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In this work, a star-shaped planar acceptor named FTr-3PDI was synthesized via

ring-fusion between truxene core and three bay-linked perylene diimide (PDI) branches.

Compared to the unfused non-planar acceptor Tr-3PDI, FTr-3PDI exhibits better

structural rigidity and planarity, as well as more effective conjugation between truxene

core and PDI branches. As a result, FTr-3PDI shows up-shifted energy levels, enhanced

light absorption coefficient, increased electron mobility, and more favorable phase

separation morphology in bulk-heterojunction (BHJ) blend films as compared to Tr-3PDI.

Consequently, FTr-3PDI afforded higher power conversion efficiency (PCE) in BHJ solar

cells when blended with a polymer donor PTB7-Th. This work demonstrates that

ring-fusion is a promising molecular design strategy to combine the merits of truxene

and PDI for non-fullerene acceptors used in organic solar cells.

Keywords: organic solar cells, star-shaped electron acceptors, truxene, perylene diimide, ring-fusion

INTRODUCTION

Recently, non-fullerene electron acceptors have received considerable attention in the community
of organic solar cells (OSCs) due to their energy level tunability, intense optical absorption
properties, and potential for low-cost and large-scale fabrication (Cheng et al., 2018; Hou et al.,
2018; Yan et al., 2018). Among them, perylene diimide (PDI) derivatives are widely investigated
in bulk-heterojunction (BHJ) OSCs because of their intense light absorption and high electron
mobility (Zhan et al., 2007, 2011; Lin et al., 2014; Sun et al., 2015; Hendsbee et al., 2016; Liu J.
et al., 2016; Liu Z. T. et al., 2016; Meng et al., 2016a). Despite these favorable properties, PDI
monomer shows low device performance due to the formation of large aggregated nanostructure
and undesired large crystalline domains caused by the large coplanar structure of PDI block,
which hamper the exciton diffusion and separation process (Sharenko et al., 2013; Liu S. Y. et al.,
2015). To overcome these drawbacks, an effective strategy is to develop non-coplanar PDI-based
molecules via forming twisted intramolecular structures (Zhong et al., 2014, 2016; Lin et al., 2016;
Zhang et al., 2016; Duan et al., 2017a; Liu X. et al., 2017; Liu et al., 2018). For example, a lot
of star-shaped electron acceptors with PDI branches were reported recently based on this design
guideline (Lin et al., 2014, 2016; Liu Y. H. et al., 2015; Lee et al., 2016; Duan et al., 2017a; Zhang
A. D. et al., 2017). Although these star-shaped PDI electron acceptors can avoid forming large
crystalline domains, their highly twisted architectures decrease the intermolecular contact and
orbital overlapping between PDI π-planes, thus hampering electron hopping between molecules.
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Therefore, the key point to develop high-performance PDI
electron acceptors is to obtain a balance between highly twisted
non-planar structures for forming proper phase separation in
blend films and strong intermolecular interaction for supporting
sufficient charge transport ability.

Recently, several studies showed that oxidative ring-fusion
between the PDI branches and the central aromatic core of
PDI-based molecules is an effective strategy to achieve such an
exquisite balance (Hartnett et al., 2016; Meng et al., 2016b, 2017;
Zhong et al., 2016; Wang B. et al., 2017; Zhang J. Q. et al.,
2017). The resulting fused PDImolecules exhibit better structural
rigidity and planarity, as well as more effective conjugation
between the aromatic core and PDI branches. Meanwhile,
the fused PDI molecules show stronger intermolecular π-π
stacking and higher electron mobility. Moreover, these fused
PDI acceptors can lead to desirable film morphology with
proper domain size and high domain purity in BHJ blends
when blended with donor polymers (Meng et al., 2016b, 2017;
Wang B. et al., 2017; Zhang J. Q. et al., 2017). Therefore, the
fused PDI acceptors display significantly improved photovoltaic
performance compared to their carbon-carbon single bond
connected counterparts (Scheme 1) (Li et al., 2016; Meng et al.,
2016b, 2017; Liu X. F. et al., 2017; Wang B. et al., 2017; Zhang
J. Q. et al., 2017). Actually, the best-performing OSCs based
on PDI acceptors was achieved by a star-shaped fused PDI
molecule named FTTB-PDI4, which afforded a power conversion
efficiency (PCE) of 10.58% (Zhang J. Q. et al., 2017).

