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The phase-reset model of oscillatory EEG activity has received a lot of attention in

the last decades for decoding different cognitive processes. Based on this model, the

ERPs are assumed to be generated as a result of phase reorganization in ongoing

EEG. Alignment of the phase of neuronal activities can be observed within or between

different assemblies of neurons across the brain. Phase synchronization has been used

to explore and understand perception, attentional binding and considering it in the

domain of neuronal correlates of consciousness. The importance of the topic and

its vast exploration in different domains of the neuroscience presses the need for

appropriate tools and methods for measuring the level of phase synchronization of

neuronal activities. Measuring the level of instantaneous phase (IP) synchronization has

been used extensively in numerous studies of ERPs as well as oscillatory activity for

a better understanding of the underlying cognitive binding with regard to different set

of stimulations such as auditory and visual. However, the reliability of results can be

challenged as a result of noise artifact in IP. Phase distortion due to environmental noise

artifacts as well as different pre-processing steps on signals can lead to generation of

artificial phase jumps. One of such effects presented recently is the effect of low envelope

on the IP of signal. It has been shown that as the instantaneous envelope of the analytic

signal approaches zero, the variations in the phase increase, effectively leading to abrupt

transitions in the phase. These abrupt transitions can distort the phase synchronization

results as they are not related to any neurophysiological effect. These transitions are

called spurious phase variation. In this study, we present a model to remove generated

artificial phase variations due to the effect of low envelope. The proposed method is

based on a simplified form of a Kalman smoother, that is able to model the IP behavior

in narrow-bandpassed oscillatory signals. In this work we first explain the details of

the proposed Kalman smoother for modeling the dynamics of the phase variations in

narrow-bandpassed signals and then evaluate it on a set of synthetic signals. Finally,

we apply the model on ongoing-EEG signals to assess the removal of spurious phase

variations.
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1. INTRODUCTION

The assessment of voltage changes of measured neural activities
in terms of their level of synchronization has been one of the main
evaluation methods for understanding the behavior of numerous
cognitive processes and biological systems (Tass et al., 1998;
Lachaux et al., 1999; Rosenblum et al., 2001; Fell and Axmacher,
2011; Park and Rubchinsky, 2012; Mortezapouraghdam et al.,
2014, 2016; Thounaojam et al., 2014; Watanabe et al., 2015;
Noda et al., 2017). Phase synchronization is observed from a
single cell recording where groups of neurons from the same
or different populations fire simultaneously, up to a larger scale
where different regions of the brain exhibit a synchronized and
coherent behavior in their neural activities (Siapas et al., 2005;
Laine et al., 2012). Analyzing the phase of neural activities from
invasive to non-invasive scales has been found to be informative
for decoding the underlying neural mechanisms, understanding
the propagation of neural firing and thereby giving us insights on
the association between different neural assemblies (Lutz et al.,
2002; Nolte et al., 2004; Busch et al., 2009; Uhlhaas et al., 2009;
Canavier, 2015; Voloh and Womelsdorf, 2016).

The coherent activity in neural population can be observed
among different neural assemblies for different cognitive and
motor tasks. It has been particularly used to study the effect
of cognitive binding with regards to different stimulations
(Makeig et al., 2002; Strauss et al., 2005; Klimesch et al.,
2007). For example, in Mortezapouraghdam et al. (2015)
the level of phase alignment has been used to differentiate
between different processes of habituation and non-habituation.
In Bernarding et al. (2013) phase synchronization has been used
to objectively determine the level of selective attention to auditory
stimulations. Abnormal activities in phase synchronization
of neural oscillators have been investigated across different
spectrums of neuropsychiatric disorders such as schizophrenia
and attention deficit disorders (Tcheslavski and Beex, 2006; Bob
et al., 2008). Epilepsy is associated with a hypersynchronous
state of neuronal activities across the brain. Using the phase
synchrony techniques, different approaches for prediction of
epileptic episodes have been proposed (Zheng and Voight, 2006).

The role of phase synchronization of ongoing oscillatory
activities has been deeply discussed in the area of ERP generation
as well (Min et al., 2007). The phase modulation view of ERP
genesis states that the generation of evoked-related potential
(ERP) is not independent from the background (ongoing) EEG
activities (see Sayers et al., 1974; Yeung et al., 2004 and the
reference therein for more details). It is assumed that ERPs are
generated by the re-organization of stimulus induced phase resets
of ongoing EEG rhythms (Sayers et al., 1974; Makeig et al.,
2002; Penny et al., 2002). Thereby, the ERP generation is not
solely based on superposition of evoked, fixed-latency and fixed-
polarity responses that are independent from the ongoing EEG
activity (Kolev and Yordanova, 1997; Sauseng et al., 2007). Based
on this definition, the background EEG activity comprise an
important part of the ERP generation process. This view is also
referred to as phase modulation (PM), in contrast to the classical
view, namely the amplitude modulation(AM). Figure 1 illustrates

the classical view of ERP generation against the phase-resetting
model.

Given the importance and the broad applicability of phase
synchronization across different domains, applying proper tools
and techniques for measuring the level of phase synchrony
of neural activities is crucial. Phase locking value (PLV) is
among the most common approaches used for measuring the
phase synchrony (Rosenblum et al., 2000; Hurtado et al., 2004;
Park and Rubchinsky, 2012; Aydore et al., 2013). Empirical
mode decomposition (EMD), frequency flow analysis (FFA),
phase-amplitude coupling and event-related synchronization are
among examples of methods used for quantifying the level
of phase synchronization among different neural oscillatory
activities (Lachaux et al., 1999; Rudrauf et al., 2006; Dvorak
and Fenton, 2014). In Mortezapouraghdam et al. (2014, 2016),
a Bayesian framework has been used to detect the significant
changes in the phase synchronization level. Thereby, a reliable
phase estimation is important for obtaining a realistic and stable
estimate of the level of phase synchrony and coherency of neural
activities.

