
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 3, pp. 163–181. DOI:10.13154/tosc.v2018.i3.163-181

Cryptanalysis of Low-Data Instances
of Full LowMCv2

Christian Rechberger1, Hadi Soleimany2 and Tyge Tiessen3

1 Graz University of Technology, Graz, Austria
christian.rechberger@tugraz.at

2 Cyberspace Research Institute, Shahid Beheshti University, Theran, Iran
h_soleimany@sbu.ac.ir

3 Department of Applied Mathematics and Computer Science (DTU Compute), Technical
University of Denmark, Kongens Lyngby, Denmark

Abstract. LowMC is a family of block ciphers designed for a low multiplicative
complexity. The specification allows a large variety of instantiations, differing in block
size, key size, number of S-boxes applied per round and allowed data complexity. The
number of rounds deemed secure is determined by evaluating a number of attack
vectors and taking the number of rounds still secure against the best of these.
In this paper, we demonstrate that the attacks considered by the designers of LowMC
in the version 2 of the round-formular were not sufficient to fend off all possible attacks.
In the case of instantiations of LowMC with one of the most useful settings, namely
with few applied S-boxes per round and only low allowable data complexities, efficient
attacks based on difference enumeration techniques can be constructed. We show
that it is most effective to consider tuples of differences instead of simple differences,
both to increase the range of the distinguishers and to enable key recovery attacks.
All applications for LowMC we are aware of, including signature schemes like Picnic
and more recent (ring/group) signature schemes have used version 3 of the round-
formular for LowMC, which takes our attack already into account.
Keywords: Block cipher · Cryptanalysis · Low data · LowMC

1 Introduction
The security of block ciphers, one of the most versatile cryptographic primitives, is
commonly believed to be well understood. Well-established block ciphers, such as the
Advanced Encryption Standard (AES), have been designed to be both efficient and secure
in a wide range of applications.

Novel use-cases however require new designs and also new cryptanalysis. Such
use-cases include amongst others masking of block ciphers to thwart side-channel at-
tacks, usage in secure multi-party computation (MPC) or fully homomorphic encryption
(FHE), SNARKs, and very recently block ciphers designed for use in quantum-secure
public-key signature schemes. Considering these use-cases has lead to a number of
cipher designs tailored to the needs of those applications. Examples of such designs
include Zorro [GGNPS13], LowMCv2 [ARS+15], Kreyvium [CCF+16], Flip [MJSC16],
Rasta [DEG+18] and MiMC [AGR+16]. The main goal in the design of these ciphers is to
minimize the number of multiplications in one way or another while retaining security.

One of the techniques that has been used to achieve this goal is to use partial non-linear
layers, i.e., in one round a non-linear transformation is only applied to a part of the state.
While this is an inherent part of the design of Feistel networks, it is still a relatively new
technique in the design of substitution-permutation networks (SPN) and understanding

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-11-23, Revised: 2018-06-01, Accepted: 2018-08-01, Published: 2018-09-04

https://doi.org/10.13154/tosc.v2018.i3.163-181
mailto:christian.rechberger@tugraz.at
mailto:h_soleimany@sbu.ac.ir
http://creativecommons.org/licenses/by/4.0/

164 Cryptanalysis of Low-Data Instances of Full LowMCv2

the implications of its usage for the security of the block cipher is an interesting area of
research.

LowMC
LowMC is a flexible block cipher family based on a substitution-permutation network where
the block size, the key size, the number of S-boxes in the substitution layer and the allowed
data complexity of attacks can independently be chosen. To reduce the multiplicative
complexity, the number of S-boxes applied in parallel can be reduced, leaving part of the
substitution layer as the identity mapping. The number of rounds needed to achieve these
goals is then determined as a function of all these parameters. The way this is done is
to consider and try to bound all known attack and choose the number of rounds so that
the most effective attack for a particular set of parameters is just not able to violate the
security expectation.1

The first version of this round ’formula’ (henceforth LowMCv1) was introduced at
Eurocrypt 2015 [ARS+15]. Soon after, optimized higher order and interpolation at-
tacks [DLMW15, DEM16] were demonstrated. As a result, an updated round formula for
LowMC (henceforth LowMCv2) was proposed by the designers [ARS+16] to take these
new insights into account.

Our Contribution
In this paper, we provide new insight into the security of LowMC by demonstrating
distinguishing and key-recovery attacks based on the enumeration of differences that are
able to break full-round versions of LowMCv2. These attacks are based on finding collisions
in the sets of reachable differences coming from both ends of the cipher. In contrast to
differential cryptanalysis [BS90] this approach requires very little data — as little as 3
chosen plaintext-ciphertext pairs. If more data is available, this can be used to extend the
number of covered rounds.

For some versions of LowMCv2, the distinguishing attack technique is hitting a boundary,
namely when the number of enumerated differences begins to exceed the square root of the
number of all possible differences, raising the collision probability close to 1. This occurs
when the key size which limits the time complexity is larger than half of the block size.
We demonstrate that the enumeration technique can be continued across this boundary by
moving from differences to d-differences — a concept introduced in [Tie16].

We furthermore show that full key recovery is possible when using the distinguisher based
on d-differences. To optimize the key recovery, we consider an equivalent representation of
LowMCv2 were the round keys are only added to the part of the state that went through
the non-linear part of the non-linear layer. While this not only allows us to simplify the
key recovery, it also lead to a simplified and more efficient implementation of LowMCv2.

Our attack led to a version 3 of the LowMC round formula which takes our attack
approach into account. This version was in turn used by the recent proposals for new
signature schemes as we discuss in the following.

Impact on applications of LowMC: quantum-safe signature schemes
The attack we describe in this paper is not effective against every possible member of the
LowMCv2 family of ciphers. More concretely, it applies well when the number of rounds r
is chosen to only give security against an attacker with limited data complexity D but

1The number of rounds can vary widely depending on the parameters, especially with changing number
of S-boxes per round: From around 10 to many 100s. A Python script is provided by the designers which
derives that number of rounds: https://github.com/LowMC/lowmc/determine_rounds.py

https://github.com/LowMC/lowmc/determine_rounds.py

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 165

high allowable time complexity, and most importantly when the number of S-boxes per
round m is low.

Incidentally such a corner of the parameter space is especially relevant for newly
proposed public-key signature schemes based on NIZK proofs that need as the only
cryptographic assumption the security of a one-way function (OWF) or a pseudo-random
function (PRF), rather than on other more structured mathematical assumptions.

In view of the NIST selection progress on new public-key primitives 2, and in order to
be competitive, such a signature approach cannot rely on already standardized functions
like AES or SHA-3, as the resulting signature sizes would be too large. Instead, a new
function with fewer multiplications is needed. LowMC was recently proposed to be used
as such a function in two independent works on this topic [DOR+16, GCZ16], with the
resulting merge [CDG+17] being submitted to the NIST PQ-Crypto process.

