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ABSTRACT

In this manuscript we introduce a new class of monotone generalized
nonexpansive mappings and establish some weak and strong conver-
gence theorems for Krasnoselskii iteration in the setting of a Banach
space with partial order. We consider also an application to the space
L1([0,1]). Our results generalize and unify the several related results
in the literature.
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1. INTRODUCTION AND PRELIMINARIES

The study of the existence of fixed point of nonexpansive mappings, initiated
in 1965 independently by Browder [5], Gohde [11] and [16], is one of dynamic
research subject in nonlinear functional analysis. In [16], Kirk proved that a
self-mapping on a nonempty bounded closed and convex subset of a reflexive
Banach space possesses a fixed point if it is nonexpansive and the corresponding
subset has a normal structure. In 1992, Veeramani obtained a more general
result in this direction by introducing the notion of T'—regular set [23].

On the other hand, in 1967, Opial introduced in [18] a class of spaces for
which the asymptotic center of a weakly convergent sequence coincides with
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the weak limit point of the sequence. A Banach space X is said to have the
Opial property, if for each weakly convergent sequence {z,} in X with limit z,
liminf ||z, — z|| < liminf ||a,, — y|| for all y € X with y # z. In 1972, Gossey
and Lami Dozo noticed in [12] that all the spaces of this class have normal
structure. It is well known that Hilbert spaces, finite dimensional Banach
spaces and [P-spaces, (1 < p < o0), have the Opial property [8]. In 2008,
Suzuki introduced in [21] a new class of mappings satisfying the so-called (C)-
condition which also includes nonexpansive mappings and proved that such
mappings on a nonempty weakly compact convex set in a Banach space which
satisfies Opial’s condition have a fixed point. In 2011, Falset et al. proposed in
[8] mappings satisfying (Cy)-condition, A € (0, 1), respectively. In [1] Aoyama
and Kohsaka introduced a new class of nonexpansive mappings, and obtained
a fixed point result for such mappings. Finally, in 2017, in [19] Shukla et al
proposed a new generalization and introduce the deneralized a—nonexpansive
mapping and obtained a fixed theorem for such mappings. All the results cited
above were obtained, in the weak case, with Opial’s condition.

In this report, we propose a generalization of the results of Shukla et al. [19]
by introducing a class of A — - generalized nonexpansive mapping. In addition,
we establish some weak and strong convergence theorems for Krasnoselskii
iteration in an ordered Banach space with partial order <. We also consider
an application in the context of L1 ([0, 1]). The presented results in this report,
extend, generalize and unify a number of existing results on the the topic in
the literature.

Throughout the paper, N denotes the set of natural numbers and R the
set of the real numbers. For a non-empty K of a real Banach space X, a
mapping T : K — K is said to be nonexpansive if | T(z) — T(y)|| < ||z — v
for all z,y € K. Moreover, a selfmapping T is called quasinonexpansive [7] if
IT(z) —y|| < ||z —y| for all zx € K and y € F(T), where F(T) is the set of
fixed points of T' .

Definition 1.1 ([12, 22]). The norm of a Banach space X is called uniformly
convex in every direction, in short, we say that X is UCED, if for ¢ € (0, 2]
and z € X with ||z|| = 1, there exists §(e, z) > 0 such that for all 2,y € X with
where ||z|| <1, |ly|| <1land z —y € {tz: t € [-2,—¢] U [e, 2]}

o +yll <2(1-d(, 2)).

Lemma 1.2 ([21]). For a Banach space X, the following are equivalent:

(i) X is UCED.

(1i) If {xn} is a bounded sequence in X , then the function f on X defined
by f(x) = limsup ||z, — z|| is strictly quasiconvex , that is,
FOz+(1—=Ny) < max{f(z), f(y)} for all X € (0,1) and z,y € X with
T #y.

Lemma 1.3 ([9]). Let (z,) and (wy,) be bounded sequences in a Banach space
X and let A belongs to (0,1). Suppose that zp+1 = Awp+(1—N)z, and ||wp+1 —
Wn || < ||2nt1 — 2nl| for all n € N. Then lim ||w, — z,|| = 0.
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Definition 1.4 ([21]). Let K be a nonempty subset of a Banach space X. We
say that a mapping 7' : K — K satisfies (C)-condition on K if for x,y € K we
have

%III —T@)| <llz =yl = T() =TI <z -yl

It is clear that each nonexpansive mapping satisfies the condition (C) but
the converse is not true. For details and counterexamples see e.g. [10].

