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Abstract. In the field of logics of formal inconsistency (LFIs), the notion of “consistency” is
frequently too broad to draw decisive conclusions with respect to the validity of many the-
ses involving the consistency connective. In this paper, we consider the matter of the axiom
(cc)0—i.e., the schema ◦◦ϕ—by considering its interpretation in contexts in which “consis-
tency” is understood as a type of verifiability. This paper suggests that such an interpretation
is implicit in two extracanonical LFIs—Sören Halldén’s nonsense-logic C and Graham Priest’s
cointuitionistic logic daC—drawing some interesting conclusions concerning the status of
(cc)0. Initially, we discuss Halldén’s skepticism of this axiom and provide a plausible coun-
terexample to its validity. We then discuss the interpretation of the operator in Priest’s daC
and show the equivalence of (cc)0 to the intuitionistic principle of testability. These obser-
vations suggest that it may be fruitful for members of the LFI community to look outside the
canon for evidence concerning the adoption of principles like (cc)0.
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1. Introduction

In the realm of logics of formal inconsistency (LFIs), in which the unary connective “◦”
is read as a “consistency” or “classicality” connective, the scheme ◦◦ϕ—referred to
as “(cc)0” in Carnielli, Coniglio and Marcos (2007)—is particularly interesting. (cc)0
is standardly read as the statement that for any formula ϕ, it is consistent to assert
that ϕ is consistent. Although (cc)0 is a theorem of many LFIs—indeed it is one of
the characteristic elements of João Marcos’ axiomatization of mCi in (2008)—there
appears to be little examination of the philosophical and semantical merits of this
formula in the canonical literature on LFIs. In this paper, we analyze (cc)0 modulo
the interpretation of consistency as verifiability implicit in two semantical frameworks
outside the traditional canon on LFIs.

As recognized by Walter Carnielli and Abílio Rodrigues in (2016) and by Hitoshi
Omori in (2016), Sören Halldén’s logic of nonsense C is an LFI in which Halldén’s
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114 Thomas Macaulay Ferguson

unary “meaningfulness” connective “◦” acts as a consistency connective.1 This ob-
servation lends new salience to Halldén’s discussion of the theorem ◦◦ϕ in (1949),
in which Halldén expresses reservations about its validity but stops short of pro-
viding possible counterexamples. After suggesting that Halldén’s semantical analysis
of meaningfulness comports with the canonical reading of “◦” in the LFI literature,
we will find that the positivist analysis of meaningfulness as verifiability favored by
Halldén leads to cases in which (cc)0 seems to fail. The upshot is twofold: To the
reader of Halldén, this example serves to confirm Halldén’s suspicions and suggest
that his own intuitions are not adequately captured by C. To the logician working in
the LFI tradition, the example provides a novel perspective concerning the interpre-
tation of “◦” and, more generally, the interpretation of the notion of a logic of formal
inconsistency.

Secondly, we consider the status of the axiom scheme in the cointuitionistic logic
daC described by Graham Priest in (2009), in which the common intuitionist nega-
tion of intuitionistic logic is exchanged for a paraconsistent counterpart “+.” Accord-
ing to the Grzegorczyk–Wolter analysis of the dual intuitionistic connectives devel-
oped between Grzegorczyk (1964) and Wolter (1998), the correctness of asserting a
conegated formula +ϕ corresponds to states in which ϕ is not counted among the
“initial information” on which a scientific investigation is based. Now, daC is shown
to be an LFI in which “◦” is definable in Ferguson (2014), and this definition induces
a corresponding Grzegorczyk–Wolter-style interpretation of the consistency connec-
tive as asserting a type of verifiability. An examination of the formal features of “◦” in
daC, such as the description of the weakest normal extension of daC in which (cc)0
holds, leads to some curious facts, such as the equivalence of (cc)0 to commonly cited
theses of intuitionistic logic and LFIs over daC.