LowMC turned out to be the most suitable option for the metric that determines the
signature size (the most crucial property): the product of the number of multiplication
gates contained in the circuit representation and the ring size in which the multiplications
take place (minimal in the case of LowMC as multiplications are binary AND gates).
Compared to standard functions, usage of LowMC allows to reduce the signature size
by about one order of magnitude [CDG+17]. Very recent follow-up and related work on
improved representations and implemnetations [PPRR17], extended functionality like ring-
and group signatures [BEF18, DRS18, KKW18] or using alternative zero-knowledge proof
systems [KKW18] all use LowMC in the same setting, i.e. with few S-Boxes per round
and low allowable data complexity.

In Section 4 we give examples of LowMCv2 parameters with low m and low D and
show that a higher number of rounds is needed for security than what the round-formula
for LowMCv2 suggests.

Related Work
The idea of using differential trails in a meet-in-the-middle approach has previously been
studied in the security analysis of DES [DSP07] and AES [DFJ13, DKS10]. More concretely
on AES, it was shown in [GM00] that the mapping function from one active byte to one
byte after three rounds depends on only 9 bytes. As a result, the set of mapping functions
can be described by a table of size 272 which can be utilized in a meet-in-the-middle attack.
Demirci and Selçuk presented an improved cryptanalysis by applying the same idea to four
rounds where the set of possible mapping functions can be described by 25 bytes [DS09].
In these attacks the size of the precomputed table is the bottleneck. Dunkelman et. al.
presented a technique to decrease the number of variables for parametrizing the mapping
functions to 16 bytes, increasing the number of required known plaintexts [DKS10].

In their attack, they consider a truncated differential characteristic for four rounds of
AES, in which the input and output differences include a non-zero difference in exactly one
byte. This characteristic is utilized to restrict the number of parameters in the mapping
functions under the assumption that a pair of plaintexts and corresponding ciphertexts
satisfies this differential path. Advanced optimizations and ideas in this line which depend
on the linear layer of AES are not applicable to LowMC, though. In follow-up works,
similar techniques were applied to improve the cryptanalysis on AES [DFJ13, LJW15] and
similar block ciphers [LW15]. The above technique inherently requires a large amount of
data since the probability of the truncated differential is usually extremely low (e.g for
4-round AES it is 2−120).

In addition, all mentioned works rely on a specific structural truncated differential
characteristic and consequently they highly depend on the inner properties of the cipher.
In contrast to that method, our framework does not consider any specific differential

2https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography

166 Cryptanalysis of Low-Data Instances of Full LowMCv2

characteristic and requires only a minimal amount of data. Our method does not depend
on the particular properties of the S-boxes, key schedule, or linear layers.

Also of interest, and complementing our work, an automated search tool was presented
in [BDD+15] to find the best differential characteristic and linear approximation in SPN
ciphers with partial non-linear layer ciphers.

Paper Organization.

This paper is structured as follows: Section 2 gives a short description of the structure of
LowMCv2 and of the notation used in this paper. In Section 3 the technique for finding
the distinguisher is described described. In Section 4, we show these distinguishers can be
used to build attacks and demonstrate attacks on a number of LowMCv2 versions. To
conclude we briefly discuss and compare the performance and limitations of our method
with other existing cryptanalytic methods in Section 5. Furthermore we suggest possible
future works.

2 Substitution-permutation networks with partial non-linear
layers

The cryptanalytic techniques presented in this paper make no use of the specifics of the
linear layer and are thus in principle applicable to substitution-permutation networks
(SPNs) other than LowMCv2.

To address this, we give here the notation for a general SPN block cipher structure
with a partial non-linear layer. After that we give a brief description of LowMCv2. We
furthermore show that there is an equivalent description which reduces the size of the
round keys allowing for more efficient key-guessing strategies. We will use this later when
we mount a key-recovery attack.

2.1 Standard Description

A substitution-permutation network is constructed as a chaining of rounds each of which
consists of two layers and a round key addition. The first layer of each round is called the
substitution layer. In this layer, S-boxes are applied in parallel to the state to translate it
to a new state. Here we consider the more general case where the S-boxes might only be
applied to a part of the state — hence the name partial non-linear layers.

The other layer in each round is the permutation layer (or affine layer) which can be
any affine transformation of the state. The round key addition adds a round key onto the
state using exclusive-or addition. Finally there is an addition of a whitening key before
the first round. The round keys and the whitening key are derived from the general key
via a key schedule which is a linear function in the case of LowMCv2.

To make this notion a bit more precise, we use the following notation. The number of
bits which the SPN operates on, the block size, is denoted as n. The number of rounds is
denoted as r where the first round is round 1 and the last is round r. The round keys are
denoted as sk1, . . . , skr and the whitening key as sk0. The general key is denoted as K
and its size in bits is k.

In the substitution layer, we assume that all S-boxes are the same. We denote their
width in bits by b and the number of S-boxes applied in parallel in the layer by m. We
furthermore assume without loss of generality that the S-boxes are applied to the first mb
bits of the state.

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 167

2.2 LowMC
LowMC is a family of block ciphers which is based on the SPN structure with partial
non-linear layers with flexible parameters which can independently be chosen by users.

Encryption of LowMC starts with a key whitening, followed by rounds each of which
consists of four operations in the following order:

1. SboxLayer applies a 3-bit S-box S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ b ⊕ ab) in
parallel on the first 3m bits of the state while for the remaining n − 3m bits, the
identity mapping is applied.

2. LinearLayer multiplies the state with an invertible n× n matrix Li which is chosen
randomly.

3. ConstantAddition is the addition of an n-bit round constant RCi to the state in
GF (2) which is chosen randomly.

4. KeyAddition is the addition of an n-bit round key ski to the state in GF (2). The
round key ski is generated by a randomly chosen multiplication of a full-rank n× k
with the master key K in GF (2).

The number of rounds needed to reach the security against several known attacks with
reasonable security margins is then derived for any set of block size n, number of Sboxes
m, key size k and (logarithmic) allowed data complexity D. As a result of optimized
higher order and interpolation attacks [DLMW15, DEM16], the calculation formula for
the number of required rounds proposed in the original proposal document is updated by
the designers [ARS+16] which is known as LowMCv2.

2.3 Equivalent representation with reduced round key material
The fact that the non-linear layer is partial can be used to reduce the size of the round
keys required in each round. To this end, we describe here an equivalent representation of
an SPN with partial non-linear layer with reduced round key material.

