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Abstract
Background/Aims: IL-35, a powerful suppressor of inflammation and autoimmunity, is 
primarily secreted by regulatory T cells (Tregs) and can, in turn, promote Treg differentiation. 
However, the precise effect of IL-35 on dendritic cells (DCs) remains to be clarified. Methods: 
In this study, we investigated the expression of IL-35 in DCs after stimulation with LPS utilizing 
enzyme linked immunosorbent assay(ELISA), quantitative real-time reverse transcriptase 
polymerase chain reaction (qRT-PCR) and western blotting, and the influence of IL-35 on the 
maturation and function of DCs by mixed lymphocyte reaction assay and flow cytometry. We 
further examined the regulation of IL-35 in DCs by the microRNA let-7i (let-7i) via transfected 
with let-7i mimic, inhibitor or suppressor of cytokine signalling 1 (SOCS1) siRNA. IL-35-
overexpressing DCs were transfused into BALB/c recipients with C57BL/6 heart transplantations 
to verify the role of immune tolerance in transplantation. Results: The results showed that IL-
35 expression was significantly up-regulated following lipopolysaccharide (LPS)-induced DC 
maturation. Overexpression of IL-35 suppressed DC maturation, promoted the secretion of 
anti-inflammatory cytokines, and subsequently affected the balance between Treg and Th17 
cells. IL-35 expression in DCs was regulated by let-7i, which targets SOCS1. The transfusion 
of IL-35-transfected DCs induced Treg generation in mice and prolonged cardiac allograft 
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survival. Conclusion: Our data demonstrated that IL-35 induces tolerogenic DCs which are 
capable of alleviating allograft rejection. Clinical application of IL-35-treated DCs might be a 
promising approach for eliciting cardiac allograft immune tolerance.

Introduction

Interleukin-35 (IL-35), which is the newest identified member of the IL-12 family of 
heterodimeric cytokines, is composed of Ebi3, an αβ-chain subunit encoded by the Epstein-
Barr virus (EBV)-induced gene 3 (IL-27B), and IL-12p35, which is encoded by IL-12A [1]. 
IL-35 is primarily secreted by regulatory T cells (Tregs) and promotes Treg differentiation 
[2, 3]. The overexpression of IL-35 has been shown to protect against various experimental 
autoimmune diseases [4], including experimental colitis [5, 6], collagen-induced autoimmune 
arthritis [7], autoimmune demyelination [8], and type 2 T helper cell (Th2)-mediated allergic 
asthma [9]. IL-35 can also act as a crucial regulatory cytokine to suppress the induction of 
inflammatory dendritic cells (DCs) at sites of inflammation in an ovalbumin-induced asthma 
model [10]. In addition, IL-35 has been shown to be up-regulated in non-T cells, including 
immature dendritic cells (imDCs), smooth muscle cells, and vascular endothelial cells [11]. 
According to Dixon KO, Van Der Kooij SW, Vignali DA, Van Kooten C [12], tolerogenic DCs 
(tolDCs), which are generated by treating DCs with dexamethasone, can maintain the mRNA 
expression of IL-12p35 and Ebi3. Despite these recent insights, the biological relevance of 
immunoregulation and the exact impact of IL-35, particularly on DCs, remain elusive [4].

Cardiac allograft rejection is a longstanding unsolved complication of heart 
transplantation. During 1985-1989, the 10-year survival rate estimate was only 46 percent, 
while during 2005-2010, the survival rate increased to 64 percent, although the 50% survival 
time was only 25.8 years [13]. Although advances in pharmacology have decreased, the 
mortality associated with acute allograft rejection, subclinical episodes and graft dysfunction 
continue to heavily impact medium- and long-term graft survival [14]. Pharmacological 
treatments are also associated with an increased risk of cancer and infections linked to an 
immunosuppressive state. Suppressive agents such as corticosteroids, which have been used 
for more than four decades, lead to side effects including weight gain, cataracts and bone 
loss and also enhance cardiovascular risk factors. Although the advent of triple therapy with 
cyclosporine, steroids and azathioprine has allowed steroid doses to be reduced, steroid-
induced morbidity is still a major problem in transplant recipients [15].

Cell surface molecules such as DC-SIGN(+), cytokines (IL-6, IL-34, etc.) and enzymes 
controlling metabolic pathways such as the enzyme indoleamine 2, 3 dioxygenase 
(IDO), which is capable of inducing tolerance, have been described as new mediators of 
immune tolerance [16-19]. Regulatory DCs play an important role in the maintenance of 
immunological tolerance by inducing T cell unresponsiveness or apoptosis and generating 
Tregs [20-22]. IL-35 is an inhibitory cytokine that can promote the development of iTr35 
cells, which constitute a population of induced Tregs with suppressive effects, but iTr35 cells 
do not express Foxp3 and IL-10 [23], and their ex vivo population expansion is limited due 
to their polyclonal specificity and low proliferative capacity. Our earlier experiments have 
shown that DC treatments elicit T cell hypo-responsiveness and expand Treg populations 
in vitro [24]. To investigate the mechanism by which IL-35-treated DCs influence T cell 
proliferation and differentiation, we hypothesised that IL-35-overexpressing DCs play a role 
in the induction of Tregs and protect against transplantation rejection.

In this study, we examined and clarified the role of IL-35 during DC maturation and 
subsequently induced Treg generation. Then, we examined whether DC secretion of IL-
35 was regulated by the microRNA let-7i (let-7i) via the direct targeting of suppressor of 
cytokine signalling 1 (SOCS1). We also investigated the effect of IL-35-overexpressing DCs 
on transplant immunity tolerance in vivo.
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Materials and Methods

Animals
Male BALB/c and C57BL/6 mice, aged 8 to 12 weeks, were purchased from the Second Affiliated 

Hospital of the Harbin Medical University Laboratory Animal Centre. All animal care was conducted in 
accordance with the “Principles of Animal Care” (Ethical and Animal Welfare Committee of Heilongjiang 
Province, China) and the “Guide for the Care and Use of Laboratory Animals” (Ethics Committee of Harbin 
Medical University Animal Care and Use).