Removal of artificial phase variations in the signal is one
of the important steps for obtaining a reliable measure of
phase synchronization. Spurious phase variation in this context
refers to phase resets which are not related to any underlying
neurophysiological activities. In the recent study by Sameni and
Seraj (2016, 2017), one of the effects that lead to artificial phase
variations in EEG signals has been thoroughly explained. It
has been demonstrated that the low envelope of an analytical
signal after narrow band-passing can cause abrupt changes in the
instantaneous phase (IP) or instantaneous frequency (IF) of the
signal. As a consequence, these spurious phase variations can be
falsely correlated and interpreted as a response to stimulations
or cognitive activities and distort the results. These artificial
phase alignments are called spurious phase-resets. In Sameni
and Seraj (2016), a robust measure based on a Monto-carlo
estimation scheme has been proposed for computing a more
reliable estimate of the phase.

As a contribution to the proposed method in Sameni and
Seraj (2016) and Seraj and Sameni (2017) and the concept of
removal of noisy phase resets, we present a model that is able
to remove spurious phase variations in the IP component of
signals by modeling the behavior of IP over time. Our proposed
method is a special case of a Kalman smoother (KS), which
is applied after applying a set of different narrow-bandpassed
filters with slight parameter variations for a robust estimation [an
initial study of the proposed methodology has been published
in Mortezapouraghdam and Strauss (2017)]. The IP and IE are
modeled using a multivariate complex Gaussian distribution and
illustrate how the information in the IE of narrow-bandpassed
signals can contribute to elimination of spurious phase
jitters.

The organization of the paper is as follows: We first describe
the proposed methodology in detail and test it on synthetic data
with spurious phase variations. The method is evaluated using
different signal-to-noise (SNR) ratios. We apply the proposed
method on examples of ongoing EEG measurements to examine
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FIGURE 1 | (A) The evoked classical model assumes that the evoked components of averaged ERP is generated by a constant evoked response that is added onto

EEG activity. The evoked responses have the same latency and polarity for all trials. The average of all responses over all trials will yield the averaged ERP. (B) Another

explanation of ERP genesis model, the average evoked response is based on phase-resetting of background EEG activity. Averaging over all trials by which phase

reset has occurred, the same results as in (A) is produced.

the applicability of the model to real measurements1. Finally, we
discuss the setting of the KS parameters and its potential use for
future studies.

2. MATERIALS AND METHODS

In this section, we briefly explain the effect of spurious phase
variation followed by describing the proposed approach for
removing the phase slips. In the second part of this section,
the experimental setting and the measuring procedures are
explained.

2.1. Phase Singularities: Definition of
Spurious Phase Slips and Types
One of the main steps before extraction of IP is the filtering
process. To obtain a meaningful interpretation of phase
modulations, the signal is narrow-bandpassed (Chavez et al.,

1The measurements are derived from a repetition of the seminal dichotic tone

detection experiment of Hillyard et al. (1973) which demonstrated the N1–

effect of late auditory evoked responses for the first time and their relation to

early auditory selective attention. In a study conducted by Corona-Strauss and

Strauss (2017), they report on the analysis of the collected data using different

circular analysis techniques to the (Hardy space projected) segmented ERP and

unsegmented ongoing EEG data suggesting a unified framework to analyze neural

correlates of selective attention in ERPs and their ongoing EEG activity.

2006; Sameni and Seraj, 2017). A FIR (finite impulse response)
filter is usually applied to avoid the distortion of phase
information (see chapter 5 of Handy, 2005 for more references).
The IP is obtained by computing the analytic signal, commonly
by either applying a wavelet transformation (WT) or Hilbert
transformation (HT). The HT of a signal x(t) is represented as

x̂(t) = x(t)+ iH(x(t)) = x(t)+ iu(t).

such that a real-valued signal is converted to a complex plane
using HT. Measures such as the IE and IP are computed from

At =
√
x(t)2 + u(t)2 and θ(t) = tan−1

(
u(t)
x(t)

)
respectively, where

θ ∈ [−π ,π), t ∈ R. The IP transits to −π when it reaches π .
One of the techniques for tracking the modulations of IP in long
time intervals is analyzing the unwrapped version of the IP. The
unwrapped IP is obtained by adding 2π every time a reset occurs.
We use p : R → R

+ for unwrapped phase. Using the unwrapped
phase, the angular frequency is defined as z(t) = pt−pt−1

1t with 1t
being the sampling period.

The slope of p(t) is related to the mean frequency. The slope
of a signal with center frequency fc which best determines the
activities at that particular frequency is given by ω0 = 2π fc
(measured in rad/sec). If the IP contains no additional resets,
it is uniformly distributed. This can represented by a sine wave
with complete cycle, at which the IP is uniformly distributed
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(see Figure 2, illustrating the simplest condition along with the
parameters such as unwrapped phase and residual defined earlier
as indicators for the variations in the phase of the signal). Hence
the change to the uniformity can be represented by the difference
between p(t) and the line ω0t, i.e., r(t) = p(t)−ω0t. See Figure 3
which is an example of two sine waves with high and low number
of resets along with r(t).