In the description of an SPN, it is possible to swap the order of the linear layer and
the round key addition as both operations are linear. The round key then needs to be
exchanged with an equivalent one. For round key ski, the equivalent one can be written
as sk′i = L−1

i (ski) where Li is the linear layer in the i-th round.
We can use this property now to move parts of the original round keys from the last

round all the way through the cipher to the whitening key. To arrive at such a reduced
variant, we apply a series of steps to the round keys starting with the last one (see also
Section 2.3). First we find an equivalent key that is applied before the affine layer by
moving the round key through the affine layer. Then we split the round key in two parts,
one that applies to the S-box part of the non-linear layer and one that applies to the
identity part of the non-linear layer. The key part that only applies to the non-linear
layer part can now move further up where it is merged with the previous round key. If we
apply this to all round keys, we finally end up with an equivalent representation in which
round keys are only added to the output of the S-boxes apart from one whitening key
which is initially applied to the entire state. Note that the round keys of this equivalent
representation can still be calculated as linear functions of the master key, albeit using
smaller matrices.

We will later use this representation to reduce the amount of key material that we need
to guess in an attack. This simplified representation can in certain cases also reduce the
implementation cost of an SPN block cipher with a partial non-linear layer. For instance,
the standard representation of LowMCv2 requires key matrices of total size kn(r + 1)
where k is the key size, n is the block size and r is the number of rounds. The optimized

168 Cryptanalysis of Low-Data Instances of Full LowMCv2

Key Addition

S

Affine layer

Key Addition

S

Affine layer

Key Addition

⇒

Key Addition

S

Affine layer

Key Addition

S

Key Addition

Affine layer

⇒

Key Addition

S

Affine layer

Key Addition

S

Key A.

Affine layer

⇒

Key Addition

S

Key A.

Affine layer

S

Key A.

Affine layer

Figure 1: Simplified representation of an SPN block cipher with a partial non-linear layer.

representation only requires kn+ 3mkr where m is the number of S-boxes, thus potentially
greatly reducing the amount of needed memory and calculation to produce the round keys.

2.4 Notation
In this paper, we use the following notations: Xi denotes the input block of round i, while
XS
i , XL

i and XO
i denote the intermediate values after applying nonlinear layer, linear layer

and round key addition operations of round i, respectively. Obviously, XO
i−1 = XI

i holds
for 2 ≤ i ≤ r. The round keys in the standard and simplified representations are denoted
by ski and sk′i, respectively.

3 Building distinguishers based on difference enumeration
In this section, we describe the distinguishing techniques that we use in the attack and
the time and data complexities of applying them. We will first describe a technique that
uses simple differences and later extend this to describe a distinguisher that uses the
relationships between larger tuples of texts. How to use these distinguishers in a key
recovery attack will be described in the next section.

3.1 Enumeration of differences
3.1.1 Using difference enumeration as distinguisher

For a cipher to be secure, we should not be able to predict anything about the difference
of two ciphertexts given the difference of the respective plaintexts. Ciphers that fail to
accomplish this have successfully been broken using differential cryptanalysis. In this
cryptanalytic technique, the attacker is able to find an input difference that yields a non-
uniform distribution of output difference. He can then utilize this distinguishing feature to
mount a key recovery attack. The downside of this technique is that it usually requires
relatively large amounts of plaintext-ciphertext pairs to be able to create a statistically
significant distinguisher.

Difference enumeration is a somewhat simpler concept. Here we find an input difference
such that we can efficiently create a list of all reachable output differences. Such a
list can be generated using the rules of difference propagation as known from standard
differential cryptanalysis. If this list is significantly smaller than the set of all possible
output differences, we can use this list as a distinguisher: Given an output difference that
resulted from the specific input difference, we know it has to be in the list of possible output
differences if the texts were generated by the attacked cipher. For a random permutation

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 169

∆in ∆r0 ∆r0+r1 ∆r

Rounds
1 to r0

Rounds
r0 + 1 to r0 + r1

Rounds
r0 + r1 + 1 to r

Rounds
1 to r0

Rounds
r0 + 1 to r0 + r1

Rounds
r0 + r1 + 1 to r

Pr[∆in → ∆r0] = 1 Meet-in-the-middle

Figure 2: Overview of the technique

on the other hand, the output difference would only be in the list with a probability
corresponding to the relative size of the list of all possible differences.

For the distinguisher to be better than an exhaustive search over the key space, the
complexity of enumerating all differences must be smaller than the complexity of an
exhaustive search.

3.1.2 Enhancing difference enumeration with meet-in-the-middle

Usually the number of reachable differences grows too fast to be efficiently enumerable
and thereby usable in a distinguisher but we can significantly decrease the complexity of
creating a distinguisher by using a meet-in-the-middle approach.

In contrast to conventional differential cryptanalysis, we do not aim to find differential
paths with high probability. Instead, our model benefits from the fact that the number
of reachable differences over a few rounds can be much smaller than all possible values.
First, we investigate how a difference diffuses while it propagates through the rounds in
order to count the number of reachable differences in the middle of the cipher for a specific
input difference. Then we show how the internal differences taken by a pair of inputs
can be retrieved by utilizing a meet-in-the-middle approach in cases where the number of
reachable differences is restricted to an upper bound.

We divide the r rounds of the cipher into three consecutive parts: r0, r1, r2 where
r = r0 + r1 + r2 (Figure 2). In the following we denote the output difference of the i-th
round by ∆i. We select an input difference ∆0 ∈ Fn2 so that the output difference after r0
rounds can be determined with a probability of one. In other words, ∆0 is selected in a
way that does not activate any of the r0m Sboxes in the first r0 rounds. For a successful
attack this property should be satisfied for maximum number of rounds.

To this end, we enumerate for a given input difference ∆r0 ∈ Fn2 the number of reachable
differences after r0 + r1 rounds and store them in a list Df . When we receive an output
difference, we likewise enumerate the reachable differences after the (r0 + r1)th round and
store them in a list Db, only this time going backwards through the cipher over r2 rounds,
starting from the received output difference. Now we expect to see a collision in those
enumerated differences and the generated list.

To be useable as a distinguisher, we need to require that the complexity of enumerating
the differences and finding the collision is more efficient than an exhaustive search. Fur-
thermore, the probability of finding a collision if we were given instead a random output
difference should be less than one.

170 Cryptanalysis of Low-Data Instances of Full LowMCv2

3.1.3 Estimating the number of reachable differences

A simple upper bound on the number of reachable differences after r rounds given a block
cipher structure as described in Section 2 can be found as follows. We assume every
S-box is activated in every round and that every S-box creates as many new differences as
possible. Let γ be the differential uniformity of the S-box, i.e., the maximal number of
distinct differences to which an input difference of the S-box can be mapped. Then the
number of differences that a single difference can be mapped to over one round is at most
γm where m is the number of S-boxes per layer. The number of differences that can be
reached from a single difference after r rounds is hence upper bounded by γmr.

While this is an accurate upper bound, a more precise estimate would take into account
that usually not all S-boxes are activated in each round. We can achieve this by working
with the average number of reachable output differences. Let λ be the average number
of reachable output differences over the S-box for a uniformly randomly chosen input
difference (for LowMC λ ≈ 29/8 = 3.62).