Generation and stimulation of bone marrow-derived mature DCs
Immature DCs (imDCs) were generated from BALB/c mouse bone marrow mononuclear cells cultured 

in complete RPMI 1640 medium (HyClone, Logan, UT, USA) in the presence of 20 ng/mL recombinant murine 
cytokines (IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF); PeproTech, Rocky Hill, NJ, 
USA) for 6 days. ImDCs were treated with lipopolysaccharide (LPS; 200 ng/ml; Sigma-Aldrich, St. Louis, MO, 
USA) on Day 7 for 24 h to obtain mature DCs (mDCs). Some cells were treated with recombinant murine 
tumour necrosis factor-α [25] (TNF-α, 50 ng/ml; PeproTech, Rocky Hill, NJ, USA), interferon-γ [12] (INF-γ, 
50 ng/ml; PeproTech, Rocky Hill, NJ, USA) or recombinant mouse IL-1α [26] (10 ng/ml; R&D Systems, 
Minneapolis, MN, USA) for 24 h. The adherent clusters were positively selected using CD11c magnetic 
microbeads (Miltenyi Biotech GmBH, Bergisch Gladbach, Germany). The recovered cells that displayed more 
than 95% CD11c expression were used for the subsequent experiments.

Treatment with recombinant IL-35/Ebi3 or IL-35-neutralising antibodies and transfection with microRNA 
let-7i mimic, let-7i inhibitor, or SOCS1 siRNA
ImDCs were generated and treated with Ebi3 mouse recombinant protein (10 ng/ml; Rockland, 

Limerick, PA, USA) or anti-mouse IL-35 monoclonal antibody (10 ng/ml; Rockland, Limerick, PA, USA) for 
neutralisation on Day 6 for 24 h. Some imDCs were transfected with microRNA let-7i mimic or inhibitor 
(60 nmol/l; GenePharma, Shanghai, CN) by Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for 24 
h on Day 6. For all transfection protocols, a control group was transfected with a mimic negative control 
(NC-mimic) or an inhibitor negative control (NC-inhibitor). The sequences were as follows: microRNA 
let-7i mimic, sense, 5’-UGAGGUAGUAGUUUGUGCUGUU-3’, antisense, 5’-CAGCACAAACUACUACCUCAUU-3’; 
microRNA let-7i mimic negative control, sense, 5’-UUCUCCGAACGUGUCACGUTT-3’, antisense, 
5’-ACGUGACACGUUCGGAGAATT-3’; microRNA let-7i inhibitor, 5’-AACAGCACAAACUACUACCUCA-3’; 
microRNA let-7i inhibitor negative control, 5’-CAGUACUUUUGUGUAGUACAA-3’. ImDCs were also transfected 
with SOCS1 short interfering (si)RNA (60 nmol/l; GenePharma, Shanghai, CN) using Lipofectamine 2000 for 
24 h on Day 6. After washing, the cells were cultured for 24 h in the presence of LPS (200 ng/ml) and then 
collected for other experiments.

Mixed lymphocyte reaction assay
Splenocytes were obtained from male BALB/c mice, and CD3+ T cells were isolated from the splenocytes 

by magnetic cell separation using anti-CD3 microbeads (Miltenyi Biotech GmBH, Bergisch Gladbach, 
Germany). To analyse the effect of IL-35/Ebi3-treated DCs or IL-35-neutralising antibody-treated DCs 
on T cell proliferation, BALB/c mice DCs (1.0×105/ml) were treated with mitomycin C (10 μg/ml, Sigma-
Aldrich, St. Louis, MO, USA) for 4 h and then co-cultured with BALB/c CD3+ T cells (1.0×106/ml) in a 96-
well plate for 4 days. These co-cultures were incubated with 10 mM BrdU (Biotrak 2; Amersham, Little 
Chalfont, UK) for 24 h, and BrdU incorporation by proliferating T cells was quantified using a BrdU enzyme-
linked immunosorbent assay (ELISA). To analyse the T cell population, BALB/c DCs were pretreated with 
mitomycin C (10 μg/ml, Sigma-Aldrich, St. Louis, MO, USA) for 4 h and then co-cultured with BALB/c CD3+ T 
cells at a DC/T cell ratio of 1:10. Subsequently, CD4+ T cells were isolated from the co-cultured MLR cells by 
magnetic cell separation using anti-CD4 microbeads (Miltenyi Biotech GmBH, Bergisch Gladbach, Germany) 
for further flow cytology analysis.
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Quantitative RT-PCR
Total RNA was isolated from different groups of DCs using TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA) following the protocol recommended by the manufacturer. Reverse-transcription reactions were 
incubated for 60 min at 37°C and 5 min at 85°C. qRT-PCR was performed according to the TaqMan real-
time PCR assay kit (GenePharma, Shanghai, CN) protocol in a total volume of 20 μl using an CFX manager 
Real-Time System (Bio-Rad Laboratories, Hercules, California). PCR reaction mixtures contained the 
following components: 10 μl of Universal Master Mix, primer pairs at 10 μM, probe at 10 μM, 1 U of rTaq 
DNA polymerase and 10 ng of cDNA template. The PCR protocol consisted of 40 cycles of 3 min at 95°C, 12 s 
at 95°C, and 40 s at 62°C. Quantification of relative mRNA levels of the target genes was performed based on 
the 2−ΔΔCt method described by Livak and Schmittgen [27]. The primers used for the real-time PCR reactions 
are shown in Table 1. Each sample was measured in triplicate.

