ∀, , , 0, , , ,   (19) 

 
 

4. ROBUST MODEL UNDER INTERVAL UNCERTAINTY 
 

Uncertainty in demands and returns are major issues in a supply chain network. Thus it is beneficial to take them 
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into account in the optimization model. In Amin and Zhang (2013a) the authors have used stochastic programming 
in order to include uncertainty in the presented model. However, here we discuss the robust counterpart of  the 
presented model under interval uncertainty for demands and returns. 

Consider the following deterministic linear optimization problem: 
 
cx d+min  

s t Ax b≤. .  

 

Based on Ben-Tal and Nemirovski (1998, 2000), the related uncertain linear optimization problem that consists of  a 
collection of  linear optimization problems can be defined as follows: 
 

cx d+min  

s t Ax b≤. .   (20) 

c d A b U∈, , ,  

 

where U  is the uncertainty set for uncertain data. A vector x  is a robust feasible solution to problem (20) if  it 

satisfies all realizations of  the constraints from the uncertainty set U . Ben-Tal and Nemirovski (1999) defined the 
robust counterpart of  problem (20) as follows 
 

( )
c d A b U

c x cx d Ax b c d A b U
∈

    = + ≤ ∀ ∈      ,? ,

min sup : , , , ,ˆ   (21) 

 
An optimal solution to problem (21) is the optimal robust solution of  problem (20). Such a solution satisfies the 
constraints for all possible realizations of  the data, and guarantees an optimal objective function value not worse 

than ( )c x *ˆ . Problem (21) is a semi-infinite linear optimization problem and seems to be computationally intractable. 

Nevertheless, it turns out that for a wide variety of  compact, convex uncertainty sets, the robust counterpart model 
is a tractable (polynomials solvable) convex optimization problem, usually a linear optimization or a conic quadratic 
problem (see Ben-Tal et al. (2009), Ben-Tal and Nemirovski (2000, 2002)).  

Under box uncertainty, { }ij i m j n
ξ ξ

= = …
=

1,.., , 1, ,
is unknown but bounded in a box of  the form  

 

 { }Box ij ij ij ij
u R G i m j nξ ξ ξ ρ= ∈ − ≤ = … = …: , 1, , , 1, ,  

 

where 
ij
ξ

 
is the nominal value of  the 

ij
ξ  and the positive numbers 

ij
G  represent “uncertainty scale” and ρ > 0  

is the ‘‘uncertainty level”. A particular case of  interest is 
ij ij

G ξ= , which corresponds to a simple case where box 

contains 
ij
ξ  whose relative deviation from the nominal data is of  size up to ρ . 

To develop the robust counterpart of  model (1), demands and returns are considered as uncertain parameters 
and it is assumed they belong to certain intervals. Thus constraint (11) in the uncertain case is as follows: 
 

 { }d d

ikj kj kj Box kj kj kj kj

i

X d k j such that d u d R d d G k K j Jρ≥ ∀ ∈ = ∈ − ≤ ∀ = … = …∑ , , , : 1, , , 1, ,,  

To have this inequality feasible for any 
kj

d  in the given uncertainty set d

Box
u  so as to immunize against infeasibility, 

it is sufficient to have 
 

d
kj Box

ikj kj
d u

i

X d k j
∈

≥ ∀∑ max , ,  

 
This is further equivalent to 
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d

ikj kj kj

i

X d G k jρ≥ + ∀∑ , ,  

However, for the returns constraints since it is in equality form in (17), thus first we relax it to the inequality 
one without losing anything. Since the model aims to minimize the returned products as it is a part of  the objective 
function. Then analogous to the demands constraints, the uncertain version of  returns constraints (17) with interval 
uncertainty is as follows: 
 

r

klj kj kj

l

Y r G k jρ≥ + ∀∑ , ,  

 
Therefore, the robust counterpart of  model (10)-(19) under interval uncertainty for demands and returns is the 
following MILP problem: 
 

( ) ( )

( )

i i l l j j ik ikj j kl klj j j li lij

i l i k j k l j l i j

j j l lj

l j

Z E Z FW A B t X C t Y G D t S

H O t T

= + + + + + − + +

+

∑ ∑ ∑∑∑ ∑∑∑ ∑∑∑

∑∑

min

 

ij ikj lij lj klj lij lj

i j k l l j k i

s t M X S N Y S T ε
       + + + + ≥        

∑∑ ∑ ∑ ∑∑ ∑ ∑. .   

d

ikj kj kj

i

X d G k jρ≥ + ∀∑ , ,   

lij ikj i ij

l j k j j

S X Z P i+ ≤ ∀∑∑ ∑∑ ∑ ,   

klj ikj

l i

Y X k j≤ ∀∑ ∑ , ,   

j klj lj

k

Y T l jα ≤ ∀∑ , ,   

klj l lj

k j j

Y W Q l≤ ∀∑∑ ∑ ,   

klj lij lj

k i

Y S T l j= + ∀∑ ∑ , ,   

r

klj kj kj

l

Y r G k jρ≥ + ∀∑ , ,   

{ }i l
Z W i l∈ ∀0, ,1, ,   

ikj klj lij lj
X Y S T i k j l≥ ∀, , , 0, , , ,  

 
 