1.1. Paraconsistency and Inferential Situations

Paraconsistency is the property ascribed to deductive systems that do not validate
the principle of explosion, i.e., systems in which it is not legitimate to infer arbitrary
conclusions from an inconsistent set of premises or, equivalently, systems for which
there exist inconsistent but nontrivial theories. During philosophical discussions of
the notion of paraconsistency, one often encounters the suggestion that even if cer-
tain inferences are considered to be invalid universally, there may remain particular
cases in which their application is admissible. A particularly articulate example is im-
plicit in a long-running dispute initiated by John Burgess in (1981) concerning the
invalidity of disjunctive syllogism in relevant—and, by extension, paraconsistent—
logics. Burgess argues against relevant logicians that disjunctive syllogism ought to
be regarded as valid by describing particular occasions—such as participating in card
games—in which a paraconsistent logician’s willful abstention from the use of dis-
junctive syllogism would be foolhardy from a strategic perspective.
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Axiom (cc)0 and Verifiability 115

Chris Mortensen’s reply appeals to a distinction between inferential situations,
with Mortensen arguing that the mere fact that there exist some situations within
which disjunctive syllogism is reasonable does not entail that it is valid in all situa-
tions. Given the intimate connection between disjunctive syllogism and the principle
of explosion,2 Mortensen’s position works equally well for either inference:

The position I propose is that although [the inference] is not universally
valid, it is an acceptable mode of reasoning under certain circumstances. . .
Many relevance people feel suspicious of [the inference] because it seems to
break down in what might be called “abnormal” deductive situations, par-
ticularly inconsistent situations. . . On the other hand, [the inference] does
seem to be a natural mode of inference in “normal” deductive situations, the
kind encountered every day. (Mortensen 1983, p.37)

This act of partitioning particular types of situation reflects a philosophical assump-
tion that is common—if frequently underdeveloped—among paraconsistent logicians.
This is the assumption that there are certain circumstancess—consistent cases—in
which the principle of explosion is “locally valid,” a sentiment captured in Walter
Carnielli, Marcelo Coniglio, and João Marcos’ handbook article (2007) by the slo-
gan:

CONTRADICTIONS + CONSISTENCY = TRIVIALITY

A deductive system that is paraconsistent in general but for which the principle of
explosion can be deployed in targeted cases is frequently known as “gently explo-
sive.” A difficulty for the adequate formalization of this thesis in, e.g., most species of
relevant logic is that the languages they employ are insufficiently expressive to dif-
ferentiate between the “consistent” situations Burgess describes and the “abnormal”
situations to which Mortensen appeals.

Generally speaking, the field of logics of formal inconsistency attempts to cod-
ify this slogan by studying paraconsistent deductive systems in which the notion
of a statement’s being consistent can be represented in the language itself. Over-
whelmingly, the languages employed by LFIs are enriched with a unary “consistency
connective” ◦—either primitive or defined—that indicates that a formula “behaves
consistently” or is “normal” in some sense. da Costa’s intended interpretation—an
interpretation that essentially lays the groundwork for the field of logics of formal
inconsistency—is that the formula ◦ϕ

can be interpreted as expressing the proposition that [ϕ] is not paradoxical,
or “behaves classically.”(da Costa 1974, p.585)

The canonical interpretation of a formula ◦ϕ, then, is the assertion “ϕ is consistent,”
and the operator ◦ serves as a formal mark indicating that the formula to which it
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applies is one about which we may reason classically. Hence, for a unary negation
connective∼, paraconsistency can be retained insofar the set {ϕ,∼ϕ} can be satisfied
in some situations (i.e., “abnormal” situations). In contrast, the additional expressive
power allows us to assume a premise ◦ϕ, indicating that the situation in which we
work is “normal” or “classical” (at least with respect to ϕ), formally represented by
the unsatisfiability of the set of formulae {ϕ,∼ϕ,◦ϕ}.

1.2. Logics of Formal Inconsistency

In the more precise sense described in Carnielli, Coniglio and Marcos (2007), a de-
ductive system with a consequence relation ⊢ is identified as a logic of formal incon-
sistency when it meets the following criteria:

Definition 1. A deductive system is an LFI with respect to a negation ∼ if:

a there are Γ , ϕ, ψ such that Γ ,ϕ,∼ϕ ⊬ψ, and
b there is a set of formulae⃝(p) depending only on p such that:

• there are ϕ, ψ such that⃝(ϕ),ϕ ⊬ψ and⃝(ϕ),∼ϕ ⊬ψ
• for all Γ , ϕ, ψ, we have: Γ ,⃝(ϕ),ϕ,∼ϕ ⊢ψ

Long before the term was coined, logics of formal inconsistency had been described
in the literature. Earliest of these was Stanisław Jaśkowski’s discussive logic D2 of
(1948). Possibly most readily identifiable within the tradition itself is a family of
systems described by da Costa in (1974). In each of da Costa’s systems {Cn | 1≤ n},
the consistency connective is a defined notion corresponding to something like a
“depth” of consistency. In, e.g., C1, the formula ◦ϕ acts as a natural shorthand for
the formula ∼(ϕ ∧∼ϕ), i.e., a rejection of the claim that ϕ is a contradiction.

