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Abstract

In this manuscript we introduce a new class of monotone generalized

nonexpansive mappings and establish some weak and strong conver-

gence theorems for Krasnoselskii iteration in the setting of a Banach

space with partial order. We consider also an application to the space

L1([0, 1]). Our results generalize and unify the several related results

in the literature.
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1. Introduction and preliminaries

The study of the existence of fixed point of nonexpansive mappings, initiated
in 1965 independently by Browder [5], Göhde [11] and [16], is one of dynamic
research subject in nonlinear functional analysis. In [16], Kirk proved that a
self-mapping on a nonempty bounded closed and convex subset of a reflexive
Banach space possesses a fixed point if it is nonexpansive and the corresponding
subset has a normal structure. In 1992, Veeramani obtained a more general
result in this direction by introducing the notion of T−regular set [23].

On the other hand, in 1967, Opial introduced in [18] a class of spaces for
which the asymptotic center of a weakly convergent sequence coincides with
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the weak limit point of the sequence. A Banach space X is said to have the
Opial property, if for each weakly convergent sequence {xn} in X with limit z,
lim inf ‖xn − z‖ < lim inf ‖xn − y‖ for all y ∈ X with y 6= z. In 1972, Gossey
and Lami Dozo noticed in [12] that all the spaces of this class have normal
structure. It is well known that Hilbert spaces, finite dimensional Banach
spaces and lp-spaces, (1 < p < ∞), have the Opial property [8]. In 2008,
Suzuki introduced in [21] a new class of mappings satisfying the so-called (C)-
condition which also includes nonexpansive mappings and proved that such
mappings on a nonempty weakly compact convex set in a Banach space which
satisfies Opial’s condition have a fixed point. In 2011, Falset et al. proposed in
[8] mappings satisfying (Cλ)-condition, λ ∈ (0, 1), respectively. In [1] Aoyama
and Kohsaka introduced a new class of nonexpansive mappings, and obtained
a fixed point result for such mappings. Finally, in 2017, in [19] Shukla et al
proposed a new generalization and introduce the deneralized α−nonexpansive
mapping and obtained a fixed theorem for such mappings. All the results cited
above were obtained, in the weak case, with Opial’s condition.

In this report, we propose a generalization of the results of Shukla et al. [19]
by introducing a class of λ−α- generalized nonexpansive mapping. In addition,
we establish some weak and strong convergence theorems for Krasnoselskii
iteration in an ordered Banach space with partial order ≤. We also consider
an application in the context of L1([0, 1]). The presented results in this report,
extend, generalize and unify a number of existing results on the the topic in
the literature.

Throughout the paper, N denotes the set of natural numbers and R the
set of the real numbers. For a non-empty K of a real Banach space X , a
mapping T : K → K is said to be nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖
for all x, y ∈ K. Moreover, a selfmapping T is called quasinonexpansive [7] if
‖T (x) − y‖ ≤ ‖x − y‖ for all x ∈ K and y ∈ F (T ), where F (T ) is the set of
fixed points of T .

Definition 1.1 ([12, 22]). The norm of a Banach space X is called uniformly
convex in every direction, in short, we say that X is UCED, if for ε ∈ (0, 2]
and z ∈ X with ‖z‖ = 1, there exists δ(ε, z) > 0 such that for all x, y ∈ X with
where ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x− y ∈ {tz : t ∈ [−2,−ε] ∪ [ε, 2]}

‖x+ y‖ ≤ 2(1− δ(ε, z)).

Lemma 1.2 ([21]). For a Banach space X, the following are equivalent:

(i) X is UCED.

(ii) If {xn} is a bounded sequence in X , then the function f on X defined

by f(x) = lim sup ‖xn − x‖ is strictly quasiconvex , that is,

f(λx+(1−λ)y) < max{f(x), f(y)} for all λ ∈ (0, 1) and x, y ∈ X with

x 6= y.

Lemma 1.3 ([9]). Let (zn) and (wn) be bounded sequences in a Banach space

X and let λ belongs to (0, 1). Suppose that zn+1 = λwn+(1−λ)zn and ‖wn+1−
wn‖ ≤ ‖zn+1 − zn‖ for all n ∈ N. Then lim ‖wn − zn‖ = 0.
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Definition 1.4 ([21]). Let K be a nonempty subset of a Banach space X . We
say that a mapping T : K → K satisfies (C)-condition on K if for x, y ∈ K we
have

1

2
‖x− T (x)‖ ≤ ‖x− y‖ ⇒ ‖T (x)− T (y)‖ ≤ ‖x− y‖.