2.1.1. Spurious Phase Variation

After applying a narrow band-pass filter to the measured EEG
oscillations, the resulting xt , θt can be described by the additive
model of

xt = Xt cos (ω0t + θt) +Wt = st +Wt

where θt is the residual phase r(t), ω0 = 2π fc
fs

, and Xt is the

envelope. It is assumed that the EEG signal is a superposition
of background activities (considered as noise) and the desired
neural activity. The noise or the background EEG is modeled by
Wt and it is assumed to be Gaussian distributed Wt ∼ N(0, σ 2).

The specific desired neural activity is denoted as st . The IP θt(
θt ∈ [−π ,π)

)
and the envelope Xt of the narrow-bandpassed

signal are slowly varying functions of t. Hence, it is expected that
the changes between θt and θt+1 to be small.

In Sameni and Seraj (2016), it has been shown that as the IE
becomes small (near zero), the IP will contain sudden changes or
jitters (see Figure 4) that can be falsely correlated to phase-resets
induced from an event. We can describe the effect of spurious
phase variation in a small example as in Figure 5 using four
samples of an analytic signal. The distance between the samples
|a1−a2| and |b1−b2| are the same. However, the envelope, which
can be represented as the distance of the individual samples to the
origin are different. Considering a2 and b2 represent the noisy
samples, the noise effect between the actual sample of a1 and a2
yields an angle of∼ 13◦, where as in case of sample b, this is about
116◦. Such variation in this example relates to the low envelope
of the signal.

This effect has been studied in Chavez et al. (2006), Rudrauf
et al. (2006), and Sameni and Seraj (2017) where the effect of
spurious phase jumps have been described in terms of calculation

FIGURE 2 | (A) An example of a sine wave X = sin(ω0t) with a center frequency of fc = 5Hz or ω0 ≈ 31 (rad/s). (B) The residual r(t). As there are no phase shifts in

the signal, no jumps is observed in r(t). The small jitters at the beginning correspond to the filtering. (C) The unwrapped phase that is reflecting the same interpretation

as in (B).
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FIGURE 3 | (Col A, top) An example of a sine wave X = sin
(
ω0t+ θ

)
with fc = 7. We introduced one artificial shift in the signal. (Middle) The unwrapped IP of X

[denoted as (p(t)] and the wrapped version θ (t). (Bottom) The residual r(t) which is computed as r(t) = p(t)− ω0t. The shift in the signal has been shown as an abrupt

jump in the residual. (Col B, top) An example of a sine wave with more random shifts in the signal. Corresponding phase and residual, similar to previous plot have

been illustrated. Figure with some modifications has been adapted from Mortezapouraghdam and Strauss (2017).

of the phase. The IP is computed using the arctan operator(
tan−1

(
u(t)
x(t)

))
. Minor changes due to noise or background EEG

variations to the real and imaginary parts of the analytic signal
(which are narrow-bandpassed) can lead to significant changes
to the computation of phase as the numerator and denominator
values are small (see Rudrauf et al., 2006 and the references
therein). Hence, the aim of this study is to estimate the true phase
using the IE and IP and have a more reliable measure of the IP
such that the spurious phase variations due to a low envelope will
be removed.

2.2. Modeling the Variations Between
Instantaneous Phase and Amplitude
The analytic form of the signal st ∈ R is denoted as ŝt =
st + iH(st), ŝt ∈ C. We assume that the measurements are
corrupted by Gaussian noise with mean 0 and variance α. The
noise of the measurements is denoted by Wt . It’s analytical form
Ŵt is modeled using a symmetric complex Gaussian distribution
Ŵt ∼ CN (0,αI). This can be shown as follows: as stated, the
bandpassed signal is modeled as

xt = Xt cos (ω0t + θt) +Wt = st +Wt .

It’s HT is denoted by

H (xt) = H (Xt cos (ω0t + θt) +Wt)

= Xt sin (ω0t + θt) +H (Wt)

using the linearity of the HT. Here H(Wt) is also a Gaussian
distributed random variable (see chapter 8 of Davenport and
Root, 1958; Sameni and Seraj, 2016) with mean 0 and variance
α. The analytic form of the signal xt using the HT is then

x̂t = xt + iH (xt)

= Xt cos (ω0t + θt) +Wt + i [Xt sin (ω0t + θt) +H (Wt)]

= Xt [cos (ω0t + θt) + i sin (ω0t + θt)]+ [Wt + iH (Wt)]

= Xte
i(ω0t+θt) + [Wt + iH (Wt)] (1)

where the analytic form ofWt is modeled by a complex Gaussian

distributionWt+iH (Wt) ∼ CN (0, Iα) ∼ CN

(
0,

[
α 0
0 α

])
with

a zero mean and independent real and imaginary part with σ 2 as
the variance2. The resulting complex Gaussian distribution is a
symmetric distribution with non-diagonal elements set to zero.

The analytic form of the measurements are hence modeled
as x̂t = ŝt + Ŵt , where ŝt ∈ C is the analytic form of the
signal without noise. We work directly with the complex analytic
signals, as we can later obtain the denoised version of the IP to

2For simplicity of notation, we write CN (a, b) instead of CN (a, Ib) in the rest of

the paper.
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FIGURE 4 | (Col A, first plot) An example of an amplitude modulated signal with a mean frequency fc = 50Hz. Red line shows the IE. The second plot shows r(t). As

the IE of the signal approaches to zero, the phase variations increase, best seen as an abrupt change. This is clearly evident in comparison to the other envelope

values throughout the signal at other time samples. (Col B, first plot) The same explanation as in Col A, however with a lower mean frequency signal fc = 15Hz.