We now want to calculate the number of reachable differences over one round given
a uniformly randomly chosen input difference. Over one round the number of reachable
output differences over each S-box are independent of another. We furthermore know that
the expected value of the product of independent random variables is the product of their
expected values. Thus the average number of reachable differences over one round given a
uniformly randomly chosen input difference can the be calculated as

δ = λm (1)

We can thus estimate the average number of reachable differences over r rounds as

δr = λmr. (2)

3.1.4 Choosing a good starting difference

To minimize the computational complexity of enumerating or to maximize the number of
rounds that can be covered with the distinguisher, the starting difference should be chosen
to minimize the increase in the number of differences.

To accomplish this, the attacker can make good use of the partial non-linear layer: a
non-linear layer that is not full allows us to cover one or more rounds without activating
any S-boxes. The number of rounds that can be covered this way depends on the ratio of
the linear part to the non-linear part in the non-linear layer. There are 2n−mb differences
that do no activate any S-boxes in the first round. Of the resulting differences after the
first round, there are still 2n−2mb differences that do not activate any S-boxes in the second
round (assuming n ≤ 2mb). Continuing this, it is straightforward to see that the maximal
number of rounds that a difference can go without activating any S-boxes is

r0 =
⌈ n
bm

⌉
− 1. (3)

Once the maximum number of rounds has been covered for free, the number of S-boxes
that are activated in the following round can be minimized by utilizing the remaining
freedom in the differences that can be reached for free up to this point (they form a linear
subspace). If r0 are the number of rounds that were covered for free, at least

⌊
n−r0bm

b

⌋
S-boxes can be avoided in the next round.

3.1.5 Complexity of the distinguisher

As it is mentioned in Sec 3.1.2, we separate the number of rounds that we can cover into
three parts: r0, r1, and r2. r0 is the number of rounds that can be covered for free, i.e.,

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 171

the rounds that the input difference is mapped deterministically. After r0 + r1 rounds we
create the list of reachable differences Df while we go back the last r2 rounds from the
ciphertext difference to check for a match in this list Db.

The number of free rounds r0 should be set to the maximum value as given in Eq. (3).
The complexity of creating the list is proportional to the number of reachable differences
and can be estimated using the average diffusion δ per round as given in Eq. (2) as δr1 . As
mentioned above, the additional freedom possibly left in the choice of the input difference
after maximizing the number of rounds which are passed deterministically by the difference
can be used to reduce the diffusion in round r0 +1. Using this we can reduce the complexity
of creating the list of differences to

|Df | = λm−b
n−r0bm

b c · δr1−1 (4)

where λ is again the average number of differences reachable over the S-box.
In case no additional freedom left after maximizing the number of rounds, the complexity

of creating the list Df equals to
|Df | = δr1 (5)

For enumerating the differences after round r0 +r1 when going back from the ciphertext
difference, the complexity again corresponds to the number of reachable differences which
can be estimated as follows:

|Db| = δr2 (6)

Checking for a collision in the list of differences can be done in constant time. Conse-
quently, the total time complexity is dominated by creating the lists and can be computed
as |Df |+ |Db|.

3.2 Enumeration of d-differences
One of the limitations of the difference enumeration technique is that the probability of
finding a collision in the enumerated differences should be lower than 1 to give a good
distinguisher. In other words the following condition should hold to avoid any wrong
collision:

|Df | × |Db| = δ(r1+r2) < 2n → r1 + r2 <
n

log2(δ) (7)

In cases where the key size is larger than half of the block size, this implies that the
number of rounds that can be attacked is bounded by the blocksize, not by the time
constraint given by the key size.

To circumvent this restriction, it is possible to increase the size of the space where we
look for collisions by considering several differences simultaneously. This technique has
been named polytopic cryptanalysis [Tie16] and we briefly summarize it here.

3.2.1 About d-differences

In a d-difference instead of looking at the difference of a pair of texts x0 and x1, we consider
the d differences formed between a base text x0 and d other texts x1, . . . , xd. A d-difference
is then the ordered tuple of the respective differences, i.e., (x1 ⊕ x0, . . . , xd ⊕ x0). Just as
with a single difference, we can study how these difference tuples propagate through the
steps of the cipher.

While the rate of diffusion is generally higher for d-differences, it is nonetheless limited
by the size of the S-boxes that are used in the construction. A b-bit S-box can map an
input d-difference to at most 2b possible output d-differences.

172 Cryptanalysis of Low-Data Instances of Full LowMCv2

3.2.2 Enumerating d-differences

Just as with standard differences, we can enumerate the reachable d-differences that
an input d-difference can reach over a given number of rounds. We can thus transfer
the distinguisher that we used with differences to a distinguisher based on d-differences.
The only change is now that we will be looking for collisions in the enumerations of the
d-differences instead of simple differences. We will thus be looking for collisions on dn
bits instead of n bits. By increasing the number of differences d that we use, we can thus
make sure that the bottleneck is never the block size but always the key size (under the
assumption that the data complexity allows that).

Since the number of reachable d-differences over the S-box for a non-zero input d-
difference is at most 2b, a simple upper bound on the number of reachable d-differences
after r rounds given a block cipher structure as described in Section 2 can be found as
2b·m·r. However, to calculate the average number of d-difference reachable over r rounds
more precisely, we can use the same formula as we used for calculating the diffusion for
standard differences but we have to use a value of λd that corresponds to the average
number of reachable d-differences over one S-box for a uniformly randomly chosen input
d-difference. For d = 2, this is for example λ2 ≈ 421/64 = 6.58 in LowMC. λ2 gets close to
the upper bound (i.e 8) by increasing the value of d.

Similarly the average number of reachable d-differences over one round given a uniformly
randomly chosen input difference can the be calculated as

δd = λmd (8)

We can thus estimate the average number of reachable differences over r rounds as

δrd = λmrd . (9)

3.2.3 Selection of parameters

To have a d-differences characteristic of probability one for the first r0 rounds, it is sufficient
that 2n−bmr0 > d holds. We can select r0 as the largest possible value:

r0 =
⌊
n− log2 d

b ·m

⌋
(10)

The data required is only d+ 1 chosen plaintexts for the distinguisher. To make sure
that the key-recovery attack succeeds in practice, we run the attack prcedure for two
d-differences which requires 2(d+ 1) chosen plaintexts.

We want to consider cases in which merging the lists for obtaining the d-differences
in the middle of cipher leads to a unique candidate. Since the number of reachable
d-differences is at most δm·(r1+r2)

d , the following condition should hold for dimension d to
avoid any wrong collision in Algorithm 1:

|Df | × |Db| = λ
m·(r1+r2)
d = δ

(r1+r2)
d < 2n·d → d >

log2(δd)(r1 + r2)
n

. (11)

The time complexity is dominated by finding the d-differences collision in the middle
of cipher which equals to δr1

d + δr2
d where δd is the average number of reachable differences

over one round as given in Eq 8. So it makes sense to consider an equal values for r1
and r2. The time complexity should be less than the exhaustive search. As a result the
following condition should hold:

max (δr1
d , δ

r2
d) < 2k → max(r1, r2) < k

log2(δd)
. (12)

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 173

To maximize the number of attacked rounds while retaining at least one expected
d-differences collision in the middle, we can select r1 and r2 to be the largest possible
values:

r1 = r2 =
⌊

k

log2(δd)

⌋
. (13)

4 Key-recovery attacks
We start by introducing an algorithm which can be used to obtain the internal d-differences
for a specific d-tuple of plaintexts and the corresponding ciphertexts. After that, we discuss
how the known internal conventional differences or d-differences can be used to mount a
key recovery attack. We will then present the attack results on LowMCv2.