Evaluation of cytokine production
To measure cytokine release by DCs, supernatants were collected from cultures after stimulation 

with LPS, IFN-γ, IL-1β, or TNF-α for 24 h. An IL-35 heterodimer ELISA kit (CUSABIO, Wuhan, CN) was 
used to detect the concentrations in the supernatants according to the manufacturer’s instructions. Some 
supernatants were obtained from DCs after treatment with IL-35/Ebi3 or IL-35-neutralising antibody 
or after transfection with microRNA let-7i mimic, inhibitor, or RNA of si-SOCS1 and LPS stimulation for 
24 h. Then, we assessed the secreted levels of IL-4, IL-10, IL-12, IL-23, IL-27, TGF-β and IFN-γ (Abcam, 
Cambridge, UK). In several experiments, the levels of IL-2, IFN-γ, IL-4, and IL-10 (Abcam, Cambridge, UK) 
were also determined in plasma from BALB/c recipient mice 14 days after transplantation. All assays were 
performed in triplicate.

Flow cytometry
DC purity and phenotype were analysed based on the surface expression of specific markers using 

flow cytometry. CD11c+ DCs were selected by magnetic cell separation and incubated with 0.5 µg of 
fluorochrome-conjugated PE-CD80, PE-CD86 and PE-MHC-II (eBioscience, San Diego, CA, USA) for 30 min 
at 37°C. For each staining protocol, the appropriate isotype-matched control was included. The stained cells 
were assayed using a BD FACSCanto II flow cytometer. To analyse CD4+CD25+Foxp3+ T cells, cells from MLRs 
or splenocytes from recipients were transfused with phosphate-buffered saline (PBS), mDCs or IL-35/Ebi3-
mDCs 14 days after transplantation. Subsequently, the cells were incubated with 0.5 µg of fluorochrome-
conjugated CD4-FITC or CD4-PerCP-Cy5.5 and CD25-APC (eBioscience, San Diego, CA, USA) monoclonal 
antibodies (mAb) for 30 min at 37°C and then fixed and permeabilised in 100 µL of eBioscience Perm-Fix 
solution overnight at 4°C. The cells were washed and then stained with 0.5 µg of fluorophore-conjugated 
anti-Foxp3-PE (eBioscience, San Diego, CA, USA) for 30 min at 4°C. After washing, the stained cells were 
assayed using a BD FACSCanto II flow cytometer. CD4+CD25+ T cells were identified by gating on FSC/SSC 
cells. The CD4+CD25+Foxp3+ T cell population was obtained from CD4+CD25+ cells by further gating Foxp3+ 
cells. To detect intracellular IL-17A and IFN-γ levels in the T cells, the cells were first treated with 1× cell 
stimulation cocktail (including Phorbol 12-Myristate 13-Acetate (40.5 μM), ionomycin (670 μM), Brefeldin 

Table 1. Primers used for real-time PCR analysis

 

 
Gene Forward Reverse Probe 
IL-
23p19 

5ʹ-ATGTGCCCCGTATCCAGTGT-3ʹ 5ʹ-AGGCTCCCCTTTGAAGATGTC-3ʹ 5ʹ-CAGTTCTGCTTGCAAAGGATCCGCC-3ʹ 

IL-
27p28 

5ʹ-TGCCCCTGGGATACCATCT-3ʹ 5ʹ-AGGGAAGGGCCGAAGTGT-3ʹ 5ʹ-CCCAATGTTTCCCTGACTTTCCAGGC-3ʹ 

IL-
12p40 

5ʹ-CAGTACACCTGCCACAAAGGA-3ʹ 5ʹ-CGGAGTAATTTGGTGCTTCAC-3ʹ 5ʹ-AGACTCTGAGCCACTCACATCTGCTGC-3ʹ 

IL-
12p35 

5ʹ-ATCGATGAGCTGATGCAGTCT-3ʹ 5ʹ-GCTTCTCCCACAGGAGGTTT-3ʹ 5ʹ-AATCATAATGGCGAGACTCTGCGC-3ʹ 

Ebi3 5ʹ-CAGGTGGGACCCATTGAAG -3ʹ 5ʹ-TGACACCTGGATGCAATACTTG-3ʹ 5ʹ-TCACCCTCAGGAACTCGAAACCCCA-3ʹ 
SOCS1 5ʹ-TCCGTGACTACCTGAGTTCCTT-3ʹ 5ʹ-GGCATCTCACCCTCCACAC-3ʹ 5ʹ-ACGGGCCCAACTGCACCCAACAGCC-3ʹ 
GAPDH 5ʹ-CCTTATTGACCTCAACTACATGG-3ʹ 5ʹ-CTCGCTCCTGGAAGATGGTG-3ʹ 5ʹ-ATGTTCCAGTATGACTCCACTCACGGCA-3ʹ 
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A (5.3 mM), and monensin (1 mM) in ethanol in 500×) (eBioscience, San Diego, CA, USA) for 4-6 h at 37°C. 
Subsequently, the cells were surface-stained with the CD4+-PerCP-Cy5.5 mAb, permeabilised and fixed in 
100 µl of eBioscience Perm-Fix solution overnight at 4°C. The cells were washed twice with Perm Wash 
buffer and then stained with 0.3 µg of fluorophore-conjugated anti-IL-17A-PE (eBioscience, San Diego, CA, 
USA) or fluorophore-conjugated anti-IFN-γ-PE (eBioscience, San Diego, CA, USA) for 20 min at 4°C. After 
washing, the stained cells were assayed using a BD FACSCanto II flow cytometer. The TH17 cells from the 
CD4+ cells were gated on IL-17A+cells, and the TH1 cells from the CD4+ cells were gated on IFN-γ+ cells. All 
data were then further processed by using FlowJo 10.0.7 software.