FIGURE 5 | An example of a sudden phase change between b1 and b2 due

to the low envelope in comparison to a1 and a2. The distance between

(a1, a2) and (b1,b2) are approximately the same, however with different

envelopes. This has been adapted from Mortezapouraghdam and Strauss

(2017). Figure with some modifications has been adapted from

Mortezapouraghdam and Strauss (2017).

simplify our model. With our assumption of st , the observations
can be modeled using a complex Gaussian distribution x̂t ∼
CN (ŝt ,α), where ŝt is themean and α is the variance. The signal st
is filtered with a narrow bandpass filter centered around fc prior
to computing the analytic signal x̂t (see Equation 1). Thus we can
assume that x̂t = Ate

i(ω0t+θt) + Ŵt , using the linearity of HT.
Here, ŝt = Ate

i(ω0t+θt) is the denoised analytical signal that we
want to recover. The ratio of successive values of ŝt is

ŝt+1/ŝt = (At+1/At)e
i(ω0(t+1)+θt+1−ω0t−θt)

= (At+1/At)e
i(ω0+(θt+1−θt)) (2)

≈ eiω0 (3)

The results are obtained based on the assumption that at a narrow
frequency, At and θt are varying slowly compared to ω0. We
can therefore express the phase modulations over time using our
assumptions as ŝt+1 ≈ eiω0 ŝt , and model ŝt+1 = eiω0 ŝt + η̂t ,
where η̂t ∼ CN(0, σ ). This means that the analytic signal at
time t + 1 is obtained using the phase at time t multiplied by a
small factor of eiω0 with some additive noise. The additive noise
η correspond to the simplifications that have been applied for
obtaining Equation (3).We assume that the additive noise follows
a Gaussian distribution. The proposed model for the phase
guarantees that the changes in phase of a narrow-bandpassed
signal are rather slow and gradual over time.

2.2.1. Model Derivation

We describe the model derivation in two phases of forward and
backward pass. The model assumptions as described previously
are as follows:

ŝt+1 = eiω0 ŝt + η̂t with η̂t ∼ CN (0, σ )

x̂t = ŝt + Ŵt with Ŵt ∼ CN (0,α) (4)

with the following assumptions about the distributions of states
and the data observations:

P(ŝ1) ∼ CN (µ1, p1)

P(ŝt+1|ŝt) ∼ CN (eiω0 ŝt , σ )

P(x̂t|ŝt) ∼ CN (ŝt ,α) (5)

We can write the above expressions as a two dimensional
real linear Gaussian state-space model by separating the real
and imaginary parts. In the following we take ŝt , x̂t to be two
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dimensional vectors of real numbers consisting of the real and
imaginary parts of the underlying complex number. With this
convention we have:

P(ŝ1) ∼ N

([
ℜ(µ1)
ℑ(µ1)

]
,

[
p1 0
0 p1

])

P
(
ŝt+1|ŝt

)
∼ N

([
cos(ω0) − sin(ω0)
sin(ω0) cos(ω0)

]
ŝt ,

[
σ 0
0 σ

])

P(x̂t|ŝt) ∼ N

(
ŝt ,

[
α 0
0 α

])
(6)

In this form we can directly apply the Kalman smoother that has
been described in Briers et al. (2010). This consists of a forward
and a backward pass which we describe in the following two
sections.

The forward pass
To estimate the state (an estimation of the analytic form of the
signal), we have to derive the following posterior distribution:

P(ŝt|x̂1 : t) =
P
(
x̂t|ŝt , x̂1 : t−1

)
P
(
ŝt , x̂1 : t−1

)

P
(
x̂1 : t

)

=P
(
x̂t|ŝt

) P
(
ŝt|x̂1 : t−1

)

P
(
x̂t|x̂1 : t−1

)

by using the first order Markov property that the current data
at time t is independent from the past given the state at time ŝt .
Simplifying the normalization factor we can write:

P(ŝt|x̂1 : t) ∝ P
(
x̂t|ŝt

)
P
(
ŝt|x̂1 : t−1

)

∝ P
(
x̂t|ŝt

) ∫
P
(
ŝt , ŝt−1|x̂1 : t−1

)
dŝt−1

︸ ︷︷ ︸
Marginalizing over ŝt−1

after expanding the inner bracket, we obtain:

P
(
ŝt|x̂1 : t

)
∝ P

(
x̂t|ŝt

) ∫
P(ŝt|ŝt−1)P(ŝt−1|x̂1 : t−1)dŝt−1 (7)

Equation 7 can be realized as in Figure 6. Figure 6 shows a part of
the first order Markov model. We can compute the distribution
of P(ŝt | x̂1 : t) recursively starting from P(ŝ0). It turns out that
in our model the distribution of P

(
ŝt | x̂1 : t

)
is always Gaussian

so it suffices to compute its mean and covariance matrix. Writing
µt , Pt for the mean and covariance matrix of P(ŝt | x̂1 : t) we have
the following equations from Briers et al. (2010).

P
′
t = BPtB

T + Q

Kt = P
′
t(P

′
t + R)−1

µt+1 = Bµt + Kt(x̂t − Bµt)

Pt+1 = P
′
t − KtP

′T
t

Furthermore, it turns out that Pt is always diagonal of the form
ptI. This allows us to simplify the equations above. To see this,

FIGURE 6 | An illustration of part of a Bayesian Network corresponding to

forward-passing of information.

assume that Pt = ptI and plug this expression into the equations
above.