4.1 Recovering the d-differences trail

We begin the key recovery attack with the distinguisher that we constructed in Section 3.
In this distinguisher, we computed two lists of reachable d-differences in the middle of the
cipher and tested for a collision. As a random permutation would generate such a collision
only with a small probability, the occurrence of one could be used to distinguish the cipher
from a random permutation. Now in the attack case, we already know that we are dealing
with the cipher. But as the collision occurs randomly only with a low probability, with
high likelihood only a single collision will be detected.

The first step in the attack is now to determine the d-differences trail that the messages
have taken. We already know the input d-differences, the output d-differences and from
the collision, we know the d-differences in the middle. Indeed it is straightforward to
determine the entire d-differences trail with little addition computational cost. This can
for example be done by storing with each d-differences in the lists the d-difference trails in
the upper or lower half part of the cipher that was taken to reach it.

To describe this process in more detail, let us assume that there exists an input
d-difference (∆1

0, · · ·∆d
0), such that (∆1

0, · · ·∆d
0) → (∆1

r0
, · · ·∆d

r0
) holds over the first r0

rounds with probability one where ∆i
r0

= Lr ◦ · · · ◦ L1(∆i
0) for 1 ≤ i ≤ d. In the following

we show how we can retrieve the values of internal d-difference for an arbitrary (d+1)-tuple
(P0, P1 = P0 ⊕∆1

0, · · · , Pd = P0 ⊕∆d
0) and their corresponding ciphertexts:

Step 1: Ask the encryption oracle to provide the encryption of (P0, P1 = P0 ⊕
∆1

0, · · · , Pd = P0⊕∆d
0) and save the corresponding ciphertexts respectively as (C0, C1, · · · , Cd).

We denote the output d-difference as (∆1
r, · · · ,∆d

r) where r = r0 + r1 + r2.
Step 2: Compute all possible d-differences which can be reached in the output of the

(r0 + r1)-th round from the d-differences (∆1
r0
, · · · ,∆d

r0
) in the forward direction over the

r1 rounds and save them in the set Df . Note that we know the values of (∆1
r0
, ·,∆d

r0
)

because of the deterministic differential characteristic for the first r0 rounds.
Step 3: Similarly compute all possible d-differences that can be reached in the output

of (r0 + r1)th round from the difference (∆1
r, · · · ,∆d

r) in the backward direction over the
last r2 rounds and save them in the set Db.

Step 4: Retrieve the d-difference (∆1
r0+r1

, · · · ,∆d
r0+r1

) by looking for a collision
between the sets Df and Db.

If the collision probability is sufficiently low, the retrieved difference in the middle will
be uniquely determined. Now if we have a collision, we can connect the paths belonging
to the differences in the list to determine the entire difference trail. For this purpose,
alternatively Algorithm 1 can be used to obtain all of the internal difference which can be
exploitable for key recovery.

174 Cryptanalysis of Low-Data Instances of Full LowMCv2

Algorithm 1 Find.Middle.d-difference
Require: R and R′ where R < R′. (∆d

R, · · · ,∆d
R) and (∆d

R′ , · · · ,∆d
R′) which are internal

d-differences in rounds R and R′, respectively.
Ensure: d-difference in the round

⌊
R+R′

2

⌋
1: Compute all possible d-differences that can be reached in the output of the

⌊
R+R′

2

⌋
-th

round from d-difference (∆d
R, · · · ,∆d

R) in the R-th round and save them in the set Df .

2: Compute all possible d-differences that can be reached in the output of
⌊
R+R′

2

⌋
-th

round from the d-difference (∆d
R′ , · · · ,∆d

R′) over the last round and save them in the
set Db.

3: Match the sets Df and Db and return the collision.

In order to find all internal d-differences, one should apply meet-in-the-middle approach
for around r1+r2 times. In each iteration, the time complexity is dominated by constructing
the lists which is proportional to the size of the corresponding created lists |Df |+ |Db|,
since finding a collision in the lists can be done in constant time. The number of reachable
differences grows exponentially by increasing the number of rounds. Consequently the
total time complexity of finding internal d-differences is dominated by finding the first
internal d-differences collision in the middle of cipher which equals to

δr1
d + δr2

d (14)
Similarly the memory complexity is dominated for saving the possible d-differences for

the first call of MITM approach which is (δr1
d + δr2

d) · d · (n/8) bytes to allocate δr1
d + δr2

d

memories for saving d values.

4.2 Constructing a full key recovery attack
4.2.1 Retrieving all equivalent subkeys by utilizing difference trail

In what follows we describe the method to retrieve the key based on the knowledge of
internal differences. We denote by 2x the maximum number of solutions for the equation
β = S(X) ⊕ S(X ⊕ α) where α, β ∈ Fb2. In other words we assume that the b-bit Sbox
is 2x-uniform (for LowMC 2x = 2). On the basis of the solutions for the equation
β = S(X) ⊕ S(X ⊕ α), we present a method to obtain round keys by considering two
consecutive differences.

To describe this process in more detail, we consider a pair of plaintexts (P, P ′ =
P ⊕∆in) and the corresponding ciphertexts (C,C ′) where ∆in ∈ Fn2 . There exists a unique
differential path from plaintexts to ciphertexs over r rounds of the cipher that correspond
to this pair. This path directly depends on the values of rounds keys and can be found by
the method described in Sec 4.1. We denote the output difference of the i-th round by ∆i

where ∆i ∈ Fn2 and 1 ≤ i ≤ r. Obviously ∆r = C ⊕ C ′ = ∆out. In addition we denote the
internal states in the i-th round which correspond to the pairs (P,C) and (P ′, C ′) by Xi

and X ′i, respectively.
Let us assume that the difference of the semi-final round, i.e. ∆r−1, is known. In

addition, the transition difference from ∆r−1 to C ⊕ C ′ = ∆out is not deterministic, i.e.
Pr[∆r−1 → ∆out] < 1. Usually the linear operation is omitted in the last round of the
cipher. Nevertheless we assume the last round includes the linear layer Lr which can
simply be considered as an identity function in the case of nonexistence. We expect to
have at most 2m.x solutions for the quadratic (XI

r , X
′I
r , X

S
r , , X

′S
r), since each Sbox is

differentially 2x-uniform. Each solution uniquely suggests a candidate for the equivalent
round key sk′r as follows:

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 175

C ⊕ sk′r = XL
r = Lr(XS

r)→ sk′r = C ⊕ Lr(XS
r)

So totally 2m.x values are obtained as candidates for the equivalent round key sk′r
which is significantly less than all 2m.b possible values. In other words we get m · (b−x)-bit
information about the last equivalent round key sk′r.