5. COMPUTATIONAL EXPERIMENTS 
 
In this section, on several randomly generated examples, we compare the robust optimization model with the 
stochastic programming approach used in Amin and Zhang (2013a). All optimization problems are solved using 
CPLEX 12.5. In Amin and Zhang (2013a) scenario analysis has been used to observe the effects of  uncertainty. In 
this paper, at first like Amin and Zhang (2013a), deterministic model is being solved by using nominal data and the 
existing scenarios in Table 2. Nominal data are randomly generated using the random distributions specified in Table 
1. In the deterministic model, ε  is a very important parameter. In Amin and Zhang (2013a), the value of  the 
objective function is evaluated for different ε   values and it is observed that if  the value of  ε  increases then the 
value of  the objective function will increase too. According to Figure 5 in Amin and Zhang (2013a), for  ε  from 
40,000 to 500,000, the changes of  the objective function is not significant but for ε  greater than 500,000 the 
objective function increases magnificently. Thus in this paper, we consider ε  is 500,000. By considering the 
probability of  accuracy of  each scenario, the result of  the stochastic model is obtained and listed in Table 2. In the 
last column of  Table 2, the percentage changes of  results from both deterministic and stochastic models relative to 
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scenario 5 (base case) are obtained. As stated in Amin and Zhang (2013a), the results show that the stochastic 
programming model can gain flexible optimal CLSC configuration with the objective function near to the scenario 5 
(base case). 

Table 1. The sources of  random generation of  the nominal data Amin and Zhang (2013a) 
 

Parameter  
 

Corresponding random distribution 

 I J K L U× × × ×  × × × ×4 3 5 4 9   

 
j

A  ~uniform (13.5, 16.5) 

 
j

B  ~uniform (0.0131, 0.0160) 

 
j

C  ~uniform (0.0045, 0.0055) 

 
j

D  ~uniform (0.0027, 0.0033) 

 
j

O  ~uniform (0.0014, 0.0017) 

 
j

G  ~uniform (6.3, 7.7) 

 
j

H  ~uniform (2.25, 2.75) 

 
j
α  ~uniform (0.27, 0.33) 

 
i

E  ~uniform (4,500,000, 5,500,000) 

 
l

F  ~uniform (450,000, 550,000) 

 
ik kl li l
t t t t, , ,  ~uniform (0,100) 

 
ij lj

M N,  ~uniform (0,1) 

 
ij

P  ~uniform (75,600, 92,400) 

 
lj

Q  ~uniform (30,600, 37,400) 

 
kj

d  30000 

 
kj
r  10000 

 
 

Table 2. Scenario analysis. 
 

 Scenarios Demand Return Probability Objective 
Value 

Change % 

 
 
 
 
Deterministic 

1 33000 9000 0.075 18,906,118 6.1218 
2 27000 11000 0.075 16,731,719 -6.0833 
3 30000 11000 0.1 17,859,228 0.2455 
4 30000 9000 0.1 17,773,129 -0.2376 
5 (Base Case) 30000 10000 0.3 17,815,494 0.0000 
6 33000 10000 0.1 18,948,124 6.3576 
7 27000 10000 0.1 16,723,548 -6.1292 
8 33000 11000 0.075 18,992,876 6.6088 
9 27000 9000 0.075 16,720,837 -6.1444 

Stochastic 10 Combination of nine scenarios 17,826,417 0.0613 
 
 

In order to evaluate the robust model we consider two cases. In the first case, the number of  demands and 
returned products are constant but in the second case these quantities are chosen randomly in an interval in order to 
consider the entire amounts scenario in this interval. We consider  5 uncertainty levels  (ρ=0.2,0.5,1,2,3)  and we 

let d

kj
G = 1  and r

kj
G = 1 .  

 
First case 

Deterministic and robust models are solved using nominal data provided in Table 1, and the results are listed in 
the third column of  Table 3. Then under each uncertainty level, three random realizations are uniformly generated in 
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the corresponding uncertainty set (i.e. nominal value ρG, nominal value ρG − +  
) to analyze the performance of  

the solutions obtained by the proposed robust and deterministic models.  The results are given in the forth columns 
of  Tables 3. The fifth column of  Table 3 shows the percentage changes of  the values of  the objective function for 
deterministic and robust (fourth column) relative to the value of  the objective function of  the deterministic model 
under the nominal data. 
Second case 

In this case, it is supposed that nominal data for parameters with uncertainty 
kj

d  and 
kj
r  are randomly 

generated using the random distributions specified in the intervals (27000, 33000) and (9000, 11000), respectively and 
the nominal data for other parameters generated from Table 1. Similar to the method explained in the first case, 
deterministic and robust models are investigated under nominal data and realization and percentage changes are 
calculated. The results are obtained in Table 4. 