It is clear that each nonexpansive mapping satisfies the condition (C) but
the converse is not true. For details and counterexamples see e.g. [10].

Definition 1.5 ([8]). Let K be a nonempty subset of Banach space X and
λ ∈ (0, 1). We say that a mapping T : K → K satisfies (Cλ) -condition on if
for all x, y ∈ K, we have

λ‖x− T (x)‖ ≤ ‖x− y‖ ⇒ ‖T (x)− T (y)‖ ≤ ‖x− y‖.

Note that if λ = 1
2 , then (Cλ)-condition implies (C)-condition. For more

details and examples, see e.g. Falset et al. [8].
Throughout the paper, the pair (X,≤) will denote an ordered Banach space

where X is a Banach space endowed with a partial order ” ≤ ”.

Definition 1.6. A self-mapping T defined on an ordered Banach space (X,≤)
is said to be monotone if for all x, y ∈ X,

x ≤ y ⇒ T (x) ≤ T (y).

Definition 1.7 ([1]). Let K be a nonempty subset of a Banach space X. A
mapping T : K → K is said to be α-nonexpansive if for all x, y ∈ K and α < 1,

‖T (x)− T (y)‖2 ≤ α‖T (x)− y‖2 + α‖x− T (y)‖2 + (1− 2α)‖x− y‖2

Definition 1.8 ([19]). LetK be a nonempty subset of an ordered Banach space
(X,≤). A mapping T : K → K will be called a generalized α-nonexpansive
mapping if there exists α ∈ (0, 1) such that

{

1
2‖x− T (x)‖ ≤ ‖x− y‖ implies

‖T (x)− T (y)‖ ≤ α‖T (x)− y‖+ α‖T (y)− x‖+ (1− 2α)‖x− y‖

for all x, y ∈ K with x ≤ y.

Remark 1.9. When α = 0, a generalized-nonexpansive mapping is reduced to a
mapping satisfying (C)-condition. The converse is false. For more details and
counterexamples see e.g. [19] and [14, 13].

2. Reich type (λ − α)-nonexpansive mappings

Definition 2.1. Let K be a nonempty subset of an ordered Banach space
(X,≤). A mapping T : K → K will be called Reich type (λ−α)-nonexpansive
mappings if there exists λ ∈ (0, 1) and α ∈ [0, 1) such that

(2.1) λ‖x− T (x)‖ ≤ ‖x− y‖ ⇒ ‖T (x)− T (y)‖ ≤ Rα
T (x, y),

where

Rα
T (x, y) := α(‖T (x)− y‖+ ‖T (y)− x‖) + (1 − 2α)‖x− y‖
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for all x, y ∈ K with x ≤ y. In addition, if the mapping T is monotone, we say
that monotone Reich type (λ− α)-nonexpansive mapping.

Remark 2.2. We point the following special cases:

(1) When α = 0, a Reich type λ − α-nonexpansive mapping reduced to a
mapping satisfying condition (Cλ), see e.g. [8].

(2) If λ = 1
2 , it becomes a generalized α-nonexpansive condition.

Proposition 2.3. Let K be a nonempty subset of an ordered Banach space

(X,≤) and T : K → K be a Reich type (λ − α)-nonexpansive mapping with a

fixed point z ∈ K with x ≤ z. Then T is quasinonexpansive.

Proof. Since z ∈ K fixed point, 0 = λ‖z − T (z)‖ ≤ ‖z − x‖ , we have

‖z − T (x)‖ ≤ α‖z − T (x)‖+ α‖T (z)− x‖+ (1− 2α)‖z − x‖ ≤ ‖z − x‖.

�

Definition 2.4. Let T be a monotone self-mapping on a nonempty convex
subset of an ordered Banach space (X,≤) . For a fix λ ∈ (0, 1) and for an
initial point x1 ∈ K, the Krasnoselskii iteration sequence {xn} ⊂ K is defined
by

(2.2) xn+1 = λT (xn) + (1− λ)xn , n ≥ 1.

In the sequel we need the following lemmas.