Definition 1.5 ([8]). Let K be a nonempty subset of Banach space X and
A € (0,1). We say that a mapping T : K — K satisfies (C)) -condition on if
for all x,y € K, we have

Az =T@)| < llz =yl = [T(x) = Tl <[z -yl

Note that if A = 3, then (C))-condition implies (C)-condition. For more
details and examples, see e.g. Falset et al. [8].

Throughout the paper, the pair (X, <) will denote an ordered Banach space
where X is a Banach space endowed with a partial order ” < 7.

Definition 1.6. A self-mapping T defined on an ordered Banach space (X, <)
is said to be monotone if for all z,y € X,
r<y=T(x) <T(y).

Definition 1.7 ([1]). Let K be a nonempty subset of a Banach space X. A
mapping 7 : K — K is said to be a-nonexpansive if for all z,y € K and a < 1,
IT(z) = TW))* < ol T(2) = yl* + allz = TE)I* + (1 = 20) = — y]*
Definition 1.8 ([19]). Let K be a nonempty subset of an ordered Banach space

(X,<). A mapping T : K — K will be called a generalized a-nonexpansive
mapping if there exists a € (0,1) such that

{ slle = T(@)[| < [l — y|l implies
IT(2) =T < alT(@) =yl + alT(y) — 2| + (1 = 2a)[lz -y

for all z,y € K with x <wy.

Remark 1.9. When a = 0, a generalized-nonexpansive mapping is reduced to a
mapping satisfying (C)-condition. The converse is false. For more details and
counterexamples see e.g. [19] and [14, 13].

2. REICH TYPE (A — a)-NONEXPANSIVE MAPPINGS

Definition 2.1. Let K be a nonempty subset of an ordered Banach space
(X,<). A mapping T : K — K will be called Reich type (A — a)-nonexpansive
mappings if there exists A € (0,1) and « € [0,1) such that

(2.1) AMlz =T(@)|| < llz -yl = [T(z) - T < Ry(z,y),
where

Ri(z,y) = a(||T(2) =yl + |1 T(y) = z[]) + (1 = 2a) ||z - y]|
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for all z,y € K with x < y. In addition, if the mapping 7" is monotone, we say
that monotone Reich type (A — a)-nonexpansive mapping.
Remark 2.2. We point the following special cases:

(1) When o = 0, a Reich type A — a-nonexpansive mapping reduced to a
mapping satisfying condition (C)), see e.g. [8].
(2) If A = £ , it becomes a generalized a-nonexpansive condition.

Proposition 2.3. Let K be a nonempty subset of an ordered Banach space
(X,<) and T : K — K be a Reich type (A — a)-nonexpansive mapping with a
fixed point z € K with x < z. Then T is quasinonezrpansive.
Proof. Since z € K fixed point, 0 = ||z — T'(2)|| < ||z — z|| , we have
[z =T@)| < allz=T@)[|+alT(z) -z + (1 - 2a)|z — ]| < |z — =
U

Definition 2.4. Let T' be a monotone self-mapping on a nonempty convex
subset of an ordered Banach space (X,<) . For a fix A € (0,1) and for an

initial point x; € K, the Krasnoselskii iteration sequence {z,,} C K is defined
by

(2.2) Tng1 = NT(20) + (1 = Na, , n > 1.
In the sequel we need the following lemmas.

Lemma 2.5 ([17]). Let z,y,z € X and A € (0,1). Suppose p is the point of

segment [z, y] which satisfies ||z — p|| = M|z — y|| , then,

(23) Iz = pll < Allz =yl + 1 = A)l|lz — =]

Lemma 2.6 ([15]). Let K be conver and T : K — K be monotone. Assume

that x1 € K, 1 < T(x1). Then the sequence {x,} defined by (2.2) satisfies:
Tn S Tn+1 S T(wn) S T(In+1)7

for m > 1. Moreover, if {x,} has two subsequences which converge to y and z,

then we must have y = z.