The results obtained in Tables 3 and 4 show that increasing uncertainty level causes an increase in the value of  
the objective function for the robust model and results in an increase in the percentage of  its changes relative to 
deterministic model under nominal data. For lower uncertainty levels, percentage changes of  robust model in many 
cases is less than the stochastic model but with increasing the uncertainty level, the percentage of  changes of  robust 
model is more than stochastic model, because in stochastic model, moving far away from nominal data brings down 
the probability of  accuracy of  scenarios while in robust model, data are distributed uniformly around the nominal 
data. 

Table 3. Summary of  First case results under uncertain return and demands. 
 

 
 

 
kj kj

d r,  

 

 ρ  Objective Function Value 
under nominal data 

Objective function values 
under realizations 

Percentage change over 
the final objective 
function value under 
nominal data (%) 

Deterministic Robust Deterministic Robust Deterministic Robust 
 
 
 
 
 

 
kj

d = 30000  

 
kj
r = 10000  

0.2 17,815,494 17,818,939 17,818,818 17,822,263     0.0187 0.0380 
17,813,953 17,817,398    -0.0086 0.0107 
17,813,147 17,816,591    -0.0132 0.0062 

0.5 17,824,106 17,815,305 17,823,917    -0.0011 0.0473 
17,823,466 17,832,078     0.0447 0.0931 
17,820,653 17,829,265     0.0290 0.0773 

1 17,832,718 17,802,966 17,820,189    -0.0703 0.0264 
17,812,948 17,830,171    -0.0143 0.0824 
17,825,892 17,843,115     0.0584 0.1550 

2 17,849,941 17,844,760 17,879,207     0.1643 0.3576 
17,825,951 17,860,398     0.0587 0.2521 
17,840,238 17,874,685     0.1389 0.3322 

3 17,867,164 17,863,793 17,915,464     0.2711 0.5611 
17,834,543 17,886,213     0.1069 0.3970 
17,840,799 17,892,469     0.1420 0.4321 

 
 

Table 4. Summary of  Second case results under uncertain return and demands. 
 

 
kj kj

d r,  

 

 

ρ  
Objective Function Value 
under Nominal data 

Objective function values 
under realizations 

Percentage change over 
the final objective 
function value under 
nominal data (%) 

   
Deterministic Robust Deterministic Robust Deterministic Robust 

 
 

kj
d ∈ (27000,33000)

kj
r ∈ (9000,11000)  

0.2 17,666,427 17,669,874 17,668,658 17,672,105     0.0126 0.0321 
 17,667,825 17,671,272     0.0079 0.0274 
 17,664,831 17,668,278    -0.0090 0.0105 

0.5 17,675,044 17,660,008 17,668,624    -0.0363 0.0124 
 17,659,467 17,668,084    -0.0394 0.0094 
 17,669,787 17,678,404     0.0190 0.0678 
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1 17,683,660 17,670,873 17,688,106     0.0252 0.1227 
 17,681,938 17,699,171     0.0878 0.1853 
 17,664,239 17,681,472    -0.0124 0.0852 

2 17,700,893 17,651,009 17,685,475    -0.0873 0.1078 
 17,685,209 17,719,675     0.1063 0.3014 
 17,644,566 17,679,032    -0.1237 0.0714 

3 17,718,126 17,714,916 17,766,614     0.2745 0.5671 
 17,660,919 17,712,618    -0.0312 0.2615 
 17,688,670 17,740,369     0.1259 0.4185 

 
 

Finally, to show the effect of  minimum disposal fraction of  product j  (
j
α ), which is an important parameter 

related to reverse supply on the objective function, sensitivity analysis is performed. The three models, deterministic, 

robust and stochastic are evaluated for different values of  
j
α . Fig. 2 and 3 show the results for all three 

deterministic (under nominal data), robust and stochastic models. These two figures show that by increasing 

parameter (
j
α ), the value of  the objective function for all the three models increases. Also it can be observed that 

the value of  the objective function for deterministic and robust models are close to each other. 
 
 

Figure 2. Sensitivity analysis of  
j
α  for First case in deterministic (under nominal data), robust (with ρ=0.5) and 

stochastic scenarios 
 
 

 

Figure 3. Sensitivity analysis of 
j

α  for Second case in deterministic (under nominal data), robust (with ρ=0.5) and 

stochastic scenarios. 
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6. CONCLUSION 
 

In this paper, a mixed integer programming model for a closed loop supply chain network is considered in 
accordance with Amin and Zhang (2013a). Due to the existence of  uncertainty in demand and return parameters, the 
robust counterpart of  the model was presented. Then for some examples, the sensitiveness of  the model relative to 

different uncertainty levels and parameter �� was assessed and the obtained numerical results showed that the 

percentage of  changes of  results in robust models has been less than stochastic model in most cases while by 
increasing the level of  uncertainty, this rate for stochastic model has been less.  Also the numerical results showed 

that the value of  the objective function for all three models with parameter �� have a direct relation, it means that 

by increasing the quantity of  the parameter �� the value of  the objective function for all the three models increases. 
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