Lemma 2.5 ([17]). Let x, y, z ∈ X and λ ∈ (0, 1). Suppose p is the point of

segment [x, y] which satisfies ‖x− p‖ = λ‖x− y‖ , then,

(2.3) ‖z − p‖ ≤ λ‖z − y‖+ (1− λ)‖z − x‖

Lemma 2.6 ([15]). Let K be convex and T : K → K be monotone. Assume

that x1 ∈ K, x1 ≤ T (x1). Then the sequence {xn} defined by (2.2) satisfies:

xn ≤ xn+1 ≤ T (xn) ≤ T (xn+1),

for n ≥ 1. Moreover, if {xn} has two subsequences which converge to y and z,

then we must have y = z.

It is easy to see that by the mimic of the idea used in Lemma 2.6, we get
that

T (xn+1) ≤ T (xn) ≤ xn+1 ≤ xn,

by assuming the initial condition as T (x1) ≤ x1.

Lemma 2.7. Let K be a nonempty convex subset of an ordered Banach space

(X,≤) and {xn} is the iteration sequence defined by (2.2) in K. Let T : K →
K be a monotone Reich type λ − α-nonexpansive mapping with λ ∈ (13 , 1)
and α ∈ [0, 1). Suppose also that yn = T (xn), n ≥ 1. If, for x1 ∈ K with

x1 ≤ y1 = T (x1) we have

(2.4) ‖yn − xn+1‖ ≤ (3λ− 1)‖yn − xn‖, for all n ∈ N,

then the sequence {‖yn − xn‖} is decreasing.
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Proof. On account of the definition of Krasnoselskii iteration we have

(2.5) xn+1 = λyn + (1− λ)xn, with yn = T (xn).

It means that xn+1 belongs to the segment ]xn, yn[, and hence we have

(2.6) ‖xn − yn‖ = ‖xn − xn+1‖+ ‖xn+1 − yn‖.

Furthermore, (2.7) yields that

(2.7) ‖xn − xn+1‖ = ‖xn − [λT (xn) + (1− λ)xn]‖ = λ‖xn − T (xn)]‖.

On account of the triangle inequality together with the fact that T is monotone
Reich type (λ− α)-nonexpansive mapping, we derive that
(2.8)
‖yn+1 − xn+1‖ ≤ ‖yn+1 − yn‖+ ‖yn − xn+1‖

= ‖T (xn+1)− T (xn)‖+ ‖yn − xn+1‖

≤ α(‖T (xn)− xn+1‖+ ‖T (xn+1)− xn‖)
+(1− 2α)‖xn − xn+1‖+ ‖yn − xn+1‖

= (1 + α)‖yn − xn+1‖+ α‖yn+1 − xn‖+ (1 − 2α)‖xn − xn+1‖

= (1 + α)‖yn − xn+1‖+ α‖yn+1 − xn‖
+(1 + α)‖xn − xn+1‖ − 3α‖xn − xn+1‖.

On account of (2.6) the left hand side of the inequality of (2.8) turns into

(2.9) = (1 + α)‖xn − yn‖+ α‖yn+1 − xn‖ − 3α‖xn − xn+1‖,

Taking the inequality (2.7) into account, the expression (2.9) turns into

(2.10)
≤ (1 + α)‖xn − yn‖+ α‖yn+1 − xn‖ − 3λα‖xn − yn‖

= (1 + α− 3λα)‖xn − yn‖+ α‖yn+1 − xn‖

Employing the assumption (2.4) of the lemma, we estimate the expression
(2.10) from above as

(2.11)
= (1 + α− 3λα)‖xn − yn‖+ α (3λ− 1) ‖yn − xn‖

= ‖xn − yn‖.

By combining (2.8)- (2.11), for each n, we deduce that

‖yn+1 − xn+1‖ ≤ ‖xn − yn‖,

which complete the proof. �

In the following proposition, we extend the Goebel-Kirk inequality [9] from
the class of nonexpansive mappings into the class of monotone generalized(λ−
α)-nonexpansive mapping.
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Proposition 2.8. Let K be a nonempty convex subset of an ordered Banach

space (X,≤) . Let T : K → K be a monotone Reich type (λ−α)-nonexpansive
mapping with λ ∈ (13 , 1) and α ∈ (0, 1). For x1 ∈ K with x1 ≤ T (x1), we set

yn = T (xn) where {xn} is the iteration sequence defined by (2.2) in K satisfies

the assumption (2.4). Then, we have

(2.12) ‖yi+n−xi‖ ≥ (1−λ)−n[‖yi+n−xi+n‖−‖yi−xi‖]+ (1+nλ)‖yi−xi‖,

for all i, n ∈ N.