Western blotting
Whole DCs (1×107) were lysed in RIPA buffer supplemented with a proteinase inhibitor cocktail 

(Sigma), and a total of 30 µg of protein from each group of extracts was loaded and separated on Tris-glycine 
SDS-PAGE gels. The following targets were probed using antibodies: IL-12p35, Ebi3, STAT1, pSTAT1, STAT3, 
pSTAT3, STAT4, pSTAT4, STAT5, pSTAT5, STAT6, pSTAT6, SOCS1 and β-actin (Abcam, Cambridge, UK). ECL 
Prime Western Blotting Detection Reagents (GE Healthcare, Piscataway, NJ, USA) and scanning densitometry 
(GS-710 imaging) were used to detect the signals and acquire the images. All data were obtained from three 
independent experiments.

Heart transplantation and treatment of recipient animals
BALB/c recipient mice were transfused with 0.1 ml of PBS only (negative control), 1.0×105 mDCs, 

or 1.0×105 IL-35/Ebi3-mDCs (derived from BALB/c bone marrow) via an intravenous injection into the 
penile vein after general anaesthesia. At 24 h after transfusion, the BALB/c recipient mice underwent a fully 
vascularised heterotopic heart transplantation of a C57BL/6 heart using microsurgical techniques [28]. The 
other BALB/c recipient mice underwent heart transplantation after receiving an oral administration of 1 
mg/kg of tacrolimus (positive control). The graft function was assessed daily post-operatively by palpation 
for evidence of contraction. Rejection was defined as the complete cessation of the heartbeat and confirmed 
by direct visualisation and histological examination of the graft.

Histological studies of harvested grafts
The cardiac allografts were removed from BALB/c recipient mice that were transfused with PBS, 

mDCs, or IL-35/Ebi3-mDCs 14 days after heart transplantation and were examined histologically and 
immunohistochemically. Histologic and immunohistochemical staining were performed as previously 
described [29]. The haematoxylin and eosin staining was assessed by grading according to the 2005 
classification of the International Society for Heart and Lung Transplantation [30] to detect acute cellular 
rejection as follows: Grade 0, no rejection; Grade 1 (mild), interstitial and/or perivascular infiltrate with 
up to 1 focus of myocyte damage; Grade 2 (moderate), 2 or more foci of infiltrate with associated myocyte 
damage; and Grade 3 (severe), diffuse infiltrate with multifocal myocyte damage with or without oedema, 
haemorrhage, and/or vasculitis. Five microscopic fields were examined in each section under a microscope 
at an original magnification of 40×. For the immunohistochemical staining, the sections were fixed, pre-
incubated in Block Ace and incubated with anti-Foxp3 (Abcam, Cambridge, UK), followed by an incubation 
with alkaline phosphatase-conjugated anti-rabbit Ig for anti-Foxp3 and Vector Blue (resulting in a blue 
colour). The sections were then incubated with a rabbit anti-mouse type IV collagen polyclonal antibody 
(LB1403; Cosmo Bio, Tokyo), peroxidase-conjugated anti-rabbit Ig and diaminobenzidine (resulting in a 
brown colour).

Statistical analysis
The results are expressed as the means ± SDs. Statistical significance was determined by performing 

unpaired t-tests or analysis of variance (ANOVA) using GraphPad Prism software. The cardiac allograft 
survival in the groups of mice was compared using Mann-Whitney U testing. P-values < 0.05 were considered 
statistically significant.
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Results

IL-35 expression was up-regulated during LPS-induced DC maturation
Previous studies have demonstrated that IL-35 was mainly secreted by Tregs or tolDCs 

[31, 32]. However, the expression and regulation of IL-35 on DCs remain to be clarified. In 
this study, LPS, TNF-α, IFN-γ and IL-1 were used to evaluate the IL-35 production by DCs in 
response to Toll-like receptor stimulation. The IL-35 expression level was markedly higher 
after LPS, TNF-α, IFN-γ and IL-1 stimulation than that observed for the imDCs group, and 
expression was highest with LPS treatment (Fig. 1A). To further evaluate the expression 
of IL-35 following LPS stimulation, we activated DCs with LPS for different durations and 
found that the expression of IL-35 was time-dependent up to 4 h following LPS stimulation 
and reached a peak at 4 h (Fig. 1B) compared with the control group treated with PBS. 
To determine whether other IL-12 family cytokines were affected by LPS, we detected 
the expression levels of IL-12, IL-23 and IL-27 in the cell supernatants and found that all 
cytokines were significantly increased in mDCs (Fig. 1C). LPS-treated DCs exhibited up-
regulation of IL-12p35 and Ebi3 transcripts at much higher levels than those in untreated 
DCs (Fig. 1D). IL-12p35 and Ebi3 protein levels were detected via Western blotting and were 
significantly increased after LPS treatment (Fig. 1E). These results suggested that IL-35 was 
highly increased in DCs after LPS stimulation.

IL-35 suppressed DC maturation and promoted Treg generation
To determine whether IL-35 regulates DC maturation and function, the expression 

patterns of maturation-specific proteins in DCs were determined. After 24 h of stimulation 

Fig. 1. Interleukin-35 
expression was up-
regulated during 
l i p o p o lys a c c h a r i d e 
-induced dendritic 
cell maturation. (A) 
Bone marrow-derived 
dendritic cell (DCs) 
were cultured for 6 days 
in the presence of IL-4 
and GM-CSF to obtain 
immature DCs (imDCs) 
and then treated with 
l i p o p o lys a c c h a r i d e 
(LPS), tumour necrosis 
factor-α (TNF-α), 
interferon-γ (IFN-γ) or 
IL-1 for 24 h. The IL-
35 expression levels in 
the DC supernatants 
were analysed using 
an ELISA kit. (B) The 
DC supernatants were 
harvested at different 
times (0, 2, 4, 8, 16, or 
24 h) after the treatment with LPS. An ELISA kit was used to detect the expression levels of IL-35. (C) The 
levels of IL-12 cytokine family members were analysed in DC supernatants after 24 h of treatment with LPS 
using ELISA kits. The mRNA (D) and protein (E) expression levels of IL-12p35 and Ebi3 were detected in 
DCs after 24 h of LPS stimulation. The data shown are derived from three independent experiments and are 
expressed as means ± SD. *P<0.05, **P<0.01, ***P<0.001.