P
′
t = B

(
ptI
)
BT + Q

= ptBB
T + σ I = (pt + σ )I

Kt =
(
pt + σ

)
I
((
pt + σ

)
I + αI

)−1

= pt + σ

pt + σ + α
I

µt = Bµt +
pt + σ

pt + σ + α

(
X̂t − Bµt

)

Pt+1 =
(
pt + σ −

(
pt + σ

)2

pt + σ + α

)
I

The kalman gain factor
(
Kt = pt+σ

pt+σ+α
I
)
is an expression for

determining how reliable the measurement at time t + 1 is
compared to the estimated state (signal) based on the level of
noise in the data. If data has a small level of SNR (high noise),
the algorithm will rely more on the estimated value than the
measurement. Therefore, a realistic and good estimate of SNR
can improve the performance of the KS.

The backward pass
Given P(ŝt | x̂1 : t) we compute P(ŝt | x̂1 :T) recursively starting
from P(ŝT | x̂1 :T) and moving backwards. In general we have

P
(
ŝt|x̂1 :T

)
= P

(
ŝt|x̂1 : t

) ∫ P
(
ŝt+1|x̂1 :T

)
P
(
ŝt+1|ŝt

)

P
(
ŝt+1|x̂1 : t

) dŝt+1 (8)

and hence we can compute P(ŝt | x̂1 :T) given P(ŝt+1 | x̂1 :T).
Again, we find that P(ŝt | x̂1 :T) is always a Gaussian distributed
random variable. Writing µt , Pt for the mean and covariance
matrix of P(ŝt | x̂1 :T) we have the following equations from
Briers et al. (2010).

Ŵt = PtB
T
(
P
′
t

)−1

µ̄t = µt + Ŵt (µ̄t+1 − Bµt)

P̄t = Pt + Ŵt

(
P̄t+1 − P

′
t

)
ŴT
t
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As in the forward pass this simplifies in our model, since we
only deal with symmetric covariance matrices of the form ptI and
since BT = B−1. In the following we assume that Pt+1 = pt+1I.
We have

Ŵt = ptIB
T
(
(pt + σ )I

)−1 = pt

pt + σ
BT

µ̄t = µt +
pt

pt + σ
BT (µ̄t+1 − Bµt)

= µt +
pt

pt + σ

(
BTµ̄t+1 − µt

)

P̄t = ptI + Ŵt

(
p̄t+1 − pt − σ

)
ŴT
t

=
(
pt +

p2t (p̄t+1 − pt − σ )

(pt + σ )2

)
I

The steps for applying a KS are shown in the algorithm below:

Algorithm 1: Algorithmic representation of a Kalman
smoother (The forward and backward pass)

Input:

α : Variance of measurement noise

σ : Variance of signal <
(
fc
fs

)2

Output:

µ1 :T : Estimated signal
V1 :T : Estimated variance
Forward Pass

p1 :T = 0 Initial variance estimate
µ1 = x̂1
p1 = α

for t = 2 to T do

µt = eiω0µt−1 + pt−1+σ

pt−1+α+σ

(
x̂n − eiω0µt−1

)

pt = α(pt−1+σ)
pt−1+σ+α

end for

Backward Pass

VT = pT
for t = T − 1 to 1 do

µt =
(
1− pt

pt+σ

)
µt + pt

pt+σ

(
e−iω0µt+1

)

Vt = pt +
(

pt
pt+σ

)2 (
Vt+1 − pt − σ

)

end for

3. RESULTS

3.1. Analysis of Synthetic Generated
Spurious Phase Variation
In Figure 7, we show an example of an amplitude modulated
signal with phase reset at the time step t = 2.18s. The signal has
been generated according to

X(t) =
{[

cos(ω0t)
2 + ǫ

]
cos(ω1t) if t < u[

cos(ω0t)
2 + ǫ

]
cos(ω1t + π) otherwise

. (9)

The signal generated after the time step u is shifted by π , hence
the time step u is the actual change point. The parameters

ω0 and ω1 have different frequencies, such that one of them
corresponds to the generation of a lower amplitude signal. The
shift after the time step u will lead to a phase reset that is
related to the signal and we are interested to track this change
over time. The other phase jitters which we aim to remove
correspond to the low envelope of the signal. Figure 7b shows
the estimated phase before and after applying the KS. Before
applying KS, there are two phase jitters due to the low envelope
and the actual shift in the signal. After applying the KS, the
jitter corresponding to the low envelope has been diminished.
In addition, the standard deviation of the estimated phase is
an indicator for the degree of reliability of the phase jitter. A
low standard deviation in the estimated signal phase indicates
that it is less likely that the phase variation is due to the low
envelope, whereas a high standard deviation indicates a higher
likelihood that the phase variation has been generated due to
noise.

In this example, the standard deviation from the sample t =
300 increases, indicating a high uncertainty due to the artificial
phase reset. To assess the accuracy of the model, we generated
500 synthetic time-series with different levels of added noise and
random shifts in the signal. For every number of change points n,
we randomly shift the signal at n random time steps u between π

8

and 7π
8 . This generates n instances at which the signal has been

shifted, and the other phase variations correspond to either the
noise or low envelope of the signal (see Figure 7).