Now let us assume that ` different pairs of plaintexts (Pi, Pi⊕∆in) with corresponding
ciphertexts Ci, C ′i are given. In addition, we assume that the internal differences for each
of the pairs can be retrieved uniquely with the method described in Section 3. With the
method described above, m · (b− x)-bit information about the last equivalent round key
can be retrieved from each pair. Consequently, the number of pairs needs to retrieve sk′r
can be estimated as follows:

` = d m · b
m · (b− x)e = d b

b− x
e. (15)

Our key-recovery attack takes advantage of the fact that for any arbitrary differences
(α, β) ∈ (Fb2 × Fb2) the number of solutions for the equation β = S(x) ⊕ S(x ⊕ α) is
significantly smaller than 2b. This property is an obvious design criterion from the
point of view of cryptographers. To guarantee a strong resistance against differential-type
cryptanalysis, Sboxes are built upon functions with low differential uniformity. Interestingly
the data required for retrieving the equivalent subkey in our attack decreases when the
S-box utilized in the cipher is stronger against differential attack as it can be observed
in Eq. (15). Since LowMC S-box is 2-uniform, the attack on LowMC requires around
d 3

3−1e = 2 pairs of chosen plaintexts. However, we can use a few more pairs of chosen
plaintexts to make sure we can find different differences over S-boxes in the key-recovery
part. To illustrate this fact, let us consider the following simple example:

Example 4.1. For the sake of simplicity we consider one Sbox in the last round of LowMC
excluding the linear layer. The following relation holds:

S(y) + k = c

where k is a 3-bit fixed but unknown, y is a 3-bit input of the last round and c is the cor-
responding 3-bit in the ciphertext. Let us assume that for a given pair ((P1, C1), (P ′1, C ′1)),
the difference of the semi-final round is found as 1. In addition, we assume c1 = 0 and
c′1 = 5 which means the input and output differences over the Sbox in the last round are
respectively 1 and 5. The internal value S(y1) is either 3 or 6, since S(2)⊕S(3) = 3⊕6 = 5.
Consequently, the key k = c1 ⊕ S(y1) is either 0⊕ 3 = 3 or 0⊕ 6 = 6. Similarly assume
for another given pair ((P2, C2), (P ′2, C ′2)), the input and output differences over the Sbox
in the last round are 1 and 1, respectively. In addition, assume c2 = 3 and c′2 = 2. The
corresponding internal values for S(y2) is either 0 or 1, since S(0) ⊕ S(1) = 0 ⊕ 1 = 1.
Consequently, the key k = c2 ⊕ S(y2) is either 3 ⊕ 0 = 3 or 3 ⊕ 1 = 2. The key can be
obtained uniquely by considering the intersection between two sets {3, 6} ∩ {3, 2}=3.

For the obtained equivalent last round key sk′r, all ciphertexts Ci and C ′i can be
decrypted over the last round. Then the sk′r−1 can be obtained with the similar method
by considering the differences ∆r−1 and ∆r−2. The same arguments suggest that sk′r−1
can be determined by uniquely. We can simply continue this procedure over r1 + r2 rounds
to obtain the all equivalent subkeys uniquely.

The time complexity of the key-recovery attack is (r1 + r2) · 2` · 2m·x memory accesses
and simple operations. Obliviously the time complexity of the key-recovery attack is much
smaller than the time complexity of the process of finding internal differences described in
Section 4.1 which is equal to δr1 + δr2 for each pairs as it is give in Eq. (14). So the total
complexity of the attack can be estimated as follows:

176 Cryptanalysis of Low-Data Instances of Full LowMCv2

` · (δr1 + δr2) (16)

where ` is the number of required pairs.

4.2.2 Retrieving all equivalent subkeys by utilizing d-differences

Because of the existence of symmetric solutions, the lowest number of solutions for a pair
of input and output differences over an S-box is 2. However, the situation is different for
d-differences. While a b-bit S-box can map an input d-difference to at most 2b possible
output d-differences, the number of possible output d-differences increases exponentially
with the dimension d, i.e. 2d·b. It is easy to verify that the d-difference distribution
is sparse for d > 1 and for most pairs of input and output d-differences over an S-box
there exist a unique solution. For instance, the number of possible input and output
2-differences pairs over the Sbox of LowMC is 421 out of 22.3 · 22.3 = 212 total values.
For 336/421 = 79% possible input and output 2-differences there exist only one solution.
By increasing the dimension d, this ratio becomes higher. For instance, there exist a
unique solution for 3696/3893 = 94% possible input and output 3-differences over the Sbox
of LowMC. Consequently, if we move from differences to d-differences where d > 1, the
problem becomes a lot easier. If we know the input d-difference and the output d-difference
over a LowMC S-box and if there are at least two unique non-zero differences among the d
differences, the values of the input and output messages are uniquely determined.

If we are given the plaintext and ciphertext messages and their corresponding d-
difference trail, we can thus determine for any active S-box in the last round, the value of
the corresponding part of the last round key uniquely. By running the same procedure
two or a few more times to activate different S-boxes in the last round, we can retrieve the
last round key completely (in our equivalent representation of LowMC). We can thus peel
of the last round and use the same data to retrieve the second to last equivalent round
key, and so forth.

Similarly the time complexity of retrieving the equivalent subkeys is negligible in
comparison with the time complexity of finding internal differences described in Section 4.1
which is equal to δr1

d + δr2
d for each pair as it is give in Eq. (14). So the total complexity

of the attack is dominated by the process of finding internal differences for two different
pairs and can estimated as:

2 · (δr1
d + δr2

d) (17)

4.2.3 Full key from equivalent round keys

In general, the exact amount of information extracted about the master key depends on
the key schedule of the cipher. However, as the key schedule of LowMC is linear, we only
need to determine enough round key material to ensure that the full key can be determined
uniquely. Since the key schedule is generated pseudo-randomly, this should be the case as
soon as the collected round key material exceeds the size of the full key.

4.3 Results on LowMCv2
To estimate the security of LowMCv2 against the described attack, we can take two
different approaches. The first is to compare the time complexity of the proposed attack
on the full-round cipher with the given threshold 2k which is the time complexity of
exhaustive search over all key candidates. In Table 1 we list resulting attacks on a few
different instances of LowMCv2 with low allowable data complexity (enough to allow our
attack vector to succeed with high probability) and a very small number of S-Boxes per
round. The time complexity of the attack is proportional only to the values of r1 and

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 177

Table 1: Full-round attacks on different versions of LowMCv2. Data is given in number of
chosen plaintexts. Block and key size are given in bit.