The central notion that explosion is a legitimate inference in consistent or classical
circumstances receives a very natural representation in C1—as well as other LFIs—as
the axiom scheme:

(bc1) ◦ϕ→ (ϕ→ (∼ϕ→ψ))

Moreover, each member of the hierarchy {Cn | 1≤ n} includes so-called propagation
axioms that assert that the consistency of two subformulae is necessarily inherited by
a complex formula counting them as subformulae:

(ca1) (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ψ)
(ca2) (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∨ψ)
(ca3) (◦ϕ ∧ ◦ψ)→ ◦(ϕ→ψ)

N.b. that when working with deductive systems in which ◦ is defined, the explicit
statements of these schema are tailored to the particular definition of ◦ and may
differ from system to system.
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Axiom (cc)0 and Verifiability 117

In the literature on LFIs, (bc1) and the propagation axioms (ca1–3) are joined
by a wide range of possible axiom schema, each serving as a formal representation
of some further property of consistency. Most important for the present investigation
are the schema (cc)n—first identified by Marcos in his axiomatization of the LFI mCi
found in (2008). The investigation in the present paper centers around a particular
instance of the schema in which n= 0, i.e., the axiom scheme (cc)0:

(cc)0 ◦◦ϕ

According to the canonical reading of the consistency connective, then, (cc)0 is read
as the statement that for any formula ϕ, the assertion that ϕ is consistent is itself
consistent.

Now, the axiom scheme (bc1) is an apparently perfect codification of the funda-
mental thesis motivating the development of LFIs and is therefore assumed nearly
universally in this setting. The adoption of (cc)0, on the other hand, is far less ubiq-
uitous. While it is a key ingredient in mCi, the axiom scheme fails to hold many of
the central logics of formal inconsistency. (cc)0—with “◦” suitably defined—fails to
be admissible in any of da Costa’s hierarchy of systems {Cn | 1≤ n}, for example.

While there is little discussion of the axiom (cc)0 in the canonical literature on
LFIs, we now proceed to make an investigation into the intuitive merits of the axiom
by looking to some extracanonical logics of formal inconsistency.

2. Halldén’s Logic of Nonsense

In general, logics of nonsense are deductive systems which aim to reconcile a theory of
deduction with the thesis that some statements are meaningless or nonsense. Where
the notion of meaninglessness is understood as the state in which a well-formed state-
ment has no corresponding truthbearer, such statements cannot be said to be true or
false. According to such theories, then, there exist inferential situations in which the
classical, bivalent logic championed by Gottlob Frege and Bertrand Russell is inade-
quate.

The specter of grammatical yet meaningless statements that are neither true nor
false is frequently encountered in philosophical contexts. For example, one type of a
purportedly meaningless statement is a so-called category mistake, e.g., a statement
such as “the square root of Socrates is irrational” in which a predicate (“the square
root of x is irrational”) is applied to an object (Socrates) in an apparently nonsensi-
cal fashion. The statement is apparently grammatical; whether it is meaningful is less
clear. It is arguably plausible to suggest that such statements are indeed nonsense—
grammatical yet non-significant—and thus to demand that a correct theory of de-
duction be flexible enough to give accounts of meaningless statements. Logics of
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nonsense profess to give such a correct theory. For the interested reader, Krystyna
Piróg-Rzepecka’s (1977) is a very good sourcebook cataloguing the formal details
and discussing the merits of the canonical systems of nonsense logic.