We apply a KS to remove the noisy variations in the
signal. To get an estimate of how reliably the change points
have been removed, we apply a change point algorithm to
detect the time steps that the mean of the signal has been
significantly altered3. The detected time instances are recorded
as the estimated significant change points before and after
applying KS (see Figure 7). If the difference of the estimated
change points and the actual random change points are less
than 10 samples, the estimated change point is assumed to be
correct (true positive, TP). However, if the difference is larger
than the determined threshold, the data point has been falsely
recognized as a change point (and is referred to false positive,
fp). If the change point algorithm fails to detect the actual
change point, then the point is referred to as false negative,
fn.

In Figure 8, the average number of false positives (fp) and
false negatives (fn) for different number of change points have
been plotted. For every number of change points n, we generated
2000 batches of data with different levels of noise and reported
the average number of fn and fp. After applying KS, the average
number of fps is significantly reduced. However, the case with no
filtering yields very unstable results as the noise level increases.
The average false negatives is however lower for the case that
we apply no smoothing compared to results after KS. This is
mainly due to the fact that more random changes are detected
in the pre-smoothing condition. Therefore, as many indices will
be assigned correctly as change points, satisfying the minimum
distance criteria. In the case of smoothing, the overlap of a

3The function findchangepts in MATLAB using the mean returns the time

instances at which the mean of the data changes abruptly.
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FIGURE 7 | (A) An example of an oscillatory signal which contains a low envelope. The signal length is about 2 s. The vertical lines show the actual shifts in the signal

which are random. (B) The phase after removing the line corresponding to the center frequency before and after applying a Kalman smoother (KS). (C) The detected

changes in r(t) without any smoothing have been plotted. (D) The detected changes in r(t) after applying KS. (A,B) Have been adapted from Mortezapouraghdam and

Strauss (2017) with some modifications.

change point and low envelope can cause an increase in the
number of detected false negatives. Using the measured rates
of false negatives and positives, we computed the Matthews
correlation coefficient, MCC. MCC takes the number of false/true
positive/negatives and returns a correlation coefficient between
the observed and predicted binary classifier. It is computed
as

MCC = TP.TN − FP.FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

A coefficient of +1 indicates a perfect prediction (i.e., in our case
a perfect detection of change points at the correct indices), zero
indicates no better than random assignment of change points
and a coefficient of -1 means a complete disagreement between
the predicted change points and the actual ones. Figure 9

shows the average MCC for different SNRs for varying change
points n. The MCC significantly decreases as the SNR increases
(as noise level decreases), indicating a random assignment of
change points. This is also consistent with the average results
of falsely detected change points. As the number of falsely
detected change points increases, we have a more random
assignment of change points. This is however not the case for
the post-KS condition. The higher average of MCC indicates
a significant improvement in the accuracy of detected change
points.

3.2. Analysis of IP of Synthetic EEG Signal
In this section we generate additional synthetic signals for
testing the effect of spurious phase variations. The synthetic
signals are generated as a superposition of sinusoidal signals and

noise with different amplitudes4. The signals has been narrow-
bandpassed using a FIR filter to a center frequency of 7.6 Hz.
The goal is to analyze the effect of the KS on removing the
spurious phase variation for regions where the envelope is low.
In this case, we considered the IP of signal corresponding to
envelopes below 0.2 to be noise, and therefore need to be
removed.

In Figures 10, 11 we show different examples of synthetic
EEG signals where at some instances the corresponding
envelope of the band-passed signal approaches zero. The regions
corresponding to the low envelope has been illustrated in a red
box. We show how applying the method with proper set of
parameters can remove the spurious changes in the IP of the
signal. The main incentive is to remove the spurious variations
in r(t). As we are considering the phase information in a
narrow-bandpass, we are required to filter the data accordingly.
In section 3.4 we describe in more detail on the choices of
parameter setting.

3.3. Application of KS on EEG Recordings
In this section, we apply the proposed model on few examples
of an EEG recording (See Figures 12, 13). The recording
measurements are obtained from the right and left mastoid
electrodes that have been obtained during an experimental
listening paradigm (for more information about the data
measurement and the details see Corona-Strauss and Strauss,
2017). The EEG signals were bandpassed between 1–70 Hz.
In order to test the applicability of the model, we need to

4The code for generating the signals has been mainly used from https://github.

com/pchrapka/phasereset with slight variation.
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FIGURE 8 | Average number of false positives and false negatives for 2,000 batch of synthetic time-series signals with length of 1,500 samples. The number of actual

changes in the signal are indicated as n and results are shown for an increasing SNR.

FIGURE 9 | The average Matthews correlation coefficient for different number of SNRs and different number of change points.

narrow-bandpass the signal and then estimate the IP of the
filtered data.

We compute the IP using the analytic form of the signal with
the Hilbert transformation. To have a meaningful interpretation
of the IP, the signal is narrow-bandpassed around a certain
center frequency of interest. A zero-phase forward backward IIR
elliptic filter is used to narrow-bandpass the signal. As noted
in Seraj and Sameni (2017), in many studies a FIR filter is
used to avoid phase distortion, however as the signal is narrow-
bandpassed, the order of the filter can significantly increase which
leads to long transient response episode. The transient response
are usually discarded for analysis. We therefore applied an IIR
filter which requires a much lower order than a FIR filter and
a zero-phase forward backward filtering ensures a zero-phase
distortion.