Figure 1 

  

http://dx.doi.org/10.1159%2F000493298


Cell Physiol Biochem 2018;49:1221-1237
DOI: 10.1159/000493298
Published online: 6 September, 2018 1227

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Liu et al.: Interleukin-35 Induces Dendritic Cell Immune Tolerance 

with LPS, the DCs expressed comparable levels of CD80, a key characteristic of the mature 
state, CD86 and MHC-II, while treatment with mouse recombinant protein IL-35/Ebi3 
before LPS stimulation resulted in the generation of immature DCs as determined by lower 
expression levels of CD80, CD86 and MHC-II (Fig. 2A). After treatment with the IL-35-
neutralising antibody, the ability of IL-35 to induce lower expression levels of CD80, CD86 

Fig. 2. Interleukin-35 suppressed dendritic cell maturation promoted regulatory T cell generation. Bone 
marrow-derived dendritic cell (DCs) were cultured for 6 days in the presence of IL-4 and GM-CSF to 
obtain immature DCs (imDCS) and treated with lipopolysaccharide (LPS) for 24 h to obtain mature DCs 
(mDCS). The imDCs were treated with IL-35/Ebi3 or IL-35/Ebi3-neutralising antibody for 24 h before 
LPS stimulation. (A) The DC subtypes (CD80, CD86, and MHC-II) were analysed using flow cytometry. (B) 
Cytokine expression levels in DC supernatants were analysed using ELISA kits. (C) BALB/c DCs (1.0×105/
ml) were treated with mitomycin C (10 μg/ml) for 4 h, co-cultured with BALB/c mice CD3+ T cells (1.0×106/
ml) in a 96-well plate for 4 days and then incubated with BrdU (10 mM, 24 h) to quantify proliferation. T 
cell proliferation was assessed by BrdU ELISA. The proliferation of T lymphocytes was significantly lower 
following treatment with IL-35/Ebi3-mDCs than that observed in the control group. (D-F) Co-cultured T 
cells from MLRs were incubated with CD4+, CD25+, and Foxp3+ antibodies or CD4+ and IL-17A+ or CD4+ and 
IFN-γ+ antibodies. T cells were detected using flow cytometry to analyse the regulatory T cell (Treg) (D), 
Th17 (E) and Th1 (F) subtypes. The data shown are derived from three independent experiments and are 
expressed as means ± SD. *P<0.05, **P<0.01, ***P<0.001, NS denotes not significant.
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and MHC-II on DCs was hampered. Thus, IL-35 could functionally inhibit LPS-triggered 
DC maturation. ImDCs can preserve the production of immunoregulatory cytokines while 
maintaining a lower production of inflammatory cytokines. Following IL-35 activation, the 
DCs exhibited a strong production of IL-10 and TGF-β, whereas the secretion of IL-12, IL-23 
and IFN-γ was decreased (Fig. 2B).

To ascertain the allostimulatory capabilities of the IL-35-treated DCs, IL-35/Ebi3 or IL-
35-neutralising antibody-triggered DCs were co-cultured with allogenic CD3+ T lymphocytes, 
and then, T cell proliferation was analysed. The results show that the proliferation of T cells 
was not induced by IL-35/Ebi3-treated DCs. Furthermore, the co-stimulatory capabilities 
of DCs after stimulation with IL-35/Ebi3 were decreased (Fig. 2C). To analyse the T cell 
population, CD4+ T cells were isolated from co-cultured MLR cells and analysed by using flow 
cytometry. IL-35/Ebi3-induced DCs promoted CD4+CD25+Foxp3+ Treg differentiation (Fig. 
2D) and suppressed CD4+IL-17A+ Th17 cell differentiation (Fig. 2E), suggesting that IL-35/
Ebi3-induced DCs exhibit suppressive activity. The blockade of IL-35 with IL-35-neutralising 
antibody abrogated the inhibitory effect of IL-35 on the DCs. T cells that simultaneously 
expressed CD4 and IFN-γ were measured, and there was no significant difference between 
IL-35/Ebi3-treated DCs and the other groups (Fig. 2F). Thus, IL-35 treatment caused DCs to 
remain immature, which then affected the balance between Treg and Th17 cells.

IL-35 could activate the STAT family to regulate DC maturation
STATs are classic transcription factors that directly engage DNA regulatory elements 

and thereby control the transcription of associated genes [33]. STATs have been found to 
intrinsically regulate DC function and importantly participate in DC maturation and the 
production of inflammation cytokines. Insight into one possible mechanism has been 
provided by an analysis of signalling via the receptor for IL-35 [34]. IL-35 signalling via 
STAT1 and STAT4 drive the inhibitory programme in T cells [35, 36]. We investigated 
whether IL-35 also affects DCs via the STAT1 and STAT4 pathways. As shown in Fig. 3, the 
expression of phosphorylated STAT signalling pathway proteins in differentially treated DCs 
was analysed by Western blotting. We found that the expression levels of phosphorylated 
STAT1, STAT3 and STAT4 were significantly higher in IL-35/Ebi3-treated DCs than those in 
the other groups, but changes in the expression of phosphorylated STAT5 and STAT6 were 
not significant. Thus, IL-35 might activate the STAT1, STAT3 and STAT4 pathways to perform 
its biological function in DCs.