2.1. Halldén’s Logic of Nonsense

The first work on deduction explicitly aiming to provide a semantical analysis of
meaninglessness was Dmitri Bochvar’s (1938), in which Bochvar defined the propo-
sitional three-valued logic Σ and its subsystem Σ0 in first-order formulations. While
the topic of apparently meaningless statements was taken up by Whitehead and Rus-
sell in (1963), the solution posed was syntactical in nature, that is, meaningless state-
ments are uniformly dismissed as ungrammatical. In contrast, logics of nonsense posit
a semantical solution to the treatment of prima facie meaningless statements.

In his (1949), Sören Halldén independently introduces his own logic of non-
sense C that shares the truth-functional matrices with Σ. Halldén’s system differs
from Σ primarily with respect to the connectives considered to be primitive and in
Halldén’s (not uncontroversial) decision to include the semantical state correspond-
ing to meaninglessness among the designated values. Halldén, like Bochvar, considers
the standard truth-functional connectives in two modes: The “internal” connectives—
identified as those used in the Principia Mathematica—and the “external” connectives
that implicitly assert their meaningfulness.

As presented by Halldén, the language of C takes as primitive connectives the
meaningfulness operator and the “internal” connectives of negation and conjunc-
tion. Insofar as the “internal” versions of disjunction and the material conditional
are definable in the standard way, we include these connectives in our presentation.
Given a countable set of propositional atoms At, the language may be represented in
Backus-Naur form with p ∈ At:

ϕ ::= p | ∼ϕ | ◦ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ→ ϕ

Semantically, C employs a set of truth values VC = {t,n, f} (interpreted as corre-
sponding to “truth,” “nonsense,” and “falsity,” respectively) and designated values
DC = {t,n}. Halldén, like Bochvar, takes internal negation and conjunction as primi-
tive, but includes only the “meaningfulness” operator ◦ as a primitive external oper-
ator.

The many-valued semantics for C is represented by the following logical matrix:

Definition 2. The matrix MC is a tuple 〈VC,DC, f ∼C , f ◦C , f ∧C 〉 such that:

• VC = {t,n, f} is a set of truth values
• DC = {t,n} is a set of designated values
• the truth functions f ∼C , f ◦C , f ∧C are as follows:
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f ∼C f ◦C f ∧C t f n

t f t t t t f n

f t f t f f f n

n n n f n n n n

Truth functions for the connectives ∨ and→ may be defined from these matrices by the
usual definitions.

Semantical validity in C is understood as the preservation of designated values (i.e.,
the preservation of non-falsity) from premisses to conclusion with respect to all val-
uations.

The foregoing many-valued semantics for C reflect an assumption that there are
certain inferential situations in which the inference of detachment fails without qual-
ification. Suppose, for example, that a valuation v assigns the parameter p a value
of n and the parameter q the value of f. Then although the formulae p and p → q
will both take a designated value, q will not be designated, witnessing that in general
a formula ψ cannot be inferred from the set of premises {ϕ,ϕ → ψ}. In particular,
the inference fails precisely in those inferential situations in which a conditional in-
cludes a meaningless antecedent and a false consequent; in all other cases—i.e., those
that behave “classically”—detachment succeeds in preserving designated values from
premisses to conclusion. The existence of special cases in which the rule preserves
designated values corresponds to the validity of a restricted version of detachment
in C.

The cases in which the rule may be applied are distinguished by Halldén’s intro-
duction of the notion of a formula’s being covered.

Definition 3. An instance of a formula ϕ is said to be covered in a formula ψ if a)
ϕ is a subformula appearing in ψ and b) every instance of ϕ appearing in ψ appears
within the scope of the meaningfulness connective “◦.”

This semantical motivation informs the proof theory for C. From an axiomatic per-
spective, the syntactical consequence relation ⊢C can be given a standard, Hilbert-
style account. Let “ϕ ≡ ψ” be shorthand for the formula (ϕ → ψ)∧ (ψ→ ϕ). Then
consequence in C can be defined as follows:

Definition 4. The syntactic consequence relation ⊢C is defined so that Γ ⊢C ϕ holds
when there exists a proof of ϕ from premises in Γ by appealing to substitution instances
of the following axiom schema:

CL Standard axioms for classical propositional logic
C1 ◦ p ≡ ◦∼p
C2 ◦(p ∧ q) ≡ (◦ p ∧ ◦q)
C3 p→ ◦ p
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and by applying the following rules:

CR1 If ϕ and ϕ→ψ are theorems and every variable covered in ψ is
also covered in ϕ, then ψ is a theorem

CR2 If ϕ is a theorem and p ∈ At, then for all formulaeψ, ϕ[p :=ψ]
is a theorem

where “ϕ[p :=ψ]” is the formula in which instances of p appearing in ϕ are uniformly
replaced by the formula ψ.