Among various central cores for star-shaped electron
acceptors, truxene has been proved to be promising for

SCHEME 1 | The reported representative star-shaped electron acceptors with PDI branches linked by carbon-carbon single bonds and adjoin benzene rings.

constructing high-performance optoelectronic materials
(Nielsen et al., 2013, 2014; Lin et al., 2018; Wu et al., 2018). The
rigid coplanar structure and unique C3h symmetry contribute to
well-delocalized electronic structure in extended dimensionality
for the resulting star-shaped conjugated molecules, which in turn
result in strong light absorption and effective charge transport.
Recently, Peng’s group reported a state-of-the-art truxene-
based electron acceptor for application in OSCs, which yielded
impressive PCE exceeding 10% (Wu et al., 2018). These results
suggested the promising prospect of truxene for constructing
high-performance electron acceptors.

Inspired by these achievements, herein, we report the
design and synthesis of two star-shaped acceptors named
Tr-3PDI and FTr-3PDI, (Scheme 2A) where the truxene
core and PDI branches are linked by carbon-carbon
single bonds or via ring-fusion, respectively. We further
evaluated their potential as electron acceptors in OSCs with
poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-
b]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-
b]thiophene)-2-carboxylate-2,6-diyl] (PTB7-Th) as the donor.
The solar cells based on Tr-3PDI and FTr-3PDI exhibited a PCE
of 2.2 and 3.8%, respectively. The better device performance of
the fused acceptor FTr-3PDI is attributable to more favorable
energy level alignment with the polymer donor PTB7-Th, more
intense light absorption, stronger intermolecular packing, higher
electron mobility, and more proper morphology in blend film.
This work suggests the potential of ring-fusion strategy for
constructing high performance PDI electron acceptors based on
truxene core.
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SCHEME 2 | (A) Synthetic routes and chemical structures of Tr-3PDI and Fused-Tr-3PDI; (B) views of the optimized geometries obtained using DFT calculations at

the B3LYP/6-31G(d) level.

EXPERIMENTAL SECTION

Materials and Synthesis
All reagents were obtained from commercial sources and
used without further purification, unless otherwise specified.
Scheme 2A shows the synthetic routes of Tr-3PDI and FTr-
3PDI. The detailed synthesis procedures are described as
following.

Tr-3PDI

A mixture of 2,2′,2′′-(5,5,10,10,15,15-hexahexyl-10,15-dihydro-
5H-diindeno[1,2-a:1′,2′-c]fluorene-2,7,12-triyl)tris(4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (truxene boronic acid
pinacol ester, 0.613 g, 0.5 mmol) and 5-Bromo-2,9-bis(1-
pentylhexyl)anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8,
10(2H,9H)-tetrone (monobromo-PDI, 1.746 g, 2.25 mmol) in
anhydrous dimethylformamide (40mL) was degassed for 30min
before Pd(PPh3)4 (58mg, 0.05 mmol) and K2CO3 aqueous
solution (2M, 10mL) was added. The solution was heated at
95◦C for 48 h. Water and dichloromethane were added, and the
organic layer was dried over MgSO4. After removing the solvent,
the crude product was chromatographically purified on silica
gel column (eluted with ethyl acetate:petrolem ether = 1:20) to
afford Tr-3PDI as a brownish-red solid (0.95 g, 65%). 1H NMR
(500 MHz, CDCl3) δ: 8.74 (m, 18H), 8.60 (m, 6H), 7.62 (m, 6H),
5.25 (m, 6H), 3.04 (m, 6H), 2.17 (m, 30H), 1.29 (m, 112H), 0.86
(m, 72H). 13C NMR (125MHz, CDCl3) δ: 165.00, 163.91, 155.86,
155.72, 146.31, 142.03, 141.28, 140.62, 138.11, 135.10, 134.57,
132.77, 131.59, 129.98, 129.46, 128.77, 128.34, 127.78, 126.99,
126.80, 123.65, 122.84, 122.26, 56.45, 56.40, 54.95, 54.67, 37.20,
37.07, 32.52, 32.34, 31.91, 31.84, 31.83, 31.81, 31.59, 29.85, 29.80,
29.62, 29.39, 26.78, 26.69, 24.37, 24.13, 22.73, 22.66, 22.64, 22.60,

22.50, 22.43, 14.19,14.16, 14.14. MS (MALDI-TOF) calculated
for C201H246N6O12, 2938.21; found, 2937.88.