It is easy to see that by the mimic of the idea used in Lemma 2.6, we get

that
T(zn41) S T(2n) < Tng1 < Tn,

by assuming the initial condition as T'(z1) < 7.
Lemma 2.7. Let K be a nonempty convex subset of an ordered Banach space
(X, <) and {z,} is the iteration sequence defined by (2.2) in K. Let T : K —
K be a monotone Reich type A — a-nonexpansive mapping with \ € (%,1)
and « € [0,1). Suppose also that y, = T(x,), n > 1. If, for x1 € K with
x1 < yp =T(x1) we have

(2.4) lyn — Znt1ll < BA = 1)||yn — ||, for all n € N,

then the sequence {||yn — x|} is decreasing.
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Proof. On account of the definition of Krasnoselskii iteration we have

(2.5) Tn41 = Myn + (1 — Nz, with y, = T'(z,,).

It means that x,41 belongs to the segment |z,,, y,[, and hence we have
(2.6) 20 = ynll = llen = Zniall + lznr1 = ynll-
Furthermore, (2.7) yields that

27 len = zngall = llzn = AT (@) + (1 = M)l = Mjzn = T(@a)]]].

On account of the triangle inequality together with the fact that 7" is monotone
Reich type (A — a)-nonexpansive mapping, we derive that
(2.8)

[yn+1 = nsall < llyntr = ynll + llyn — nal

= HT(xn-H) - T(xn)H + Hyn - xn-}-l”

< a||T(zn) = na[| + 1T (@n41) = zall)
+(1 = 2a)[[zn — znga [ + [[yn — 2o |

= (14 )llyn = Znpa1ll + @llynsr — zall + (1 = 20) 20 — 2ppa |
= (14 )llyn = 2ol + allynir — 2|
+(1 + a)|lzn — znall = 3allzn — 2o
On account of (2.6) the left hand side of the inequality of (2.8) turns into
(2.9) = [+ a)llzn = ynl + llynsr — znll = 3allzn — zniall,
Taking the inequality (2.7) into account, the expression (2.9) turns into

< A+ a)|lzn —yul + allynsr — zall = 3Aallzn — yall
(2.10)
=1+ a=3xa)[lzn — yall + allyns1 — 2all

Employing the assumption (2.4) of the lemma, we estimate the expression
(2.10) from above as

=1 +a=3xa)[lzn —yall + aBA=1)[lyn — zn||
(2.11)
= [lzn —ynl-
By combining (2.8)- (2.11), for each n, we deduce that
[Ynt1 = Tnia |l < llon —ynl,
which complete the proof. O
In the following proposition, we extend the Goebel-Kirk inequality [9] from

the class of nonexpansive mappings into the class of monotone generalized(A —
a))-nonexpansive mapping.
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Proposition 2.8. Let K be a nonempty convex subset of an ordered Banach
space (X,<) . Let T : K — K be a monotone Reich type (A — «)-nonexpansive
mapping with X € (3,1) and a € (0,1). For x1 € K with 21 < T(x1), we set
yn = T'(xy,) where {x,} is the iteration sequence defined by (2.2) in K satisfies
the assumption (2.4). Then, we have

(2.12) Nlyirn —zill 2 A=) lyitn = ignll = llys = zill]+ 1 + 0y — 2],
for all i,n € N.

Proof. Inspired the techniques used in [9], we shall use the method of the
induction to prove our assertion. It is evident that (2.12) is trivially true for
all 7 if n = 0. We assume that the inequality (2.12) holds for a given n and for
all 4. By replacing ¢ by ¢ + 1 in (2.12), we get

(2.13) [Yin+1 — Tigall = (L= 27" [lYitnt1 — Tignta |

— llyirs = il + A+ 2 lyirs — il

On the other hand, due to Krasnoselskii iteration, we have x,11 = Ay, + (1 —
Az, with y, = T'(z,) and also

(2.14) [zirs — zall = [[Ays + (1 = Nas — 23| = Allys — |-
The observation in (2.14) provide to apply Lemma 2.5 that yields
1Yitn+1 — Titall < MYitn+1 = yill + (1 = Vl[Yitnt1 — x|

Regarding that T is a monotone Reich type (A — «)-nonexpansive mapping, we
have

Hyi-i-n-'rl - $i+1|| < (1 - )\)Hyi—i-n—i-l - xi” + )‘ZZ:o ||yi+k+1 - yi-i-kH
<(1- >\)||Z#+n+1 — x|
FAD ol Tivrr1r — virrll + allYirrrr — il
+(1 = 20)|| @itk — itrll)