Proof. Inspired the techniques used in [9], we shall use the method of the
induction to prove our assertion. It is evident that (2.12) is trivially true for
all i if n = 0. We assume that the inequality (2.12) holds for a given n and for
all i. By replacing i by i+ 1 in (2.12), we get

‖yi+n+1 − xi+1‖ ≥ (1− λ)−n[‖yi+n+1 − xi+n+1‖

− ‖yi+1 − xi+1‖] + (1 + nλ)‖yi+1 − xi+1‖.
(2.13)

On the other hand, due to Krasnoselskii iteration, we have xn+1 = λyn + (1−
λ)xn with yn = T (xn) and also

(2.14) ‖xi+1 − xi‖ = ‖λyi + (1− λ)xi − xi‖ = λ‖yi − xi‖.

The observation in (2.14) provide to apply Lemma 2.5 that yields

‖yi+n+1 − xi+1‖ ≤ λ‖yi+n+1 − yi‖+ (1 − λ)‖yi+n+1 − xi‖.

Regarding that T is a monotone Reich type (λ−α)-nonexpansive mapping, we
have

‖yi+n+1 − xi+1‖ ≤ (1− λ)‖yi+n+1 − xi‖+ λ
∑n

k=0 ‖yi+k+1 − yi+k‖

≤ (1− λ)‖yi+n+1 − xi‖
+λ

∑n

k=0(α‖xi+k+1 − yi+k‖+ α‖yi+k+1 − xi+k‖
+(1− 2α)‖xi+k+1 − xi+k‖)

So, we derive that

‖yi+n+1 − xi‖ ≥ (1− λ)−1‖yi+n+1 − xi+1‖ − (1 − λ)−1λαBin

− (1− λ)−1λ(1 − 2α)Ain,
(2.15)

where

Ain =

n
∑

k=0

‖xi+k+1 − xi+k‖

and

Bin =

n
∑

k=0

[‖xi+k+1 − yi+k‖+ ‖yi+k+1 − xi+k‖].

Taking the assumption (2.4) and (2.14) into account, we derive that
(2.16)
‖yi+k+1 − xi+k‖+ ‖yi+k − xi+k‖ ≤ (3λ− 1)‖yi+k − xi+k‖+ ‖yi+k − xi+k‖

= 3λ‖yi+k − xi+k‖ = 3‖xi+k − xi+k+1‖,
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for all k ∈ 0, 1, ..., n. Regarding the definition of Krasnoselskii iteration we
have xi+k+1 = λyi+k + (1 − λ)xi+k, with yi+k = T (xi+k). In other words,
xi+k ≤ xi+k+1 ≤ yi+k and we have

(2.17) ‖xi+k − yi+k‖ = ‖xi+k+1 − xn+1‖+ ‖xi+k+1 − yi+k‖.

Now, by revisiting the inequality (2.16) by keeping the equality (2.17) in mind,
we find
(2.18)
‖yi+k+1 − xi+k‖+ ‖xi+k+1 − yi+k‖ = ‖yi+k+1 − xi+k‖+ ‖yi+k − xi+k‖

−‖xi+k − xi+k+1‖
≤ 2‖xi+k − xi+k+1‖

which implies Bin ≤ 2Ain. Accordingly, the inequality (2.15) becomes

(2.19) ‖yi+n+1 − xi‖ ≥ (1 − λ)−1‖yi+n+1 − xi+1‖ − λ(1 − λ)−1Ain.

Employing the inequality (2.13) in (2.19), we find that

‖yi+n+1 − xi‖ ≥(1− λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi+1 − xi+1‖]

+ (1 − λ)−1(1 + nλ)‖yi+1 − xi+1‖ − λ(1 − λ)−1Ain.

On account of (2.14), the estimation above turns into

‖yi+n+1 − xi‖ ≥(1− λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi+1 − xi+1‖]

+ (1 − λ)−1(1 + nλ)‖yi+1 − xi+1‖ − λ2(1− λ)−1Cin,
(2.20)

where Cin :=

n
∑

k=0

‖yi+k−xi+k‖. By bearing, Lemma 2.7, in mind, we find that

Cin :=

n
∑

k=0

‖yi+k − xi+k‖ ≤ (n+ 1)‖yi − xi‖.