FTr-3PDI

Tr-3PDI (293.7mg, 0.1 mmol) was dissolved in 20mL
chlorobenzene before adding a catalytic amount of iodine
(about 2mg). The resultant mixture was stirred for 1 h
under lab environment. After the reactivation process, kept
the closed stand-up bottle exposing to irradiation of 500W
mercury lamp for 5 h at room temperature. The color of
the solvent turned to brownish-yellow from brownish-red.
After the reaction, the solvent was concentrated and the
residue was purified by silica gel column chromatography
(hexane:dichloromethane = 1:1) to afford a brownish-yellow
solid (263.8mg, 90%). 1H NMR (500 MHz, CDCl3) δ: 10.65
(m, 9H), 9.67 (s, 3H), 9.37 (m, 6H), 9.17 (m, 6H), 5.62 (m,
6H), 3.83 (m, 6H), 3.17 (m, 6H), 2.63 (m, 12H), 2.10 (m,
12H), 1.47 (m, 90H), 1.38 (m, 15H), 0.91 (m, 80H), 0.36
(m, 18H). 13C NMR (125MHz, CDCl3) δ: 165.06, 164.52,
155.41, 149.23, 141.71, 139.02, 134.27, 133.92, 129.76, 129.33,
128.73, 127.83, 127.71, 125.41, 125.27, 124.98, 123.50, 123.36,
119.83, 117.66, 57.60, 55.26, 38.26, 32.81, 32.03, 31.56, 29.57,
27.01, 24.91, 22.85, 22.81, 22.32, 14.30, 14.25, 13.84, 13.82. MS
(MALDI-TOF) calculated for C201H240N6O12, 2932.16; found,
2931.94.

Instruments and Characterization
1H and 13C NMR spectra were tested on a Bruker AV-500 with
tetramethylsilane (TMS) as an internal reference. MALDI-TOF-
MS was performed by using a Bruker Agilent1290/maXis impact.
UV-vis spectra were measured on a HP 8453 spectrophotometer.
Thermogravimetric (TGA) analysis was measured on a
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NETZSCH TG 209 at a heating rate of 10◦C min−1 with a
nitrogen flow rate of 20mL min−1. Cyclic voltammetry data
were measured on a CHI600D electrochemical workstation
with Bu4NPF6 (0.1M) in acetonitrile as the electrolyte, a carbon
electrode and a saturated calomel electrode as the working and
reference electrodes, respectively. The thin films were coated on
a glassy carbon working electrode. The scan rate was 100mV
s−1. The geometry was optimized by Density Functional Theory
(DFT) calculations performed at the B3LYP/6-31G(d) level to
optimize the ground state geometries of the acceptor molecules
using the Gaussian 09. The transient photocurrent of devices
was measured by applying 500 nm laser pulses with a pulse
width of 120 fs to the devices, which produced a transient
voltage signal on a 50� resistor and recorded by an oscilloscope
(Tektronix EDS 3052C). The laser pulses were generated from
optical parametric amplifier (TOPAS-Prime) pumped by a
mode-locked Ti:sapphire oscillator seeded regenerative amplifier
with a pulse energy of 1.3 mJ at 800 nm and a repetition
rate of 1 KHz (Spectra Physics Spitfire Ace). The atom force
microscopy (AFM) images were obtained from a NanoMan VS
microscopy under tapping mode. The transmission electron
microscopy (TEM) images were characterized with a JEM-2100F
instrument.