So, we derive that

[Yitns1 — il = (L= X) " yigns1 — zigall = (1= A) "' AaBin

2.15
(2.15) — (1 =XM1 - 2a) A,
where
Ain = Z Zitht1 — Titrl
k=0
and .
Bin = > [lirkr1 = Gkl + [Yerntr — zigsll]-
k=0
Taking the assumption (2.4) and (2.14) into account, we derive that
(2.16)

|Vitk+1 — Tigr | + |Yirr — Tizrll < BN = D|yitr — Tigrll + |Yier — itk

= 3AYitk — Titnll = 3l|Tivr — Titrta ll,
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for all £ € 0,1,....,n. Regarding the definition of Krasnoselskii iteration we
have Ziyp+1 = itk + (1 — N@igr, with yipr = T(2i4k). In other words,
Ttk < Titkt1 < Yi+r and we have

(2.17) [Zirk = Yirrll = 1Zivhe1 — Tnga | + [@irrs1 — yissll-

Now, by revisiting the inequality (2.16) by keeping the equality (2.17) in mind,
we find
(2.18)
Yitr+1 = Tivrll + [Zitrtr = Yirnll = [Yirns1r — Tignll + [|Yire — Tigrll
—Nzitk — Tigrr |
<2|[@igk — i

which implies B;, < 2A4;,. Accordingly, the inequality (2.15) becomes
(2.19) [Yitnt1 = zill = (1= X) " lyirntr = zipall = AL = X) " Ay
Employing the inequality (2.13) in (2.19), we find that

[Yisna1 — zill 21 = N7 lyini1 — Tipnttl] — |yisr — Tiga ]
+ (1 =N+ N [yirr — zigall = A1 = N7 g

On account of (2.14), the estimation above turns into

[Yisns1 — @il 21 = N7 g1 — Tipnst || — |Yisr — zig]]

(2.20) . 9 1
+ @ =N A+ ) |yivr — ziga | = A1 =) Ciny,

where Cj,, := Z |Yi+x — itk||. By bearing, Lemma 2.7, in mind, we find that
k=0

n
=D llyire — @il < 0+ Dllys — ]l
k=0

Consequently, (2.20) can be estimated above as

(2.21)

[Yitns1 = zill (1= A" lyignr1 — Tignral = lyisr — zigall]
+ (1= A+ 0Ny — ziall = X1 =X 0+ 1)y —
=1 =X """ lgipni1 = zignsa |l = i — ]

(=27 A +nA) = (1= 2"V |lyigs — @i
A=) =221 =N+ D]y — ],

by adding and substraction the same term (1 — \)~("*V|ly,,1 — ;4. Notice
that (1 —A)~'(1+nX) — (1 —\)~(+1) < 0. Thus, regarding this observation
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together with Lemma 2.7, the inequality (2.21) changed into

yitn+1 =il 2 (1 =27 D [lgitnt1 = zipnsal = lyi = ill]
H =N ) = (1 =2y —
=270 =221 = )+ D]y —

= (1 =X |yirnsr = zignsr|l = [l — ]
+ (14 (n+ DNy — =]
which completes the proof of Proposition 2.8. Il
Theorem 2.9. Let K be a nonempty, conver and compact subset of an ordered
Banach space (X,<) . Let T : K — K be a monotone Reich type A\ — a-
nonexpansive mapping with A € (%, 1). For x1 € K with 1 < T(z1), we set

yn = T'(xy,) where {x,} is the iteration sequence defined by (2.2) in K satisfies
the assumption (2.4). Then {x,} converges to some x € K with x, < x and,

(2.22) lim ||, — T(x,)]| =0
Proof. We shall divide the proof in two cases: @« = 0 and « € (0,1). Suppose,
first, that & = 0 . Due to the definition (2.2) of the sequence {z,}, we have
Mzn — Ynll = |0 — Tnta], for all n > 1.
On account of Lemma 2.6, we have x,, < x,,41, for all n > 1. Therefore condi-
tion (2.1) implies that,
1T (zn) = T(2nt 1)l = lyn = Ynt1ll < RF (@0, Tni1) = |20 — gl
since @ = 0. Employing Lemma 1.3, the inequality above yields that
1i7rln |z — T(xn)|| = 0.