The secretion of IL-35 in DCs was regulated by let-7i via targeting SOCS1
In our previous study, we found that let-7i expression was up-regulated and could 

regulate the secretion of inflammatory cytokines by DCs [24]. To determine whether the 
expression of IL-35 was also regulated by let-7i in DCs, we transfected DCs with let-7i mimic 
or inhibitor and compared the effects with those produced by an NC-mimic or NC-inhibitor 
following stimulation with LPS. Expectedly, the transfection with the let-7i mimic resulted in 
the overexpression of let-7i, whereas the let-7i inhibitor suppressed the expression of let-7i 
in the DCs as determined by qRT-PCR. IL-35 expression was significantly higher in the let-7i 
inhibitor-treated DCs than in the other groups (Fig. 4A), and the IL-35 level peaked at the 
150 nmol/L concentration of the let-7i inhibitor (Fig. 4B). According to a qRT-PCR analysis 
of mRNA expression, the expression levels of IL-12p35 and Ebi3 were also substantially 
higher in the DCs treated with the let-7i inhibitor (Fig. 4C). We also detected the secretion 
levels of IL-4, IL-10, IL-12, IL-23, TGF-β and IFN-γ in the DCs transfected with the let-7i 
mimic or inhibitor. The transfection of DCs with the let-7i inhibitor promoted secretion of 
the anti-inflammatory cytokines IL-10 and TGF-β and had an inverse effect on the secretion 
of the pro-inflammatory cytokines IL-12 and IFN-γ (Fig. 4D), which was consistent with 
the results observed in DCs treated with IL-35/Ebi3. Collectively, these results suggest that 
the expression of IL-35 is regulated by let-7i. The down-regulation of let-7i expression can 
induce DCs to secrete IL-35, resulting in immune tolerance.
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SOCS1 is a negative regulator and plays an essential role in suppressing systemic 
autoimmunity mediated by DCs [37, 38] . The silencing of SOCS1 enhances antigen 
presentation by DCs and antigen-specific anti-tumour immunity [38]. SOCS1 functions as 
an attenuator of antigen presentation for the control of self-tolerance through restricted 
pro-inflammatory cytokine signalling, such as IL-12 signalling, in mature DCs [39]. In our 
previous study, we investigated whether let-7i targets SOCS1 and concluded that the let-
7i-mediated regulation of SOCS1 protein expression was regulated by post-transcriptional 
effects [24]. Our qRT-PCR and Western blot results were consistent with those obtained in 
previous studies, which showed that the down-regulation of let-7i causes an increase in 
SOCS1 expression (Fig. 5A-B). To investigate possible molecular restrictions in DCs affecting 

Figure 3 

 
Fig. 3. Interleukin-35 activated the signal transducer and activator of transcription family to regulate 
dendritic cell maturation. imDCs were treated with IL-35/Ebi3 or IL-35/Ebi3-neutralising antibody for 24 
h and then stimulated with LPS. Whole dendritic cell (DCs) (1×107) were lysed in RIPA buffer supplemented 
with a proteinase inhibitor cocktail, and a total of 30 μg of protein from each group extract was loaded 
and separated on Tris-glycine SDS-PAGE gels. Western blotting was performed using the indicated primary 
antibodies, and β-actin was included as a loading control. The prefix “p” indicates phosphorylation. The 
blots are representative of three independent experiments. ***P<0.001.
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the secretion of IL-35 in response to the down-regulation of let-7i, we tested the effect of 
silencing SOCS1 in DCs on the expression of IL-35. The mRNA (Fig. 5C) and protein (Fig. 
5D) levels of IL-12p35 and Ebi3 and the production (Fig. 5E) of IL-35 in the supernatant all 
decreased. The down-regulation of let-7i observed after SOCS1 silencing did not promote DC 
secretion of a higher level of IL-35. This finding confirmed that let-7i might target SOCS1 to 
regulate the expression of IL-35 in DCs.

Transfusion of IL-35/Ebi3-treated DCs generated Tregs and prolonged cardiac allograft 
survival
BALB/c recipient mice transfused with PBS and mDCs rejected C57BL/6 grafts (median 

survival times [MSTs]: 6 days, 7 days, Fig. 6A), whereas those transfused with IL-35/Ebi3-
mDCs had significantly prolonged allograft survival (MST: 21 days). The allograft survival 
was slightly prolonged (MST: 11 days) in the BALB/c recipient mice that were treated with 
tacrolimus (1 mg/kg/day) for 7 days. The histological examinations of the cardiac allografts 
obtained 14 days after transplantation showed the infiltration of inflammatory cells but 
significantly preserved structures with a few myocardial injuries in the transplant recipients 

Fig. 4. Secretion 
of interleukin-35 
in dendritic cells 
was regulated by 
microRNA let-
7i. (A) Dendritic 
cells (DCs) were 
transfected with 
a let-7i mimic 
or inhibitor or 
negative control 
(NC) for 24 h before 
lipopolysaccharide 
(LPS) treatment, 
and the expression 
levels of IL-35 in 
the supernatant 
were detected via 
ELISA. (B) DCs 
were transfected 
with different 
doses of the let-7i 
inhibitor, and the 
expression levels 
of IL-35 were 
then detected. (C) 
Changes in the 
mRNA expression 
of IL-12p35 and 
Ebi3 in let-7i-
treated DCs were 
examined by qRT-
PCR. GAPDH mRNA 
expression in the same samples was used as an endogenous reference to determine the relative mRNA 
expression. (D) ELISA was used to detect changes in the secreted cytokine levels in the DC supernatant 
after transfection with let-7i. The data are expressed as the means ± SDs of six independent experiments. 
*P<0.05, **P<0.01, ***P<0.001.

Figure 4 

 

http://dx.doi.org/10.1159%2F000493298


Cell Physiol Biochem 2018;49:1221-1237
DOI: 10.1159/000493298
Published online: 6 September, 2018 1231

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Liu et al.: Interleukin-35 Induces Dendritic Cell Immune Tolerance 

receiving IL-35/Ebi3-mDCs, whereas allografts from the PBS recipients showed severe 
myocyte damage and oedema, which were characteristic of the acute rejection process (Fig. 
6B). In each HE-stained section, a significant difference was observed by grading using a 
semiquantitative scale. IL-35/Ebi3-mDCs could prolong allograft survival and resulted in 
less histological damage.