Cipher Specification Attack Details
Block S-boxes Data Key Rounds Dimension r0 r1 r2 Time Complexity Data
n m D k r d bn−log2 d

3·m c b r−r0
2 c d r−r0

2 e 2 · (δr1
d + δr2

d) 2(d+ 1)
128 1 16 256 158 4 41 58 58 2164.9 10
128 5 16 256 37 4 8 14 15 2212.75 10
256 1 8 256 243 2 85 79 79 2223 6
256 5 8 256 53 2 17 18 18 2254.9 6
512 1 8 256 413 1 170 121 121 2226.6 4
1024 1 8 512 758 1 341 208 209 2389.9 4

Table 2: Maximum number of attacked rounds for different versions of LowMCv2. Time
complexity is in all cases just below what the key size allows. Data is given in number of
chosen plaintexts. Block and key size are given in bit.

Cipher Specification Attack Details
Block S-boxes Data Key Rounds Dimension r0 r1, r2 Time Data Max. Rounds
n m D k r d

⌊
n−log2 d

3·m

⌋ ⌊
k

log2(δd)

⌋
2(δr1

d + δr2
d) 2(d+ 1) r0 + r1 + r2

128 1 16 256 158 4 41 84 2254 10 209
128 5 16 256 37 4 8 16 2254 10 40
256 1 8 256 243 2 85 89 2252.3 6 263
256 5 8 256 53 2 17 17 2254.9 6 53
512 1 8 256 413 1 170 136 2254.41 4 442
1024 1 8 512 758 1 341 274 2510.54 4 889

r2. Consequently, we choose r0 as the largest possible value presented in Eq. (10). We
cover the remaining rounds by selecting r1 = b r−r0

2 c and r2 = d r−r0
2 e (almost) equally to

decrease the time complexity of the attack presented in Eq. (14). As can be seen from the
Table 1, several low-data instances of LowMCv2 can be broken significantly faster than
exhaustive search.

A second approach is to focus on determining the maximal number of rounds which are
still attackable with a complexity marginally below exhaustive search. The gap between
this number and the number of rounds deemed secure in LowMCv2 is thus indicative of
the instantiation’s vulnerability. We apply the round formula given in Sec 3.2.3 to derive
the maximized number of cipher rounds vulnerable to the attack. To maximize the number
of attacked rounds, we select r0 and r1, r2 to be the largest possible values as proposed in
Eq. (10) and Eq. (13), respectively. In Table 2 we list resulting attacks on LowMCv2 as
can be seen in the ‘Max. rounds’ column.

We exemplify the numbers for the attack on the first example in the table where we
have a 128-bit state, one S-box per layer, 16 allowed chosen plaintext/ciphertext pairs
and a 256-bit key. In the best attack, we use 4-differences such that a single distinguisher
requires 5 chosen messages. To ensure that we have enough active S-boxes for the round
key recovery, we double this number to allow for a second independent distinguisher. The
number of attacked rounds is determined using the results of Section 3. First we can
cover 41 rounds for free. Then after 84 additional rounds we construct the first list of
4-differences. Coming from the ciphertext end, we can cover 84 rounds where we then
search for the collision in the list. This gives in total 209 attacked rounds.

By increasing the dimension d, δd becomes higher which leads to the growth of the time
complexity. On the other hand the probability of false collisions in MITM step becomes
very low by increasing d. Consequently, as it can be seen in Table 1 we select different
scenario based on the block size (n) and the key size (k). For cases which n > k, we use
standard differential. For cases which n = k, we use 2-differences. Finally for cases which
n < k, we choose d > 3.

178 Cryptanalysis of Low-Data Instances of Full LowMCv2

4.4 Experimental verification
To verify the theoretical model of attacks proposed in sec 4.2, we implement the described
attack on a small variant of LowMC(20,1,3,20). As suggested by the designers, we use
the Grain LSFR as self-shrinking generator to pseudorandomly binary matrices for linear
layers, key schedule and values of round constants. As it is shown in Eq. (10), the maximal
number of rounds that a difference can go without activating any S-boxes is estimated
as r0 =

⌈
n−log2(d)

bm

⌉
− 1 =

⌈ 19
3
⌉
− 1 = 6. In our experience there exist 3 deterministic

differential characteristic over 6 rounds: (0x0C3AA→ 0xE69AB), (0x1CAD9→ 0x973E0) and
(0x10973 → 0x71A4B). We take two input 2-differences (α1, α2) = (0x0C3AA,0x1CAD9)
to have a deterministic 2-differences (α1, α2) → (β1, β2) over the first 6 rounds where
(β1, β2) = (0xE69AB,0x973E0). For a random anchor P0 we encrypt the plaintexts
(P0, P1 = P ⊕ α1, P2 = P ⊕ α2) over 18 rounds and save their corresponding ciphertexts
as C0 = 79E52, C1 = 0xC596B and C2 = 0x3AE8C, respectively.

After that we compute all possible 2-differences which can be reached in the output of
the 12-th round from the 2-difference (β1, β2) in the forward direction over 6 rounds and
save them in a set Df . Our Experience shows the number of reachable 2-differences in
forward direction is |Df | = 46863 ' 215.51. We also compute all possible differences that can
be reached in the output of 12’th round from the 2-difference ∆18 = (C0 ⊕C1, C0 ⊕C2) =
(0xBC739,430DE) in the backward direction over the last 6 rounds and save them in
another set Db. Similarly our experience shows the number of reachable 2-differences is
|Db| = 60183 = 215.87. We repeat our experience for different random matrices in the linear
layers for both forward and backward directions. We always reach less than 216.1 candidates
for the 2-differences over 6 rounds which is less than the estimation δ6

2 = λ6
2 = 216.8 given

in Eq. (9). This fact can facilitate the attack procedure in practice. We finally retrieve the
2-differences ∆12 = (0x3B203,0xFEFF7) uniquely by looking for a collision between the
sets Df and Db.

We similarly obtain other 2-differences of the last rounds by using the same method
described in Algorithm 1 which leads to retrieve the equivalent subkeys. In particular,
the 2-difference in the semi-last round obtained as ∆17 = (0xC5023, 0xEDACA) which
equals to the input 2-difference of the non-linear layer of last round. The output 2-
difference of the non-linear layer of the last round is L−1

18 (∆18) = L−1
18 (0xBC739,430DE) =

(0x65023,0x4DACA). Both differences in ∆17 and L−1
18 (∆18) are equal in the last 17 bits as

we expected, since non-linear layer includes only one S-box and covers the first 3 bits. The
corresponding input and output 2-differences over the S-box in the last round is (0x3, 0x2)
and (0x6, 0x7), respectively. There exist only one solution for this transmission over the
Sbox: (S(3)⊕ S(0), S(3)⊕ S(1)) = (6⊕ 0, 6⊕ 1) = (6,7). So we obtain the first 3-bits of
the state after the S-box corresponding to the pair (P0, C0) uniquely as 3. By considering
the first 3-bits of L−1

18 (C0) = A9F75 the equivalent subkey in the last round can be obtained
as sk′18 = 3⊕ 5 = 6. In our experience, other equivalent subkeys can be found similarly by
utilizing at most two different 2-differences.