In Sameni and Seraj (2016), it is shown that variations to
the filter parameters in filtering process can lead to changes in
the IP and IF responses. Therefore, a robust estimation method
that estimates the IP from the average ensemble of infinitesimal
perturbations to the filter parameters is presented by Seraj and
Sameni (2017). To estimate the IP, we apply a narrow-bandpass
filter with slight variations in the frequency range for M = 100
iterations. At every iteration, the filter parameters are as follows:
the filter order is 6, the reduction in the stop-band is 50dB, the
ripple-passband is 0.01 and the filter bandwidth is set to 0.5. The
center frequency is fc = 7.4Hz and at every iteration, a slight
perturbation is being applied to the center frequency. It has to
be noted that the changes to filter parameters are very small
that the effect is irrelevant for the study of most physiological
effects.
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FIGURE 10 | (A) Synthetic EEG signal generated at a fs = 250Hz with a SNR of 0.11 (high noise variance) bandpassed at fc = 7.6 Hz. Different noise amplitudes have

been used for the two examples. The instantaneous envelope (IE) has been plotted with red boxes showing the regions with a low envelope below 0.2. In the last plot

the resulting r(t) has been plotted for the smoothed (red) and non-smoothed (green) signal. The red regions show the effect of the smoothing on the regions with a low

IE. (B) Same description as in (A) applies to (B) with a SNR of 0.13.

3.4. The Setting of the Parameters
One of the important settings in using the proposed algorithm is
the setting of the variance of noise of the measurement and signal
(α and σ , respectively). In the examples provided in Figures 7

10, 11, we have access to the original signal without noise. This
is equivalent to having prior knowledge of the distribution or
shape of the signal for real scenarios. However, in most cases,
we don’t have access to the actual distribution of the signal
and hence a proper estimation of the parameters is required. In
this section we give suggestions for setting the parameters of
the KS.

As described in Equation (4), the additive noise of the signal
and measurement are defined as η̂t ∼ N (0, σ ) and Ŵt ∼
N (0,α). By reordering ŝt+1 + eiω0 ŝt + η̂t , we have η̂t = ŝt+1 −
eiω0 ŝt . Therefore the variance of noise of the signal σ can be
estimated as the variance of the difference equation of the analytic
signal. In case of real measurements, as we don’t have access to
the actual signal, we can estimate the variance of the noise as
follows:

x̂t+1 − eiω0 x̂t = ŝt+1 + Ŵt+1 − eiω0

(
ŝt + Ŵt

)

= ŝt+1 + Ŵt+1 − eiω0 ŝt − eiω0Ŵt

= ŝt+1 − eiω0 ŝt︸ ︷︷ ︸
ηt

+
(
Ŵt+1 − eiω0Ŵt

)
(10)

As stated earlier Wt+1 and Wt are samples from a Gaussian
distribution with a variance of α :(N (0,αI)). Due to symmetry of
the Gaussian distributions, the sum of two normal distribution
is a Gaussian with the summation of the means and the
variances. Therefore, in our case, the resulting distribution will
be N (0, 2αI). By taking the variance of both sides in Equation
(10), we have

var
(
x̂t+1 − eiω0 x̂t

)
= var(ηt)+ var

(
Ŵt+1 − eiω0Ŵt

)

= var(ηt)+ 2α

Hence the variance of noise of the signal can be estimated as
var(ηt) = var(x̂t+1−eiω0 x̂t)−2α. Setting ǫ = var

(
x̂t+1 − eiω0 x̂t

)
,

the optimal σ is in the range σ ∈ [max(ǫ − 2α, 0), ǫ] where
ǫ is the upper-bound of our estimation. The input for EEG
measurements is X̂t that is the average over all M filters. Another
possibility for controlling the level of smoothing is to optimize
over βvar(ηt) where β is a free parameter that controls the degree
we rely on the measurements over the predictions. In the extreme
case of β = 0, the KS will remove all variations in IP which can
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FIGURE 11 | (A) Synthetic EEG signal generated at a fs = 250 Hz with a SNR of 0.43 bandpassed at fc = 7.6 Hz. The instantaneous envelope (IE) (A-2) has been

plotted with red boxes showing the regions with a low envelope below 0.2. In the last (A-3) plot the resulting r(t) has been plotted for the smoothed (red) and

non-smoothed (green) signal. The red regions show the effect of the smoothing on the regions with a low IE. (B) Same description as in (A) applies to (B) with a SNR

of 0.047.

be observed as a straight line in the corresponding IF. This has
been shown in Figure 13 where different KS parameters are used
for smoothing the data.

The setting of α is based on the study that is presented
in Sameni and Seraj (2016). We set the variance of the
measurement noise to be the variance of the M estimated
phases obtained from infinitesimal perturbations to the filter
parameters. The signal that we use at the end is the ensemble
average of the bandpassed signals. The setting of the parameters
rely mostly on the application and condition of the experiment.
If data is prone to a lot of noise sources, we need to smooth out
the noise more, therefore higher β values are used. In case of a
classification task between different neural cognitive processes,
we can optimize the range of σ such that the distance between the
analyzing measure of the two processes is maximized. In general,
setting of the KS parameters require more investigation given the
specifics of the experiment and its goals.

4. DISCUSSION

In order to investigate phase of neural oscillatory activities
in general, the need of better analytic machinery to exactly
characterize the phase is high. The general limitations can
come from the preprocessing of wide-band neural signals
being recorded, and phase computation methods themselves.
By taking a parametric approach, we focused on removing the
spurious phase variations that can produce misleading or in-
comprehensive results.