Consequently, (2.20) can be estimated above as

‖yi+n+1 − xi‖ ≥(1− λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi+1 − xi+1‖]

+ (1− λ)−1(1 + nλ)‖yi+1 − xi+1‖ − λ2(1− λ)−1(n+ 1)‖yi − xi‖

= (1− λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi − xi‖]

+ [(1− λ)−1(1 + nλ)− (1− λ)−(n+1)]‖yi+1 − xi+1‖

+ [(1− λ)−(n+1) − λ2(1− λ)−1(n+ 1)]‖yi − xi‖,

(2.21)

by adding and substraction the same term (1− λ)−(n+1)‖yi+1 − xi+1‖. Notice
that (1 − λ)−1(1 + nλ) − (1 − λ)−(n+1) ≤ 0. Thus, regarding this observation
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together with Lemma 2.7, the inequality (2.21) changed into

‖yi+n+1 − xi‖ ≥ (1 − λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi − xi‖]

+ [(1− λ)−1(1 + nλ)− (1− λ)−(n+1)]‖yi − xi‖

+ [(1− λ)−(n+1) − λ2(1− λ)−1(n+ 1)]‖yi − xi‖

= (1 − λ)−(n+1)[‖yi+n+1 − xi+n+1‖ − ‖yi − xi‖]

+ (1 + (n+ 1)λ)‖yi − xi‖

which completes the proof of Proposition 2.8. �

Theorem 2.9. Let K be a nonempty, convex and compact subset of an ordered

Banach space (X,≤) . Let T : K → K be a monotone Reich type λ − α-

nonexpansive mapping with λ ∈ (13 , 1). For x1 ∈ K with x1 ≤ T (x1), we set

yn = T (xn) where {xn} is the iteration sequence defined by (2.2) in K satisfies

the assumption (2.4). Then {xn} converges to some x ∈ K with xn ≤ x and,

(2.22) lim
n
‖xn − T (xn)‖ = 0

Proof. We shall divide the proof in two cases: α = 0 and α ∈ (0, 1). Suppose,
first, that α = 0 . Due to the definition (2.2) of the sequence {xn}, we have

λ‖xn − yn‖ = ‖xn − xn+1‖, for all n ≥ 1.

On account of Lemma 2.6, we have xn ≤ xn+1, for all n ≥ 1. Therefore condi-
tion (2.1) implies that,

‖T (xn)− T (xn+1)‖ = ‖yn − yn+1‖ ≤ Rα
T (xn, xn+1) = ‖xn − xn+1‖,

since α = 0. Employing Lemma 1.3, the inequality above yields that

lim
n
‖xn − T (xn)‖ = 0.

In the following, we shall consider the second case α ∈ (0, 1). The proof
of this case mainly adopted from the proof of Theorem 3.1 in [15]. Since K

is compact, there exists a subsequence of {xn} which converges to x ∈ K. On
account of Lemma 2.6, the sequence {xn} converges to x and xn ≤ x, for n ≥ 1.
To show our assertion (2.22), suppose, on the contrary, that

lim
n
‖xn − T (xn)‖ = R > 0.

As x1 ≤ xn ≤ x, we then have

(2.23) ‖xn − x1‖ ≤ ‖x− x1‖ for all n ≥ 1.

Due to triangle inequality we have

‖yi+n − xi‖ = ‖T (xi+n)− xi‖ ≤ ‖T (xi+n)− xi+n‖+ ‖xi+n − x1‖+ ‖x1 − xi‖

≤ ‖T (x1)− x1‖+ 2‖x− x1‖

(2.24)
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for any i, n ≥ 1, due to (2.23) and Lemma 2.7. Since all conditions are satisfied
in Proposition 2.8, we have (2.12). Letting i→∞ in the inequality (2.12), we
derive that

(2.25) lim
i→∞

‖yi+n − xi‖ ≥ (1 + nλ)R,

where we used that

lim
i→∞

(‖T (xi)− xi‖ − ‖T (xi+n)− xi+n‖) = R −R = 0,

for any n ≥ 1. Combining (2.24) and (2.25), we find

(1 + nλ)R ≤ lim
i→∞

‖yi+n − xi‖ ≤ ‖T (x1)− x1‖+ 2‖x− x1‖

Thus, the inequality can be fulfilled only if R = 0 which yields the inequality
(2.22). �

Lemma 2.10. Let K be a nonempty subset of an ordered Banach space (X,≤)
and T : K → K be a monotone Reich type (λ−α)-nonexpansive mapping with