The immunohistochemical results showed that the cardiac allografts from recipients 
transfused with IL-35/Ebi3-mDCs exhibited a high frequency of Foxp3+ cell infiltration (Fig. 
6D) and expression of the anti-inflammatory cytokine IL-10 in the blood serum (Fig. 6E). 
Then, we examined the CD4+CD25+Foxp3+ Treg immune response in grafted splenocytes from 
recipients transfused with IL-35/Ebi3-mDCs. According to the flow cytometry analysis, the 
proportion of CD4+CD25+Foxp3+ Tregs was significantly higher in the spleens of recipients 
transfused with IL-35/Ebi3-mDCs (Fig. 6C) than in recipients transfused with PBS and 
mDCs. This finding was further supported by the observation that IL-35, as an inhibitory 
cytokine, induced DC immunosuppressive activities, suggesting that the IL-35-induced DC-
driven suppressor response is meaningful in vivo.

Fig. 5. The secretion of interleukin-35 from dendritic cells was regulated by microRNA let-7i via suppressor 
of cytokine signalling 1 targeting. Dendritic cells (DCs) were transfected with a let-7i mimic, inhibitor or 
a negative control for 24 h and then treated with lipopolysaccharide (LPS), and the expression levels of 
suppressor of cytokine signalling 1(SOCS1) mRNA (A) and protein (B) were detected by qRT-PCR and 
Western blotting, respectively. The data are expressed as the means ± SDs of n = 3 samples pooled from three 
independent experiments. The cells were transfected with SOCS1 short interfering (si)RNA (60 nM) for 24 
h before transfection with the let-7i inhibitor, treated overnight with LPS on Day 7 and then harvested. IL-
12p35 and Ebi3 mRNA (C) and protein (D) expression levels were determined, and IL-35 expression levels 
were detected via ELISA (E). The abbreviation “NC” indicates negative control compared to let-7i. The data 
are expressed as the means ± SDs. “NS” denotes not significant. *P<0.05, **P<0.01, ***P<0.001.

Figure 5 
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Fig. 6. Transfusion of IL-35/Ebi3-treated dendritic cells generated regulatory T cells and prolonged 
cardiac allograft survival. (A) Graft survival times in BALB/c recipient mice that were transfused once with 
phosphate buffered saline (PBS), mature DCs (mDCs) or IL-35/Ebi3-mDCs or received an oral administration 
of tacrolimus at 1 mg/kg/day for 7 days. (B) Histological studies of harvested cardiac allografts stained with 
haematoxylin and eosin 14 days after transplantation (original magnification, 20×). Assessment of acute 
cellular rejection using haematoxylin and eosin staining by grading according to the 2005 classification of 
the International Society for Heart and Lung Transplantation. (C) Expression of CD4+ CD25+Foxp3+ T cells in 
BALB/c splenocytes as determined by flow cytometry. (D) Cell count of infiltrating Foxp3+ cells in cardiac 
allografts in each group 14 days after grafting. (E) Levels of cytokines in the plasma from BALB/c recipient 
mice 14 days after transplantation. The data are expressed as the means ± SDs of samples from six mice 
from each group. MST, median survival time, “NS” denotes not significant, **P<0.01, ***P<0.0001.

Figure 6 
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Discussion

In this study, the expression of IL-35 was significantly increased in DCs after LPS 
stimulation. IL-35 could suppress DC maturation, thereby inhibiting pro-inflammatory 
cytokine secretion and promoting the secretion of anti-inflammatory cytokines by targeting 
the STAT1/STAT3/STAT4 signalling pathway. IL-35/Ebi3-treated DCs suppressed the 
proliferation of T cells and affected the balance between Tregs and Th17 cells. The expression 
of IL-35 in DCs was regulated by let-7i via targeting SOCS1. Transfusion of IL-35/Ebi3-treated 
DCs generated Tregs in vivo and prolonged cardiac allograft survival.

IL-35, which is an inhibitory cytokine produced by thymus-derived natural regulatory 
T cells, is the most recently identified member of the IL-12 family. The cytokine IL-35 has 
attracted increasing attention as a key regulator of immunity and immunological tolerance. 
Recent studies indicate that IL-35 also regulates the effector functions of plasma cells and 
monocyte-derived DCs [10]. Although IL-35 appears to be essential to the maintenance of 
immune tolerance and represents a promising candidate for immunotherapy, its functionality 
and tolerogenic potential have been poorly investigated [4]. Immature or induced tolDCs 
play an essential role in the maintenance of peripheral tolerance [4]. TolDCs are generated ex 
vivo by culturing precursors with culture medium containing GM-CSF (mainly at a low dose) 
and eventually with IL-4, IL-10, or TGF-b or drugs such as vitamin-D3 (VitD3), rapamycin, 
tacrolimus, dexamethasone or mitomycin C [21, 40]. TolDCs are characterised by low levels 
of MHC-II and co-stimulatory markers, reduced secretion of pro-inflammatory cytokines, 
and high expression of tolerogenic molecules, such as IL-10 and TGF-β [41]. In this study, 
we observed consistent down-regulation of MHC-II and co-stimulatory markers following 
treatment of DCs with IL-35/Ebi3. In addition, IL-35 promoted the secretion of anti-
inflammatory cytokines, such as IL-10 and TGF-β, and decreased the secretion of IL-12 and 
IFN-γ in DCs. Our results demonstrated that IL-35-induced DCs tend to become immature 
and exhibit immune suppression functions, potentially providing a new mechanism for the 
regulation of DC immunity.