During the first few decades of sustained study of logics of formal inconsistency,
the fact that Halldén’s C is in fact an LFI went unacknowledged; no mention of
Halldén is made, for example, in the historical remarks found in Carnielli, Coniglio,
and Marcos’ excellent handbook article (2007). It is only very recently that this fact
has been acknowledged; in (2016), Carnielli and Rodrigues mention en passant that
C is an LFI and Omori makes a more thorough formal investigation into this feature
in (2016). Insofar as we are interested in Halldén’s system qua LFI, the features of
C that lead it to be counted in this family are important to identify. In order to bring
these features to the fore, it will behoove us to explicitly—if succinctly—demonstrate
this fact.

We may easily provide an explicit demonstration thatCmeets the criteria outlined
in Definition 1:

Observation 1 (Carnielli, Rodrigues, Omori). C is an LFI with respect to ∼.

Proof. It may be easily confirmed that clause a is satisfied, as p,∼p ⊬ q in C. To verify
clause b, we let the set {◦ p} serve as our⃝(p) and note that for any ψ, if ◦ψ takes
a designated value, then either ψ or ∼ψ must be assigned a value of f.

From the short proof of Observation 1 we observe that, when C is viewed as an
LFI, Halldén’s unary meaningfulness connective “◦” plays the role of the familiar
consistency connective.

Despite this, it also must be conceded that the progenitors of logics of nonsense
and LFIs afforded distinct interpretations to the consistency connective. This divide
is perhaps exacerbated by the fact that proponents of logics of nonsense and pro-
ponents of LFIs both allow extraordinarily diverse ranges of applications for their
respective frameworks. The interpretations given to “◦” in the setting of logics of
nonsense include, for example, interpretations according to which ◦ϕ asserts the
syntactical well-formedness of the string of symbols ϕ (in Lennart Åqvist’s (1962))
or in which ◦ϕ indicates that there is a primitive recursive function calculating ϕ (an
implicit consequence of Stephen Kleene’s discussion of Halldén’s matrices in (1952).

The interpretations of “◦” in the LFI tradition are similarly diverse; in Carnielli,
de Amo, and Marcos’ (2000), “◦ϕ” corresponds to cases in which a database does
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not count both ϕ and “∼ϕ among its entries, does not include both “ϕ” and “∼ϕ.”
Despite the apparent heterogeneity of the proposed applications for the two frame-
works, there remains a great deal of convergence. The grounds for the identification
of Halldén’s interpretation consistency connective with the canonical interpretation
following da Costa is, consequently, not limited to the mutual satisfaction of Defini-
tion 1 by their constituent connectives. Rather, we can offer semantical and philo-
sophical evidence for their identification.

Despite the prima facie asymmetry between the terms “meaningfulness” and “con-
sistency,” on further inspection, the semantical behavior Halldén ascribes to “◦” ac-
cords with the canonical reading of ◦ as a mark of consistency. By freely identifying
the meaningful with the consistent, we are able to recognize the restriction Halldén
imposes on detachment to be a tacit recognition that inference in consistent situa-
tions differs significantly from inference in inconsistent situations. In other words, in
Halldén’s framework, the connective “◦” acts as a signpost reflecting when classical
inferences are admissible, mirroring the motivations expressed by da Costa. Indeed,
the infectiousness of nonsense and the propagation of consistency can be understood
as two sides of the same medal.

As Halldén observes, many of the theses concerning nonsense are made concrete
by theorems of C. In particular, each of the C1 axioms (ca1)–(ca3) are easily derived
from the axiom C2. Moreover, in virtue of Halldén’s treating the nonsense value n as a
designated value, the formula ◦ϕ is true in a model precisely when ϕ is “consistent”
in the sense that ϕ and ∼ϕ do not both hold. Semantically, then, the operator “◦” is,
quite literally, a consistency connective.