λ ∈]0, 1
2 ]. Then for each x, y ∈ K with x ≤ y :

(i) ‖T (x)− T 2(x)‖ ≤ ‖x− T (x)‖

(ii) either λ‖x− T (x)‖ ≤ ‖x− y‖ or λ‖T (x)− T 2(x)‖ ≤ ‖T (x)− y‖

(iii) either ‖T (x)− T (y)‖ ≤ α‖T (x)− y‖+ α‖x− T (y)‖+ (1− 2α)‖x− y‖

or ‖T 2(x)− T (y)‖ ≤ α‖T (x)− T (y)‖+ α‖T 2(x)− y‖+ (1− 2α)‖T (x)− y‖

Proof. (i) Since we have λ‖x − T (x)‖ ≤ ‖x − T (x)‖ for all λ ∈]0, 12 ], by
the definition of Reich type (λ− α)-nonexpansive mapping we get the
desired results. Indeed,

‖T (x)− T 2(x)‖ ≤ α‖x− T 2(x)‖+ (1− 2α)‖x− T (x)‖.

Thus (i) hold for α = 0.

(ii) Suppose, on the contrary, that λ‖x − T (x)‖ > ‖x − y‖ and ‖T (x) −
T 2(x)‖ > ‖T (x) − y‖. Then, by triangle inequality together with the
assumption (i), we find that

‖x− T (x)‖ ≤ ‖x− y‖+ ‖T (x)− y‖ < λ‖x− T (x)‖+ λ‖T (x)− T 2(x)‖

≤ 2λ‖x− T (x)‖.

Since λ ≤ 1
2 we obtain ‖x−T (x)‖ < ‖x−T (x)‖ which is a contradiction.

Thus, we obtain the desired result.
(iii) The proof of (iii) follows from (ii). We skip the details.

�
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Lemma 2.11. Let K be a nonempty subset of an ordered Banach space (X,≤)
and T : K → K be a monotone Reich type (λ−α)-nonexpansive mapping with

λ ∈ (0, 12 ]. Then for each x, y ∈ K with x ≤ y,

‖x− T (y)‖ ≤ (
3 + α

1− α
)‖x− T (x)‖+ ‖x− y‖.

Proof. It is the mimic of the proof of Lemma 3.8 of [19]. So, we skip the
details. �

Using the above two lemmas, we can prove the following.

Theorem 2.12. Let K be a nonempty convex and a compact subset of an

ordered Banach space (X,≤) and be T : K → K a monotone Reich type (λ−α)-
nonexpansive mapping with λ ∈ (13 ,

1
2 ]. Select x1 ∈ K such that x1 ≤ T (x1),

and for n ≥ 1, denote yn = T (xn) where {xn} is the iteration sequence defined

by (2.2) in K satisfying, for all n ∈ N, the assumption (2.4) . Then {xn}
converges strongly to a fixed point of T.

Proof. By Theorem 2.9, we have

lim
n
‖xn − T (xn)‖ = 0.

Since K is compact, there exist a subsequence {xnk
} of {xn} and z ∈ K such

that {xnk
} converges to z. Employing Lemma 2.11, we have,

‖xnk
− T (z)‖ ≤ (

3 + α

1− α
)‖xnk

− T (xnk
)‖+ ‖xnk

− z‖

for all k ∈ N. Thus, the sequence {xnk
} converges to T (z) and hence T (z) = z.

Since z is a fixed point of T , by Proposition 2.3, we find that

‖xn+1 − z‖ ≤ λ‖T (xn)− z‖+ (1− λ)‖xn − z‖ ≤ ‖xn − z‖

for all n ∈ N. Therefore {xn} converges to z . �

We say that a Banach spaceX has the Opial property [18] if for every weakly
convergent sequence {xn} in X with a limit z, fulfils

lim inf
n→∞

‖xn − z‖ < lim inf
n→∞

‖xn − y‖,

for all y ∈ X with y 6= z. It is a very rich class, for examples, all Hilbert spaces,
sequence spaces ℓp, (1 < p < ∞), and finite dimensional Banach spaces have
the Opial property. Unexpectedly, Lp[0, 2π], (p 6= 2) do not have the Opial
property [9],[10].