In the following, we shall consider the second case o € (0,1). The proof
of this case mainly adopted from the proof of Theorem 3.1 in [15]. Since K
is compact, there exists a subsequence of {z,} which converges to z € K. On

account of Lemma 2.6, the sequence {x,} converges to z and z,, < x, forn > 1.
To show our assertion (2.22), suppose, on the contrary, that

lim ||z, — T(x,)|| = R > 0.
n
As 21 < x, < x, we then have
(2.23) lxn — 21]] < ||& — 1] for all n > 1.

Due to triangle inequality we have

(2.24)
[Yi4n = @ill = [T(@i4n) — @l S NT(@itn) = Tinl| + [|ign — 1| + |21 — 4]
<N T(@1) — 2]l + 2[|z — 2|
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for any ¢,n > 1, due to (2.23) and Lemma 2.7. Since all conditions are satisfied
in Proposition 2.8, we have (2.12). Letting ¢ — oo in the inequality (2.12), we
derive that

(2.25) Hm ||yitn — ]| = (1 +nA)R,
71— 00
where we used that
lim ([|T(z:) — zil| = [T (zi4n) = Tignl) = R— R =0,
11— 00
for any n > 1. Combining (2.24) and (2.25), we find
(14+ANR < Jim s — 2l < [T(@0) = a1 + 20z = |

Thus, the inequality can be fulfilled only if R = 0 which yields the inequality
(2.22). O

Lemma 2.10. Let K be a nonempty subset of an ordered Banach space (X, <)
and T : K — K be a monotone Reich type (A — a)-nonexpansive mapping with
X €]0, ). Then for each x,y € K with x <y :

) 1T(x) = T*(@)|| < [l = T(2)]|
(ii) either Az — T(2)[| < ||z =yl or M|T(z) = T*(z)|| < | T(z) -y
(iif) either [ T(x) = T(y)|| < allT(z) -yl + aflz = T()[ + (1 = 2a) ||z = y||

or [T2(z) = T(y)ll < al|T(z) = T(y)ll + allT*(2) -yl + (1 - 20)||T(z) -y

Proof. (i) Since we have ||z — T'(z)|| < ||lz — T'(z)| for all A €]0,1], by
the definition of Reich type (A — a)-nonexpansive mapping we get the
desired results. Indeed,

IT(2) = T*(@)|| < alla = T*(@)]| + (1 = 2a)l|lz — T(x)]].
Thus (i) hold for a = 0.
(ii) Suppose, on the contrary, that M|z — T'(z)|| > || — y|| and ||T(x) —

T?(z)|| > ||T(x) — y||. Then, by triangle inequality together with the
assumption (i), we find that

lz = T(@)I| < |l = yll + I T(2) = yll < Az = T(@)|| + A|T() - T*(z)|
< 2|z =T ()]l
Since A < 1 we obtain |[z—T'(z)| < |[z—T(z)| which is a contradiction.
Thus, we obtain the desired result.

(iii) The proof of (iii) follows from (ii). We skip the details.
O
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Lemma 2.11. Let K be a nonempty subset of an ordered Banach space (X, <)
and T : K — K be a monotone Reich type (A — a)-nonexpansive mapping with
X € (0,3]. Then for each z,y € K with x <y,

e~ 7@ + o~ yl.

Proof. Tt is the mimic of the proof of Lemma 3.8 of [19]. So, we skip the
details. d

lz =T ()l < (

Using the above two lemmas, we can prove the following.

Theorem 2.12. Let K be a nonempty conver and a compact subset of an
ordered Banach space (X, <) and be T : K — K a monotone Reich type (A—«)-
nonexrpansive mapping with \ € (%, %] Select 1 € K such that x1 < T(x1),
and forn > 1, denote y,, = T(x,,) where {x,} is the iteration sequence defined
by (2.2) in K satisfying, for all n € N, the assumption (2.4) . Then {z,}

converges strongly to a fized point of T.

Proof. By Theorem 2.9, we have
1i7rln |z — T(xn)|| = 0.