Fabrication and Characterization of Solar
Cells
The devices of indium tin oxide (ITO)/poly(3,4-
ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/
PTB7-Th:acceptor/poly[(9,9-bis(3′-((N,N-dimethyl)-N-
ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-
dioctylfluorene)]dibromide (PFN-Br)/Al were fabricated
through the following procedures. The ITO-coated glass
substrate was cleaned in an ultrasonic bath with deionized
water, acetone, and isopropanol, each process was approximately
15min, and then dried under a stream of dry nitrogen.
PEDOT:PSS (Heraeus Clevios PVPA 4083) was spin-coated
on top of the above ITO and annealed in air at 150◦C for
10min. Subsequently, the blend solutions of PTB7-Th and
truxene-PDI acceptors were prepared by simultaneously
dissolving both materials with the optimized weight ratio in
ortho-dichlorobenzene and spin-coated on the ITO/PEDOT:PSS
electrode (at 1,600 rpm for 60 s) to form an active layer with
thickness of about 100 nm. Then PFN-Br and Al layer were
thermally deposited onto the active layer through a shadow
mask at a vacuum of 5 × 10−5 Pa. During the test, an aperture
with an area of 3.14 mm2 was used. The current density–voltage
(J–V) curves were measured on a computer-controlled Keithley
2400 source meter under 1 sun, the AM 1.5G spectra came
from a class solar simulator (Enlitech, Taiwan), and the light
intensity was 100 mW cm−2 as calibrated by a China General
Certification Center-certified reference monocrystal silicon cell
(Enlitech). Before the J–V measurement, a physical mask with
an aperture with precise area of 0.04 cm2 was used to define the
device area. The external quantum efficiency (EQE) spectra were
measured on a commercial QE measurement system (QE-R3011,
Enlitech).

Fabrication and Characterization of
Single-Carrier Devices
The charge carrier mobilities of PTB7-Th:truxene-PDI
acceptor blend films were determined from single-carrier
devices with space-charge-limited current (SCLC) model.
The device structures of the electron only and hole
only devices are ITO/ZnO/PTB7-Th:acceptor/Ca/Al and
ITO/PEDOT:PSS/PTB7-Th: acceptor/MoO3/Ag respectively.
The mobilities were determined by fitting the dark J–V current
to the model of a single carrier SCLC using the equation: J =
9ε0εrµV

2/8d3, where J is the current density, d is the thickness
of the blend films, ε0 is the permittivity of free space, εr is the
relative dielectric constant of the transport medium, and µ is the
charge carrier mobility. V = Vapp-Vbi, where Vapp is the applied
voltage and Vbi is the built-in voltage. The carrier mobility can
be calculated from the slope of the J1/2-V curves.

RESULTS AND DISCUSSION

Synthesis and Characterization
The synthetic routes to Tr-3PDI and FTr-3PDI are shown in
Scheme 2A. Tr-3PDI was synthesized via Suzuki cross-coupling
reaction between corresponding truxene boronic acid pinacol
ester (Lin et al., 2018) and monobromo-PDI (Gao et al.,
2017) using Pd(PPh3)4 as the catalyst. FTr-3PDI was obtained
with an excellent yield (90%) from Tr-3PDI by dissolving in
chlorobenzene containing a catalytic amount of iodine and
exposed to irradiation. Tr-3PDI and FTr-3PDI are characterized
by 1H NMR, 13C NMR, and mass spectra (Figures S1–S6). The
optimized geometries of Tr-3PDI and FTr-3PDI are simulated
using density functional theoretical (DFT) calculations at the
B3LYP/6-31G(d) level (Scheme 2B). Clearly, Tr-3PDI exhibits
higher twisted structure with a large dihedral angle over 50◦

owing to the steric hindrance effect. After the oxidative ring-
fusion, each PDI moiety is tethered to truxene through benzene
rings, resulting in an overall planarity structure because of the
high rigidity and coplanarity of truxene core. Both acceptors are
soluble in common organic solvents such as dichloromethane,
chloroform, chlorobenzene, and ortho-dichlorobenzene at room
temperature. The reason is that there are six hexyl chains on the
truxene core, providing outstanding solubility for the resulting
compounds.

The thermal properties of Tr-3PDI and FTr-3PDI were
analyzed by thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC). As shown in Figure S7, both
truxene-PDI acceptors have decomposition temperature with
5% weight loss above 400◦C. Moreover, there is no clear phase
transition in DSC curves, which is indicative of the amorphous
nature of Tr-3PDI and FTr-3PDI.

The UV-vis absorption spectra of the two acceptors in
solutions and as thin films are shown in Figure 1A, Figure S8,
and the relevant data are summarized in Table 1. Both Tr-
3PDI and FTr-3PDI show two absorption bands with one in the
short wavelength region of 300–400 nm and one in the longer
wavelength region of 400–600 nm. The intense absorption in
the short wavelength region is attributable to the large coplanar
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FIGURE 1 | (A) UV-vis absorption spectra of Tr-3PDI and FTr-3PDI in chloroform solutions and as thin films; (B) cyclic voltammograms of Tr-3PDI and FTr-3PDI.