Proposition 2.13. Let K be a nonempty subset of an ordered Banach space

(X,≤) with the Opial property and T : K → K be a monotone Reich type

(λ − α)-nonexpansive mapping with λ ∈ (13 ,
1
2 ]. If {xn} converges weakly to z

and

lim
n
‖xn − T (xn)‖ = 0,

then T (z) = z.
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Proof. By Lemma 2.11, we have,

‖xn − T (z)‖ ≤ (
3 + α

1− α
)‖xn − T (xn)‖+ ‖xn − z‖

for n ∈ N and hence,

lim inf
n
‖xn − T (z)‖ ≤ lim inf

n
‖xn − z‖

We claim that T (z) = z. Indeed, if T (z) 6= z, the Opial property implies,

lim inf
n
‖xn − z‖ < lim inf

n
‖xn − T (z)‖

which is a contradiction with inequality (2.22) . �

Theorem 2.14. Let K be a nonempty convex and weakly compact subset of

an ordered Banach space (X,≤) with the Opial property and T : K → K be a

monotone Reich type (λ − α)-nonexpansive mapping with λ ∈ (13 ,
1
2 ]. . Select

x1 ∈ K such that x1 ≤ T (x1), and for n ≥ 1 , denote yn = T (xn) where {xn}
is the iteration sequence defined by (2.2) in K satisfying, for all n ∈ N, the

assumption (2.4) . Then {xn} converges weakly to a fixed point of T .

Proof. By Theorem 2.9, we have

lim
n
‖xn − T (xn)‖ = 0.

Since K is weakly compact, there exist a subsequence {xnk
} of {xn} and z ∈ K

such that {xnk
} converges weakly to z . By Proposition 2.13, we deduce that

z is a fixed point of T . As in the proof of Theorem 2.12, we can prove that
{‖xn − z‖} is a nonincreasing sequence. We prove our assertion by reductio

de absurdum. Suppose, on the contrary, that {xn} does not converge to z.

Then there exist a subsequence {xnj
} of {xn} which converges weakly to ω

and ω 6= z. We note that T (ω) = ω . From the Opial property,

lim
n
‖xn − z‖ = lim

k
‖xnk

− z‖ < lim
k
‖xnk

− ω‖ = lim
n
‖xn − ω‖

= lim
j
‖xnj

− ω)‖ < lim
j
‖xnj

− z‖ = lim
n
‖xn − z‖,

a contradiction that complete the proof. �

The following theorem directly follows from Theorems 2.12 and 2.14. So, to
avoid the repetition, we skip the details.

Theorem 2.15. Let K be a convex subset of an ordered Banach space (X,≤),
and T : K → K be a monotone Reich type (λ−α)-nonexpansive mapping with

λ ∈ (13 ,
1
2 ]. Assume that either of the following holds:

(i) K is compact;

(ii) K is weakly compact and X has the Opial property.

Then T has a fixed point.

Finally, we will give a generalization of a fixed point theorem due to Browder
[5], Göhde [11] and Suzuki [21].
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Theorem 2.16. Let K be a convex and weakly compact subset of a UCED

ordered Banach space (X,≤). Let T : K → K be a monotone Reich type

(λ− α)-nonexpansive mapping with λ ∈ (13 ,
1
2 ]. Then T has a fixed point.

Proof. We construct an iterative sequence {xn} in K by starting x1 ∈ K as

xn+1 =
1

2
(T (xn) + xn) with ‖T (xn+1)− xn‖ ≤ ‖T (xn)− xn‖,

for all n ∈ N. Then by Theorem 2.9, we have

lim
n
‖xn − T (xn)‖ = 0

holds. Define a continuous convex function f from K to [0,+∞) by

f(x) = lim sup
n

‖xn − x‖

for all x ∈ K . SinceK is weakly compact and f is weakly lower semicontinuous,
there exists z ∈ K, such that

f(z) = min{f(x) : x ∈ K}

Since, by Lemma 2.11:

‖xn − T (z)‖ ≤ (
3 + α

1− α
)‖xn − T (xn)‖+ ‖xn − z‖,

we then have, f(T (z)) ≤ f(z) . Since f(z) is the minimum, f(T (z)) = f(z)
holds. If T (z) 6= z, then since f is strictly quasiconvex (Lemma 1.2) we have,

f(z) ≤ f(
z + f(z)

2
) < max{f(z), f(T (z))} = f(z).

which is a contradiction. Hence T (z) = z. �

3. Application to L1([0, 1])

As an application, we consider L1([0, 1]) the Banach space of real valued
functions defined on [0, 1] with absolute value Lebesgue integrable, i.e.,
∫ 1

0
|f(x)|dx <∞.