Since K is compact, there exist a subsequence {x,, } of {z,} and z € K such
that {x,, } converges to z. Employing Lemma 2.11, we have,

3+«

lzn, =T < (=20, = T(@n,)l + |2, — 2]

< gz
for all k¥ € N. Thus, the sequence {z,, } converges to T'(z) and hence T'(z) = z.
Since z is a fixed point of T, by Proposition 2.3, we find that

s = 2 < AT (@a) — 2]+ (1= Nl — 2] < e — 2]

for all n € N. Therefore {z,} converges to z . O

We say that a Banach space X has the Opial property [18] if for every weakly
convergent sequence {x,} in X with a limit z, fulfils

liminf ||z, — 2| < liminf ||z, — yl|,
n—o0 n—o0

for all y € X with y # z. It is a very rich class, for examples, all Hilbert spaces,
sequence spaces £, (1 < p < 00), and finite dimensional Banach spaces have
the Opial property. Unexpectedly, L,[0,27],(p # 2) do not have the Opial
property [9],[10].

Proposition 2.13. Let K be a nonempty subset of an ordered Banach space
(X, <) with the Opial property and T : K — K be a monotone Reich type

(A — a)-nonexpansive mapping with A € (%, %] If {x,,} converges weakly to z
and

1i7rln |z — T(xn)|| =0,
then T'(z) = z.
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Proof. By Lemma 2.11, we have,

3+«
e — T + 1 — 2|

ln =T (2)] < (
for n € N and hence,
1imninf |z — T(2)]| < limninf lxn — 2]
We claim that T'(z) = z. Indeed, if T'(z) # z, the Opial property implies,
1irr%linf lzn — 2] < 1irr%inf |z — T'(2)|
which is a contradiction with inequality (2.22) . O

Theorem 2.14. Let K be a nonempty convexr and weakly compact subset of
an ordered Banach space (X, <) with the Opial property and T : K — K be a
monotone Reich type (A — a)-nonexpansive mapping with \ € (%, %] . Select
x1 € K such that 1 < T(x1), and for n > 1, denote y, = T(x,,) where {x,}
is the iteration sequence defined by (2.2) in K satisfying, for all n € N, the

assumption (2.4) . Then {x,} converges weakly to a fized point of T .
Proof. By Theorem 2.9, we have
lim ||z, — T(zy)| = 0.

Since K is weakly compact, there exist a subsequence {z,, } of {z,} and z € K
such that {z,,} converges weakly to z . By Proposition 2.13, we deduce that
z is a fixed point of T'. As in the proof of Theorem 2.12, we can prove that
{|lzr, — 2||} is a nonincreasing sequence. We prove our assertion by reductio
de absurdum. Suppose, on the contrary, that {z,} does not converge to z.
Then there exist a subsequence {z,;} of {z,} which converges weakly to w
and w # z. We note that T'(w) = w . From the Opial property,

lim ||z, — z|| = lim ||zp, — 2| < lim ||z, —w| = lim ||z, —w]|
n k k n
= lim [|zn; —w)[| <lim [[z,; — z[| = lim ||z, — z]],
J J n
a contradiction that complete the proof. O

The following theorem directly follows from Theorems 2.12 and 2.14. So, to
avoid the repetition, we skip the details.

Theorem 2.15. Let K be a convex subset of an ordered Banach space (X, <),
and T : K — K be a monotone Reich type (A — a))-nonexpansive mapping with
A € (3, 3]. Assume that either of the following holds:

(i) K is compact;

(ii) K is weakly compact and X has the Opial property.
Then T has a fized point.

Finally, we will give a generalization of a fixed point theorem due to Browder
[5], Gohde [11] and Suzuki [21].
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Theorem 2.16. Let K be a conver and weakly compact subset of a UCED
ordered Banach space (X,<). Let T : K — K be a monotone Reich type
(A — a)-nonexpansive mapping with A € (%, %] Then T has a fixed point.
Proof. We construct an iterative sequence {x,} in K by starting 27 € K as