5 Conclusion
In this paper we provided new insight into the security of LowMCv2. We demonstrated
that some versions of LowMCv2 with sufficiently sparse non-linear layers and low allowed
data-complexity are vulnerable to attacks based on difference enumeration. We further
demonstrated how these attacks could be made more generic by considering tuples of
differences — d-differences.

Indeed that is exactly the parameter space relevant for recently important for LowMC’s
use-case in post-quantum signature schemes [CDG+17, KKW18, BEF18, DRS18, PPRR17].
This is a result of the fact that the overall number of multiplications is minimized by

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 179

decreasing the number of S-boxes per layer and the fact that only low-data security is
required in this class of application. Thereby, our cryptanalysis turns out to be applicable on
an important category of the LowMCv2 family that are utilized in real-world applications.
All the above mentioned applications of LowMC do take our attacks into account already
in their parameterization of LowMC as they used from their start version 3 of the round
formular of LowMC.

While the impact on LowMCv2 is clear, it is an open question whether the attack can
be effective on other designs with partial non-linear layers as well. It is furthermore an
interesting question in itself how to retrieve the full key if we are given only a single pair
of input and output messages together with the difference trail that they took.

Acknowledgments
The work of Hadi Soleimany is partly supported by grants from Shahid Beheshti University
and by the Iranian National Science Foundation (grant n◦95835673). Christian Rechberger
has partly been supported by H2020 project Prismacloud, grant agreement n◦644962.

References
[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and

Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, volume 10031, pages 191–219. Springer, 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, volume
9056 of Lecture Notes in Computer Science, pages 430–454. Springer, 2015.

[ARS+16] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. IACR Cryptology ePrint
Archive, 2016:687, 2016.

[BDD+15] Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, Nathan
Keller, and Boaz Tsaban. Cryptanalysis of SP Networks with Partial Non-
Linear Layers. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT
2015, volume 9056 of LNCS, pages 315–342. Springer, 2015.

[BEF18] Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-Quantum EPID Group
Signatures from Symmetric Primitives. Cryptology ePrint Archive, Report
2018/261, 2018. https://eprint.iacr.org/2018/261.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO 1990,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream Ciphers: A
Practical Solution for Efficient Homomorphic-Ciphertext Compression. In
Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 313–333.
Springer, 2016.

https://eprint.iacr.org/2018/261

180 Cryptanalysis of Low-Data Instances of Full LowMCv2

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1825–1842. ACM, 2017.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A Cipher with Low ANDdepth and Few ANDs per Bit. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in
Computer Science, pages 662–692. Springer, 2018.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-Order
Cryptanalysis of LowMC. In Soonhak Kwon and Aaram Yun, editors, ICISC
2015, volume 9558 of LNCS, pages 87–101. Springer, 2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 371–387. Springer, 2013.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks
on 8-round AES-192 and AES-256. In Masayuki Abe, editor, ASIACRYPT
2010, volume 6477 of Lecture Notes in Computer Science, pages 158–176.
Springer, 2010.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized Inter-
polation Attacks on LowMC. In Soonhak Kwon and Aaram Yun, editors,
ASIACRYPT 2015, volume 9453 of LNCS, pages 535–560. Springer, 2015.

[DOR+16] David Derler, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
and Daniel Slamanig. Digital signatures from symmetric-key primitives.
Cryptology ePrint Archive, Report 2016/1085, 2016. http://eprint.iacr.
org/2016/1085.

[DRS18] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum zero-
knowledge proofs for accumulators with applications to ring signatures from
symmetric-key primitives. In Tanja Lange and Rainer Steinwandt, editors,
Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018,
Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of
Lecture Notes in Computer Science, pages 419–440. Springer, 2018.

[DS09] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of Lecture
Notes in Computer Science, pages 116–126. Springer, 2009.

[DSP07] Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-
middle attacks on reduced-round DES. In K. Srinathan, C. Pandu Rangan,
and Moti Yung, editors, Progress in Cryptology - INDOCRYPT 2007, 8th
International Conference on Cryptology in India, Chennai, India, December
9-13, 2007, Proceedings, volume 4859, pages 86–100. Springer, 2007.

http://eprint.iacr.org/2016/1085
http://eprint.iacr.org/2016/1085

Christian Rechberger, Hadi Soleimany and Tyge Tiessen 181

[GCZ16] Steven Goldfeder, Melissa Chase, and Greg Zaverucha. Efficient Post-
Quantum Zero-Knowledge and Signatures. Cryptology ePrint Archive, Report
2016/1110, 2016. http://eprint.iacr.org/2016/1110.

[GGNPS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block Ciphers That Are Easier to Mask: How Far Can We Go?
In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume
8086 of Lecture Notes in Computer Science, pages 383–399. Springer, 2013.

[GM00] Henri Gilbert and Marine Minier. A collision attack on 7 rounds of rijndael.
In AES Candidate Conference, pages 230–241, 2000.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
Cryptology ePrint Archive, Report 2018/475, 2018. https://eprint.iacr.
org/2018/475.

[LJW15] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved single-key attacks on
9-round AES-192/256. In Carlos Cid and Christian Rechberger, editors, FSE
2014, volume 8540 of Lecture Notes in Computer Science, pages 127–146.
Springer, 2015.

[LW15] Li Lin and Wenling Wu. Meet-in-the-middle attacks on reduced-round midori-
64. Cryptology ePrint Archive, Report 2015/1165, 2015. http://eprint.
iacr.org/2015/1165.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
volume 9665 of LNCS, pages 311–343. Springer, 2016.

[PPRR17] Léo Perrin, Angela Promitzer, Sebastian Ramacher, and Christian Rechberger.
Improvements to the linear layer of lowmc: A faster picnic. Cryptology ePrint
Archive, Report 2017/1148, 2017. https://eprint.iacr.org/2017/1148.

[Tie16] Tyge Tiessen. Polytopic cryptanalysis. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016, volume 9665
of Lecture Notes in Computer Science, pages 214–239. Springer, 2016.

http://eprint.iacr.org/2016/1110
https://eprint.iacr.org/2018/475
https://eprint.iacr.org/2018/475
http://eprint.iacr.org/2015/1165
http://eprint.iacr.org/2015/1165
https://eprint.iacr.org/2017/1148

	Introduction
	Substitution-permutation networks with partial non-linear layers
	Standard Description
	LowMC
	Equivalent representation with reduced round key material
	Notation

	Building distinguishers based on difference enumeration
	Enumeration of differences
	Enumeration of d-differences

	Key-recovery attacks
	Recovering the d-differences trail
	Constructing a full key recovery attack
	Results on LowMCv2
	Experimental verification

	Conclusion