We recall some definitions which can be found in e.g. [3]. As usual, f = 0 if
and only if the set {x ∈ [0, 1] : f(x) = 0} has Lebesgue measure 0, then, we say
f = 0 almost everywhere. An element of L1([0, 1]) is therefore seen as a class
of functions. The norm of any f ∈ L1([0, 1]) is given by

‖f‖ =

∫ 1

0

|f(x)|dx

From now on, we will write L1 instead of L1([0, 1]) . Recall that f ≤ g if
and only if f(x) ≤ g(x) almost everywhere, for any f, g ∈ L1. We adopt the
convention f ≤ g if and only if g ≤ f . We remark that order intervals are
closed for convergence almost everywhere and convex. Recall that an order
interval is a subset of the form

[f,→) = {g ∈ L1 : f ≤ g} or (←, f ] = {g ∈ L1 : g ≤ f},
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for any f ∈ L1.

As a direct consequence of this, the subset

[f, g] = {h ∈ L1 : f ≤ h ≤ g} = [f,→) ∩ (←, g]

is closed and convex, for any f, g ∈ L1.

Let K be a nonempty subset of L1 which is equipped with a vector order
relation ≤ . A map T : K → K is called monotone if for all f ≤ g we have
T (f) ≤ T (g).

Remark 3.1. Since L1([0, 1]) fails to be uniformly convex, Theorem 2.12 can’t
not be used to get a fixed point result for monotone generalized λ − α non-
expansive mappings in L1([0, 1]). As an alternative, we will use an interest-
ing property for the convergence almost everywhere contained in the following
lemma.

Lemma 3.2 ([4]). If (fn) is a sequence of uniformly Lp -bounded functions on

a measure space, and if fn → f almost everywhere, then

lim inf
n
‖fn‖

p
p = lim inf

n
‖fn − f‖pp + ‖f‖

p
p

for all 0 < p <∞.

In particular, this result holds when p = 1.

On account of Lemma 2.11 and Lemma 3.2, we shall prove the following.

Theorem 3.3. Let K ⊂ L1 be nonempty, convex and compact for the conver-

gence almost everywhere. Let T : K → K be a monotone Reich type (λ − α)-
nonexpansive mapping with α ∈] 13 ,

1
2 ]. Select f1 ∈ K such that f1 ≤ T (f1),, and

for n ≥ 1, denote gn = T (fn) where (fn) is the iteration sequence defined by

(2.2) in K satisfying, for all n ∈ N, the assumption (2.4) . Then the sequence

(fn) converges almost everywhere to some f ∈ K which is a fixed point of T ,

i.e., T (f) = f. Moreover, f1 ≤ f.

Proof. Theorem 2.9 implies that (fn) converges almost everywhere to some
f ∈ K where fn → f , for any n ≥ 1. Since (fn) is uniformly bounded, lemma
3.2 [4] implies

lim inf
n
‖fn − T (f)‖ = lim inf

n
‖fn − f‖+ ‖f − T (f)‖

Theorem 2.9 implies

lim inf
n
‖fn − T (fn)‖ = 0.

Therefore we get

lim inf
n
‖fn − T (f)‖ = lim inf

n
‖fn − f‖+ ‖f − T (f)‖

On the other hand, we know that each fn ≤ f for each n ≥ 1, so, by assumption
(2.1), we have,

lim inf
n
‖fn−f‖+‖f−T (f)‖ ≤ lim inf

n
(α‖fn−T (f)‖+α‖T (fn)−f‖+(1−2α)‖fn−f‖)
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And, by Lemma 2.11, we have,

lim inf
n
‖fn−f‖+‖f−T (f)‖ ≤ lim inf

n
(α

3 + α

1 − α
‖fn−T (f)‖+α‖T (fn)−f‖+(1−2α)‖fn−f‖)

Again, by application of the Theorem 2.9, we obtain,

lim inf
n
‖fn − f‖+ ‖f − T (f)‖ ≤ lim inf

n
(1− α)‖fn − T (f)‖+ α‖T (fn)− f‖)

And like,
lim inf

n
‖fn − f‖ = ‖T (fn)− f‖

we then have,

lim inf
n
‖fn − f‖+ ‖f − T (f)‖ ≤ lim inf

n
‖fn − T (f)‖,

that implies
‖f − T (f)‖ = 0

or
T (f) = f.

�
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