We apply a linear Gaussian state space model to the dynamics
of the analytical signal at a narrow band around a specific
frequency. The method was tested on synthetic signals as well
as variants of EEG signals where low envelopes were considered
as potential instances of spurious phase variations. Given the
flexibility in the model parameters (α and σ ) we are able to
remove the jitters in phase as the envelope approaches zero.
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FIGURE 12 | (A) A 60 s segment of measured EEG data. (B) Data has been narrow band-passed with a center frequency of 7 Hz. The envelope of the analytic

band-passed signal has been plotted in red. (C) The residual of IP before and after applying KS has been applied. The term conventional corresponds to the filtered

signals using a narrow band-pass filter before applying KS. As described previously, for every filter, a slight perturbation has been applied to the filter. (D) The IF of the

smoothed data. (E) The resulting IF of one of the instances of the filtering process that has been applied on the data. As shown, in the conventional method, more

spikes or variations are observed in te IF. (F) Comparing the IF of smoothed narrow-bandpassed signal (dark line) with IF of all the non-smoothed signals. The changes

in regard to low envelopes in (B) can be observed as fewer abrupt changes after applying KS in the smoothed version than the conventional approach.

In the current approach, the specific setting of the σ and
α parameters are important for removing the spurious phase
variations as they are used for computing the Kalman gain factor.
The Kalman gain factor determines how strongly the model relies
on its own prediction over the measurement. In this framework,
we needed to assume that α was constant throughout the signal.
However, in real EEG applications or neural oscillatory activities
in general, the noise can be varying over time due to different
sources of artifacts and the signals have a strong non-stationary
behavior, especially around the event times of scientific interests.
For example, β oscillation is known to increase its amplitude
around the external visual or auditory cues and to decrease
behavioral onset (e.g., movement onsets) in various cortical
areas (Takahashi et al., 2015; Watanabe et al., 2015; Noda et al.,
2017; Rule et al., 2017), while the phase dynamics locked to the
sensory cues or behavioral onsets where the temporal evolution
of the phase dynamics remain unclear (Rubino et al., 2006;
Takahashi et al., 2011, 2015; Watanabe et al., 2015; Rule et al.,
2017). A particular challenge to characterize phase oscillation
dynamics is one of the motivations for our current work - how
to precisely characterize oscillation phase when the amplitude
of the oscillation is attenuated. Successful characterization
of such transient dynamics will unveil underlying neural

mechanism that is responsible for neural oscillation in
general.

We therefore aim to additionally investigate the effect of a
varying α in time and its impact on the smoothing procedure.
We will also investigate the impact of the proposed method
in different experimental settings where IP is heavily used for
classification between different neural processes. In many past
studies (Strauss et al., 2008; Mortezapouraghdam et al., 2015), the
phase locking of IP has been used as an indicator for separating
the presence and absence of attentional-binding due to different
auditory stimulations. We therefore require proper methods to
measure the level of phase locking of the neural activities in
response to different stimulations and denoising the spurious
phase variations by optimizing over KS parameters such that the
phase resets bounded to neurological activities are preserved. In
this regard, the overlap of the IP resets due to neural activities
with the ones due to low envelope has to be investigated.

Furthermore, thanks to recent interest to investigate
spatiotemporal dynamics of neural oscillaations using various
types of array recording methods to simultaneously capture
dynamics of evoked responses or phase variations across multiple
channels over space, mostly horizontally, the demand to precisely
characterize phase of neural oscillation has been arising (Liotti
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FIGURE 13 | Different choices of Kalman smoothing factor. (A) A 60-s

segment of EEG measurement. (B) The narrow band-passed signal along with

its envelope. (C) The extreme case of zero factor yields a line for IF. (D) A

factor of 0.005. (E) IF resulting from a high factor > 100.

et al., 2010; Takahashi et al., 2011, 2015; Keane and Gong, 2015;
Moon et al., 2015; Watanabe et al., 2015; Rule et al., 2017; Denker
et al., 2018) using various types of multiple channel devices such
as EEG, ECoG, or intracortical arrays. Although these recent
work or methods developed therein can characterize various
spatiotemporal patterns of oscillation activities, but those results
are heavily relying on oscillation phases that are not as faithfully
computed as in our current work.

Moreover, another trend in neuroscience is to characterize
variability of neural signals in single trials or attempt to relate
between neural variability and sensory/motor variations being
observed (Matsuoka, 1990; Szymanski et al., 2011; Matsuo et al.,
2013; Cui et al., 2016; Barczak et al., 2018; Dechery andMacLean,

2018). Therefore, we would like to extend our current method to
characterize single trial neural oscillation data as well.

5. CONCLUSION

One of the main incentives of the current study is to remove
the spurious variations in IP for a more reliable assessment of

phase information. We present a model based on a Kalman
smoother that models the variations of phase in a narrow-
bandpassed signal. We evaluated the model for synthetic signals
with spurious and actual phase jitters. We added different level
of noises to signals and evaluated the number of true and false
positives as an indicator for correct detection of actual phase
jumps. Results show a significant improvement in reducing the
number of false positives. Themethod is also applied on synthetic
EEG signals generated as the superposition of sinusoidal waves
with noise to assess the removal of spurious phase variations.
Inspecting on various settings the method is able to remove the
rapid transitions in phase that correspond to a low envelope.
In both cases of known and unknown underlying phase shifts,
an estimation to the variance of signal and noise measurements
has been presented. We use the same approach on ongoing
EEG recordings for testing the applicability of the approach.
The proposed approach shows success in removing the spurious
phase variations corresponding to a low envelope.
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