T cell-based approaches for treating inflammatory conditions, such as allergies, 
autoimmune diseases and graft-versus-host responses, have great potential and notable 
limitations [23, 42]. The therapeutic potential of human T cells is limited by their polyclonal 
specificity, poorly defined markers for enrichment and low proliferative capacity, which limits 
ex vivo population expansion. TolDCs have the capacity to induce tolerance in the peripheral 
tissue via the expansion or induction of several subtypes of regulatory lymphocytes, which 
are mainly classical induced Tregs. VitD3-treated DCs prevent T cell priming and induce the 
apoptosis of effector T cells. TolDCs can also induce naïve and memory T cell apoptosis [21]. 
Exogenous IL-35 has been shown to promote the development of Tregs, but these cells do not 
express Foxp3, IL-10 or TGF-β [23]. Exogenous IL-35 also has no effect on the proliferation 
of Th17 cells [43]. In this study, DCs treated with IL-35 potently inhibited T cell proliferation, 
and we also observed that IL-35-treated mDCs, but not IL-35 or mDCs alone, induced an 
increase in the proportion of CD4+CD25+Foxp3+ Tregs and significantly suppressed increases 
in the Th17 cell population. Therefore, the treatment of DCs with IL-35 can further regulate 
T cell proliferation and function. In the context of IL-35-mediated propagation of immune 
tolerance, IL-35-conditioned DCs might exert a similar function on Tregs. These findings 
provide further insight into the ability of IL-35 to induce immature DCs, indirectly affecting 
T cell proliferation and expanding the Foxp3+ Treg population in vitro.

Therapeutic strategies using cell products that are composed of immunoregulatory cell 
populations are being tested [44]. Pluripotent mesenchymal stem cells have been postulated 
to have immunosuppressive properties. Tan and colleagues demonstrated that autologous 
MSC infusion as an induction agent for living-donor kidney transplantation increased Treg 
generation [44, 45]. DCs with tolerogenic properties have been explored extensively in small 
animal models, and a meta-analysis demonstrated their potency in prolonging allograft 

http://dx.doi.org/10.1159%2F000493298


Cell Physiol Biochem 2018;49:1221-1237
DOI: 10.1159/000493298
Published online: 6 September, 2018 1234

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Liu et al.: Interleukin-35 Induces Dendritic Cell Immune Tolerance 

survival in multiple transplantation models [21]. For human injection, the feasibility of 
generating ex vivo DCs with tolerogenic properties has now been proven. The main challenge 
in bringing tolDCs into the clinic is the requirement of preserving their tolerogenic properties 
upon transfusion into the patient. However, there are two major concerns regarding the use 
of tolDCs in transplantation: inflammatory mediators and immunosuppressive drugs. Organ 
transplantation induces inflammation in the graft microenvironment that can gradually lead 
to tolDC maturation, and treatment with immunosuppressive drugs can affect the ability of 
tolDCs to induce tolerance. In this study, we transfused IL-35/Ebi3-mDCs into BALB/c heart 
transplant recipient mice. The mice transfused with IL-35/Ebi3-mDCs exhibited significantly 
prolonged allograft survival. Allograft survival was slightly prolonged in BALB/c recipients 
that were treated with mDCs, which can be partially attributed to the systemic delivery of 
IL-35/Ebi3-mDCs but not the transfer of mDCs. The IL-35-induced immature DC phenotype 
contributes to the Treg infiltration of cardiac allografts. IL-35 treatment of imDCs and then 
stimulation with LPS induces a DC hypotype that displays tolerogenic features, remains 
stable and is able to prolong organ graft survival. Thus, DC transfer, along with the delivery 
or overexpression of IL-35, may represent a potential preventive and therapeutic tool for 
the regulation of allograft rejection [4]. Considering the particular tolerance mechanisms 
employed by IL-35, its combination with other tolerogenic molecules, such as TGF-β or IL-
10, might potentiate immunosuppressive effects in therapeutic settings.

Unlike other diseases or conditions, transplantation involves allorecognition between 
two parts, the graft and the host. Autologous tolerogenic DCs may be more effective than 
donor tolerogenic DCs for transplantation, and the safety and efficiency of DCs have been 
discussed. Using donor bone marrow DCs (stimulated with low doses of GM-CSF) in a 
rat heart transplant model, DePaz et al. showed that tolDC therapy was able to increase 
rat cardiac allograft survival [46]. However, a later study using donor tolDCs or apoptotic 
bodies from donor tolDCs showed that tolerance was mediated by the presentation of donor 
peptides (from donor cells or apoptotic bodies) by recipient DCs, which inhibits CD4+ T 
cell activation and favours Treg expansion [22, 47]. Both therapies have been shown to be 
partially efficient, but on the other hand, the risk of sensitisation (including the development 
of alloantibodies) remains. Therefore, the use of autologous tolDCs appears to be a better 
alternative, at least in terms of safety, because it avoids the risk of sensitisation. In this 
study, autologous DCs treated with IL-35/Ebi3 displayed an immature phenotype and, upon 
injection the day before transplantation, were able to prolong cardiac allograft survival. 
We also demonstrated that rats receiving heart allografts and treated with autologous DCs 
transfected with let-7i achieved remarkable prolonged survival of cardiac allografts and 
generated Tregs [29]. These combined results demonstrated that autologous tolDCs are 
even more efficient than donor tolDCs. Finally, results confirming the efficacy and safety of 
autologous tolDCs in humans in transplantation will be evaluated in the coming years.

Conclusion

Overexpression of IL-35 regulated DC maturation and function and subsequently 
affected the balance between Tregs and Th17 cells. The transfusion of IL-35-transfected 
DCs induced the generation of Tregs in mice and prolonged cardiac allograft survival. In 
conclusion, our data demonstrated that IL-35 can induce DC immune tolerance and that IL-
35-overexpressing DCs might be a promising approach for regulating immune tolerance and 
immunological disorders.
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