2.2. Meaningfulness and (cc)0

In contrast to the lack of a consensus with respect to the validity of (cc)0 the LFI
tradition, proponents of logics of nonsense have more or less taken its status for
granted. Preceding Halldén, an analogue of the thesis can be confirmed to hold of
Bochvar’s Σ (as “it is not meaningless that it is not meaningless that p”). In Halldén’s
wake, the same can be confirmed of the further logics of nonsense produced by, e.g.,
Lennart Åqvist in (1962), Krister Segerberg in (1965), and Peter Woodruff in (1973).
In Åqvist’s A, Segerberg’s D (and his E and F), and Woodruff’s intuitionistic DI,
notational variants of (cc)0—whether the notion of “meaningfulness” is primitive
or defined—can be shown to hold.

Now, the validity the axiom (cc)0 is one thing about which Halldén expressed
strong reservations and that the thesis should enjoy such constancy throughout the
many critical examinations of Halldén’s 1949 is curious. In contrast to his succes-
sors who picked up his project of developing logics of nonsense, Halldén is explicitly
suspicious of the validity of (cc)0:
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We will now take into consideration the possibility that the calculus C. . . is
not wholly correct. According to it all propositions of the type p is meaningful
should be meaningful. This is a rather far-reaching assertion which should
be met with some doubt. (Halldén 1949, p.56)

While considering the theoremhood of the formula ◦◦ϕ, Halldén complements C
by defining a weaker calculus K. Although the full details are outlined in (1949), K
is defined by imposing a stronger restriction that detachment holds for a sentence
ϕ → ψ if every variable appearing in ψ within the scope of n many “◦”s appears
within the scope of at least n many instances of the symbol “◦” in ϕ. Notably, as
Halldén shows, (cc)0 is not a theorem ofK. This calculus is defined proof-theoretically
and no semantics are offered for it.

Despite his reservations, Halldén concedes that he “know[s] no conclusive rea-
son for the falsity of ‘◦◦ p’.”(1949, p.56) Stopping short of providing a concrete coun-
terexample or philosophical picture in which (cc)0 should fail, Halldén merely specu-
lates that counterexamples could emerge if “◦” is taken to be “systematically ambigu-
ous,” so that “we may interpret the two occurrences of ‘◦’ in the discussed formula as
expressing two different concepts of meaningfulness.” (1949, p.57) Despite Halldén’s
omission of counterexamples, the context of Halldén’s analysis indeed appears fertile
enough to bring the validity of (cc)0 into question.

The range of philosophical matters Halldén intends to treat is quite diverse, in-
cluding the analysis of vague predicates and the semantics of the ethical theory of
emotivism. Chief among these proposed applications, however, is Halldén’s sugges-
tion that C adequately models the species of meaninglessness yielded by a central
tenet in the school of logical positivism: The empiricist criterion of meaning.

Each among the cluster of theories of meaning that fall under this label stipulates
that a necessary condition for the meaningfulness of a statement is that it can be
verified by either mathematical or empirical means. One of the archetypal characteri-
zations of the empiricist criterion of meaning is found in Carl Hempel’s assertion that
a statement is meaningful

only if it is either (1) analytic or self-contradictory or (2) capable, at least in
principle, of experiential test. (Hempel 1950, p.108)

Famously, a number of claims—e.g., theological and metaphysical theses—fail to
meet these criteria and were judged by the positivists to be meaningless. Rudolph
Carnap—an important figurehead in the development of this school—provided the
case of category mistakes as a salient example of a statement (or a pseudo-statement)
meaningless in virtue of failing to meet this criterion. For example, the sentence “Cae-
sar is a prime number,” Carnap asserts, is meaningless in virtue of the fact that the
predicate “x is a prime number” can “be neither affirmed nor denied of a person.”
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(Carnap 1931, p.68) While, perhaps, one can provide a meaningful test of the state-
ment “Caesar is a general”—by, say, consulting historical records—no meaningful test
of the primeness of Caesar can be articulated, much less put into practice.

On this interpretation of C, “◦ p” is read as “there is an experiential means of
verifying (or falsifying) the statement p,” and the validity of (cc)0 is equivalent to a
statement along the following lines:

For any sentence p, there exists a method to verify whether or not there exists a
method to verify p.

So—on the Halldén-style reading of LFIs—the existence of statements whose verifi-
cation conditions cannot in principle be verified is equivalent to the failure of (cc)0.
In this setting, I would like to consider an apparent counterexample to (cc)0.