TABLE 1 | Optical and electrochemical properties of Tr-3PDI and FTr-3PDI.

Acceptors λfilm
onset
(nm)

E
opt a
g

(eV)

Eb
HOMO
(eV)

Ec
LUMO
(eV)

Tr-3PDI 633 1.96 −6.09 −3.64

FTr-3PDI 556 2.23 −6.11 −3.44

aCalculated from E
opt
g = 1240/λfilmonset eV; bCalculated from EHOMO = –e(Eonseox -

EFc/Fc++4.8) eV;
cCalculated from ELUMO = –e(Eonsetred -EFc/Fc++4.8) eV.

core of truxene. FTr-3PDI shows little difference in normalized
absorption spectra from the solution state to the film state,
while the solid state Tr-3PDI has extended and redshifted
absorption compared to the solution state. Notably, although
the two compounds have very similar absorption maxima in
both solution and solid state, FTr-3PDI shows considerably blue-
shifted absorption onset as compared to Tr-3PDI, which could
be related to the reduced conformational disorder via ring-fusion
and then weakens the intramolecular charge transfer between
truxene and PDI moieties. In addition, FTr-3PDI exhibits higher
absorption coefficient than Tr-3PDI (Figure S8). The optical band
gaps (Eg) are calculated to be 1.96 eV for Tr-3PDI, and 2.23 eV for
FTr-3PDI (Table 1).

The energy levels of the acceptors were determined by
cyclic voltammetry (CV) experiments. The half-wave potential
of Fc/Fc+ was measured to be 0.36V, and the energy levels
of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) were estimated from
the onset oxidation (Eonsetox ) and reduction (Eonset

red
) potentials

by equations: EHOMO = –e(Eonsetox -EFc/Fc++4.8) and ELUMO =

–e(Eonset
red

-EFc/Fc++4.8), respectively (Li et al., 1999). The CV
curves are shown in Figure 1B, and the relevant data are listed
in Table 1. The HOMO/LUMO levels are −6.09/−3.64 eV for
Tr-3PDI and −6.11/−3.44 eV for FTr-3PDI, respectively. The
slightly up-shifted LUMO level of FTr-3PDI will help to offer a
higher open-circuit voltage (Voc), and the down-shifted HOMO
level is favorable for hole transfer from excited acceptor phase to
donor phase in BHJ OSCs (Duan et al., 2016a, 2017b, 2018; Jia
et al., 2017).

Photovoltaic Properties
The photovoltaic properties of Tr-3PDI and FTr-3PDI were
evaluated in OSCs under AM1.5G illumination at 100 mW
cm−2 with a device structure of ITO/PEDOT:PSS/PTB7-
Th:acceptor/PFN-Br/Ag (Figure 2A). PTB7-Th was used as the
donor because of its strong optical absorption at long-wavelength
region (Figure S9), which can achieve complementary absorption
with our truxene-based acceptors (Zhang et al., 2015; McAfee
et al., 2017; Welsh et al., 2018). The schematic energy diagram
of individual components is displayed in Figure 2B, suggesting
proper energy level alignment of each layer in the device.
The devices were fully optimized in terms of host solvent,
donor/acceptor weight ratios, active layer thickness, solvent
additives, thermal annealing, and solvent annealing. The current
density–voltage (J–V) curves of the optimized devices are shown
in Figure 2C, and the photovoltaic parameters are summarized
in Table 1. The device parameters under various conditions
are collected in Tables S1–S8. The optimized device of Tr-
3PDI afforded a PCE of 2.2% along with a Voc of 0.92V, a
short-circuit current density (Jsc) of 6.5mA cm−2, and a fill
factor (FF) of 0.37. The ring-fused acceptor FTr-3PDI produced
a higher PCE of 3.8% along with a Voc of 1.02V, a Jsc of
8.1mA cm−2, and an FF of 0.46 (Table 2). The higher Voc

of FTr-3PDI is consistent with the up-shifted LUMO level.
The difference in Jsc of the solar cells can be explained by
their external quantum efficiency (EQE) spectra (Figure 2D)
(Duan et al., 2016b; Wu et al., 2016). The PTB7-Th:FTr-3PDI
blend film show higher EQE than PTB7-Th:Tr-3PDI almost
in the whole spectral range of 300–800 nm, which is because
of the enhanced light absorption of the former and more
efficient charge generation. The PTB7-Th:FTr-3PDI device also
shows higher FF than the PTB7-Th:Tr-3PDI device, suggesting
improved charge transport, reduced charge recombination, and
more optimal phase separatedmorphology (Duan et al., 2011; Xie
et al., 2012).