1 .
Tn+1 = §(T($n) + xn) With (| T(zn41) — zall < |T(20) — 2al,

for all n € N. Then by Theorem 2.9, we have
lim ||, — T(x,)]| =0

holds. Define a continuous convex function f from K to [0,400) by

f(z) = limsup ||z, — ||
n

forall z € K . Since K is weakly compact and f is weakly lower semicontinuous,
there exists z € K, such that

f(z) =min{f(z) : z € K}
Since, by Lemma 2.11:
3+«
l1-«a
we then have, f(T(z)) < f(z) . Since f(z) is the minimum, f(T'(z)) = f(z)
holds. If T'(z) # z, then since f is strictly quasiconvex (Lemma 1.2) we have,
£2) < FCELE) < max(£(2), 5T ) = 1(2)
which is a contradiction. Hence T'(z) = z. (]

l[n = T(2)[ < ( Nwn =T (@n)ll + 2n — 2],

3. APPLICATION TO L¢([0,1])

As an application, we consider L;([0,1]) the Banach space of real valued

functions defined on [0,1] with absolute value Lebesgue integrable, i.e.,
[ £ (@)|dz < oc.
We recall some definitions which can be found in e.g. [3]. As usual, f = 0 if
and only if the set {z € [0,1] : f(z) = 0} has Lebesgue measure 0, then, we say
f = 0 almost everywhere. An element of L;([0, 1]) is therefore seen as a class
of functions. The norm of any f € L1([0,1]) is given by

1l = / f (@) |de

From now on, we will write Ly instead of L1([0,1]) . Recall that f < g if
and only if f(z) < g(x) almost everywhere, for any f,g € L. We adopt the
convention f < g if and only if ¢ < f . We remark that order intervals are
closed for convergence almost everywhere and convex. Recall that an order
interval is a subset of the form

[fa%):{QELl : fgg}or(eaf]:{gel/l : ggf}a
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for any f € L.
As a direct consequence of this, the subset

[fg)={h€Li:f<h<g}=I[f—)N (<4
is closed and convex, for any f,g € L;.
Let K be a nonempty subset of L; which is equipped with a vector order
relation < . A map T : K — K is called monotone if for all f < g we have

T(f) < T(g).

Remark 3.1. Since L1([0,1]) fails to be uniformly convex, Theorem 2.12 can’t
not be used to get a fixed point result for monotone generalized A — o non-
expansive mappings in L1([0,1]). As an alternative, we will use an interest-
ing property for the convergence almost everywhere contained in the following
lemma.

Lemma 3.2 ([4]). If (f,) is a sequence of uniformly LP -bounded functions on
a measure space, and if f, — [ almost everywhere, then

liminf || ][5 = o inf || £, — £+ 11

for all 0 < p < 0.
In particular, this result holds when p = 1.

On account of Lemma 2.11 and Lemma 3.2, we shall prove the following.

Theorem 3.3. Let K C Ly be nonempty, convex and compact for the conver-
gence almost everywhere. Let T : K — K be a monotone Reich type (A — «)-
nonexrpansive mapping with o G]%, %] Select f1 € K such that f1 <T(f1),, and
forn > 1, denote g, = T(fn) where (f,) is the iteration sequence defined by
(2.2) in K satisfying, for all n € N, the assumption (2.4) . Then the sequence
(fn) converges almost everywhere to some f € K which is a fived point of T,

i.e., T(f) = f. Moreover, f1 < f.

Proof. Theorem 2.9 implies that (f,) converges almost everywhere to some
f € K where f, — f, for any n > 1. Since (f,,) is uniformly bounded, lemma
3.2 [4] implies

lim inf || £, — T(f)|| = liminf || fn = f| + [/ = T(/)l]

Theorem 2.9 implies
liminf || f, — T'(fn)[l = 0.

Therefore we get
timint ||, — ()| = mint | o — 7]+ |f ~ (D)

On the other hand, we know that each f,, < f for each n > 1, so, by assumption
(2.1), we have,

lim inf || fro— flIH =T () < T inf (| fo =T (F)lI+alT(fn) = flI+0=20) || fn=F])
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And, by Lemma 2.11, we have,

3+
1
Again, by application of the Theorem 2.9, we obtain,

liminf [| f, = Il + |[f = T(H)] < liminf(1 — )| fu = T(H)] + &l T(fn) = £1)
And like,

liminf | £, [+ f~T(/)]| < lim inf

limninf [ fn = fIl=I1T(fn) = fli
we then have,

limin | f, — |+ [ = T(H) < liminf | £, — T(£)]]

that implies
If =TI =0
or

T(f) =1
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