2.3. A Plausible, Carnapian Counterexample

To provide a case in which (cc)0 appears to fail, we consider another of Carnap’s il-
lustrations. Initially, Carnap carefully distinguishes between several species of mean-
inglessness. In particular, Carnap asserts that the type of meaninglessness triggered
upon asserting a category mistake—the semantical category to which “Caesar is even”
belongs—is distinct from the sort of meaninglessness that emerges when one at-
tempts to employ a priori nonsensical predicates, an illustration of which Carnap
provides by the example of a predicate “x is teavy.” According to the Carnapian line,
the artificiality of the term “teavy” is so great that in principle we are unable to
envision—much less engineer—the sort of criterion that could be employed in an
empirical test of a sentence in which “teaviness” appears. Consequently, the posi-
tivist argument suggests that with the possibility of an experiential test eliminated, a
statement like “the dog is teavy” must be rejected as nonsense.

There remains an important distinction between the cases of “Caesar is prime”
and “Caesar is teavy,” as Carnap concedes. The term “teaviness” is unlike the term
“primeness” to the extent that “teaviness” is utterly inscrutible. It is the alien nature
of the predicate that leads to Carnap to reject the possibility of any method to verify
whether the sentence “the dog is teavy” holds. The case of “teaviness” is especially
salient, as its artificiality appears to yield not only the meaninglessness of statements
such as “the dog is teavy,” but also seems to induce the very type of second-order
unverifiability that calls (cc)0 into question.

To bring this into the light, let us consider the procedure by which we conclude
that the assertion of the meaningfulness of the statement “Caesar is a prime number”
is itself a meaningful statement. In the positivist’s language, we may decode this
sentence as the statement asserting that there is some experiential test capable of
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determining whether or not there exists an experiential test verifying the truth of
“Caesar is a prime number.” The positivist position, of course, is that there is no such
test and, more importantly, that this is demonstrably so by appeal to the following
experiential test: The first step is to determine the type of the predicate “. . . is a prime
number” (or, in Halldén’s terminology, to determine its v-range) and then determine
the type of the name “Caesar.” Having successfully extrapolated the types of these
terms, we note that the predicate “. . . is a prime number” applies only to natural
numbers, a class of which the referent of “Caesar” is not a member. Because of the
type mismatch between “Caesar” and “. . . is a prime number,” we reason that there
can be no experiential test of the statement and we may conclude that the complex
sentence is meaningless.

But in making this experiential test explicit, “primeness” and “teaviness” are re-
vealed to be markedly different beasts. Within the positivist framework, the above
algorithm presupposes that one is capable of deducing the specific type of the relevant
predicate, that is, of determining the predicate’s second-order properties. Because we
are so well-acquainted with the notion of primeness, evaluating the meaningfulness
of “Caesar is a prime number” is on its face a trivial exercise. In contrast, the term
“teaviness” does not correspond to a unique property and, consequently, the predicate
“. . . is teavy” cannot be verified to be of any particular type. In a strong sense, any claim
of the form “the predicate ‘. . . is teavy’ is of such-and-such a type” is a second-order
category mistake. Hence, we are in principle unable to surmise the type of this pred-
icate and are unable to effect the procedure that would tell us whether “Caesar is
teavy” is or is not a category mistake, i.e., the matter of whether or not Caesar is
teavy is not verifiable. But this is to say that the matter of whether or not “Caesar is
teavy” is verifiable is not itself verifiable.

One may object that the Carnapian line explicitly gives an effective means of
verifying that there can be no experiential test of “Caesar is teavy,” and thus, that
the statement is meaningless. And indeed, this procedure shows that it is not true
that such an experiential test can be given. In the context of meaningless statements,
however, there is an important distinction between a statement’s untruth from its
falsity, e.g., that “Caesar is prime” is not true does not entail its falsity. Hence, to
successfully apply the empiricist criterion of meaning to draw the conclusion that
“Caesar is teavy” is meaningless requires that we have shown the stronger condition
that it is false that such an experiential test exists.