Charge Transport and Recombination
The charge transport were investigated in single-carrier devices
with a device structure of ITO/ZnO/ active layer /Ca/Al
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FIGURE 2 | (A) The device structure; (B) energy-level diagrams for all the materials used in this research; (C) J–V characteristics; and (D) EQE spectra of the OSCs

based on PTB7-Th and truxene-PDI acceptors.

TABLE 2 | Photovoltaic parameters of OSCs based on PTB7-Th and truxene-PDI

acceptors under AM1.5G illumination at 100 mW cm−2.

Acceptor devices Voc (V) Jsc (mA cm−2) FF PCE (%)

PTB7-Th: Tr-3PDI 0.92 6.5 0.37 2.2

PTB7-Th: FTr-3PDI 1.02 8.1 0.46 3.8

for electron only devices and ITO/PEDOT:PSS/ Active layer
/MoO3/Ag for hole only devices, respectively. The electron
and hole mobilities were acquired by fitting the J–V with
space-charge-limited current (SCLC) model. The J–V curves
of the devices for pure acceptors and blend films are shown
in Figures S10, S11. As shown in Table 3, the FTr-3PDI pure
film exhibits higher electron mobility (µe) of 2.4 × 10−6 cm2

V−1 s−1 than Tr-3PDI film (3.2 × 10−7 cm2 V−1 s−1), which
support that the ring-fusion strategy is successful. As for blend
films, the hole mobilities (µh) were estimated to be 1.2 ×

10−3 cm2 V−1 s−1 for PTB7-Th:Tr-3PDI and 8.2 × 10−3 cm2

V−1 s−1 for PTB7-Th:FTr-3PDI, which are comparable with
the value that obtained from PTB7-Th:fullerene devices (Huang
et al., 2016). In contrast, theµe of the blend films of PTB7-
Th:truxene-PDI acceptors were measured to be 5.8 × 10−6

cm2 V−1 s−1 for PTB7-Th:Tr-3PDI and 1.3 × 10−5 cm2 V−1

s−1 for PTB7-Th:FTr-3PDI, which are more than two orders

of magnitude lower than that of PTB7-Th:fullerene film (Lin
et al., 2015). The low electron mobility and highly imbalanced
µe/µh seriously obstruct the charge transport and resulted in
more bimolecular recombination, which in turn led to low FF
and Jsc. For the solar cells with very imbalanced µe/µh, the
device performance will be determined by the slower charge
carrier, which is electron in these cases. The higher electron
mobility in PTB7-Th:FTr-3PDI will thus result in better device
performance.

To study the charge-recombination of these devices, we
investigated the photocurrent (Jsc) as a function of light
intensity (Pin, from 1 to 100 mW cm−2), with the relevant
characteristics plotted in Figure 3A. Generally, Jsc and Pin follow
the relationship of Jsc∝PSin. If all free carriers are swept out
and collected at the electrodes prior to recombination, the
slope (S) should be equal to 1, while S<1 indicates some
extent of bimolecular recombination (Kyaw et al., 2013). The
S-values of the two devices are 0.89 for PTB7-Th:FTr-3PDI
and 0.88 for PTB7-Th:Tr-3PDI, respectively, which indicates
the existence of some extent of bimolecular recombination.
The charge recombination mechanism of the truxene-PDI-
based OSCs are also investigated by estimating the slope
(α) of Voc vs. lnP (P is light intensity). In principle, the
slope α approaching kBT/q implies that the device has only
bimolecular recombination, and the slope α approaching 2kBT/q
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TABLE 3 | The relevant parameters related to charge transport and recombination of PTB7-Th: truxene-PDI acceptor devices.

Active layer µ h (cm2 V−1 s−1) µe (cm2 V−1 s−1) S α Charge-extraction time (µs) Charge carrier lifetime (µs)

Tr-3PDI – 3.2 × 10−7 – – – –

FTr-3PDI – 2.4 × 10−6 – – – –

PTB7-Th:Tr-3PDI 1.2 × 10−3 5.8 × 10−6 0.88 2.1 0.15 9.72

PTB7-Th:FTr-3PDI 8.2 × 10−3 1.3 × 10−5 0.89 1.9 0.16 15.31

FIGURE 3 | (A) Current density vs. light intensity characteristics, and (B) open-circuit voltage vs. natural logarithm of light intensity characteristics for devices based

on PTB7-Th and truxene-PDI acceptors; (C) transient photocurrent measurements; and (D) transient photovoltage of the relevant OSC devices.

suggests that the monomolecular recombination or trap-assisted
recombination dominates in OSCs (where T, kB, and q are
the Kelvin temperature, Boltzmann constant, and elementary
charge, respectively) (Koster et al., 2005; Lu et al., 2015). The α

values for PTB7-Th:Tr-3PDI and PTB7-Th:FTr-3PDI are 2.1 and
1.9, respectively, which indicate considerable monomolecular
recombination or trap-based recombination in these devices
(Figure 3B and Table 3).

Transient photocurrent (TPC) and transient photovoltage
(TPV) measurements were used to study the charge
recombination dynamics and charge-extraction process in
OSCs. From TPC analysis (Figure 3C), the charge-extraction
time of the PTB7-Th:FTr-3PDI based device (0.15 µs) is slightly
shorter than the PTB7-Th:Tr-3PDI based device (0.16 µs),
suggesting increased charge extraction rate (Jin et al., 2016).
From TPV analysis (Figure 3D), the charge carrier lifetime

increased from 9.72 µs for the PTB7-Th:Tr-3PDI device to
15.31 µs for the PTB7-Th:FTr-3PDI device (Table 3), indicating
reduced recombination loss for the PTB7-Th:FTr-3PDI device
(Shuttle et al., 2008). The increased charge extraction rate
and longer carrier lifetime thus explained the improved
FF value and the higher PCE of the PTB7-Th:FTr-3PDI
device.

Morphology Characterization
The morphology of the active layers was studied by atom force
microscopy (AFM) and transmission electron microscopy
(TEM). The AFM images and TEM images of the blend films
are shown in Figure 4. The blend film of PTB7-Th:Tr-3PDI
(Figures 4A,C) is homogeneous with a root-mean-square
(RMS) surface roughness of 0.72 nm. The uniform film
reveals intimately mixed blends without noteworthy phase
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FIGURE 4 | AFM and TEM images of the blend films of PTB7-Th:truxene-PDI acceptor: (A,C) PTB7-Th:Tr-3PDI, (B,D) PTB7-Th:FTr-3PDI.

separation (Duan et al., 2017c; Wang J. Y. et al., 2017; Wen
et al., 2018). With such a morphology, charge transport is
impeded. The film of PTB7-Th:FTr-3PDI exhibits obvious phase
separation with granulate features (Figures 4B,D), resulting
in a relative coarse surface with a RMS surface roughness
of 3.88 nm. The less phase-separated morphology of PTB7-
Th:Tr-3PDI film could be a reason of the enhanced charge
recombination and imbalanced hole/electron transport,
which is in accordance with the analysis demonstrated
above based on TPC, TPV, and charge carrier mobility
measurements.

CONCLUSION

In summary, two electron acceptors with a truxene core and
three PDIs branches linked by carbon-carbon single bonds
(Tr-3PDI) or adjoin benzene ring (FTr-3PDI) are designed
and developed. The FTr-3PDI shows up-shifted energy levels,
enhanced absorption, improved charge mobility, and more
favorable morphology as compared to Tr-3PDI. These merits
further lead to higher Voc, Jsc, and FF in resulting OSCs,
respectively. The OSCs of PTB7-Th:FTr-3PDI blend shows
a PCE of 3.8%, which is almost two times higher than
that of PTB7-Th:Tr-3PDI blend. This work demonstrates a

successful construction of star-shaped non-fullerene electron
acceptor materials based on a truxene core and multiple
PDI branches via ring-fusion to improve the performance of
OSCs.
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