3. (cc)0 in Priest’s Cointuitionistic Logic daC

We now turn our attention to a further extracanonical logic of formal inconsistency:
The cointuitionistic logic daC described by Graham Priest in (2009). The calculus is a
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fragment of Cecylia Rauszer’s propositional Heyting–Brouwer logic (HB), developed
in, e.g., (1974) and (1977) (and, hence, much of what follows applies to HB as well
as to daC). HB enriches propositional intuitionistic logic (Int) by the addition of
coimplication and conegation connectives, symbolized in this paper by “−<” and “+.”
As coimplication and conegation are in a sense dual to implication and negation, the
formal aspects of HB have proven to be interesting objects of study. In (2009), Priest
isolated the {+,∧,∨,→}-fragment of HB and offered it as a sort of intuitionistic logic
with a “dualised” negation.

Priest demonstrated that the system is a conservative extension of da Costa’sCω—
motivating Priest’s use of the nomenclature “da Costa logic.” Although Cω is not
itself an LFI, it is described as a “limit” of such systems; hence, it is a natural task
investigate whether or not daC is a logic of formal inconsistency. Priest leaves this
matter unaddressed, but the question is taken up in Ferguson (2014), in which daC
(and, consequently, HB) is shown to be an LFI in which the consistency connective
is definable.

3.1. Priest–da Costa Logic as an LFI

As stated, the language of daC exchanges the familiar intuitionistic negation for a
paraconsistent negation, which will be represented here as “+.” More precisely, in
Backus-Naur form, the language of daC is as follows:

ϕ ::= p | +ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ→ ϕ

Unsurprisingly, the Kripke semantics for daC hew to the familiar semantics for Int.
Recall that a Kripke frame F= 〈W, R〉 is a set of points W and a Kripke model is a

frame together with a valuation v mapping atomic formulae p0, p1, . . . to subsets of
points such that for any atom p, if w ∈ v(p) and wRw′, then w′ ∈ v(p). More formally,
we have the following definition:

Definition 5. A daCmodel is a tuple 〈W, R, v〉where W is nonempty and R is a reflexive,
transitive, and antisymmetric3 binary relation on W. v is a function from At to ℘(W )
obeying the heredity constraint that if w ∈ v(p) and wRw′, then w′ ∈ v(p).

Notably, this property of heredity for truth also entails that whenever w /∈ v(p) and
w′Rw, then w′ /∈ v(p).

The model determines a forcing relation, which we properly define as a relation
holding between a point in a model and a formula, e.g., M, w ⊩ ϕ, though when the
model is clear from context, this will be abbreviated to w ⊩ ϕ. This forcing relation
is defined recursively as follows:
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• w ⊩ p iff w ∈ v(p) for atoms p
• w ⊩ +ϕ iff there is some w′ such that w′Rw for which w′ ⊮ ϕ
• w ⊩ ϕ ∧ψ iff w ⊩ ϕ and w ⊩ψ
• w ⊩ ϕ ∨ψ iff w ⊩ ϕ or w ⊩ψ
• w ⊩ ϕ→ψ iff at all w′ with wRw′, if w′ ⊩ ϕ then w′ ⊩ψ

Validity of an inference Γ ⊨daC ϕ is once again just the familiar intuitionistic notion,
i.e., that the inference is valid when for all daC models and points w, if all formulae
in Γ are true at w, then ϕ, too, is true at w. In particular, we will say that an inference
Γ ⊨ ϕ is valid with respect to some class of models if this can be said for each point
and each model in that class.

Two points about definable connectives in daC should be made. For one, the full
system HB of which daC is a fragment includes a coimplication operator “−<” with
the following truth condition:

• w ⊩ ϕ−<ψ iff there is a w′ such that w′Rw, w′ ⊩ ϕ, and w′ϕ ⊮ψ
In case that we have a truth constant ⊤ that is true at all worlds by fiat, then these
truth conditions clearly show that cointuitionistic negation is definable so that
+ϕ =d f ⊤−< ϕ.

Secondly, as shown in Priest (2009), daC can be thought of as a conservative
extension of intuitionistic logic to the extent that intuitionistic negation is definable.
Recall the truth condition for the intuitionistic negation “∼”:

• w ⊩∼ϕ iff for all w′ such that wRw′, w′ ⊮ ϕ
Then it is easy to confirm that a unary connective “∼̇” defined by the scheme ∼̇ϕ =d f
ϕ→ +(ϕ ∨+ϕ) faithfully captures the behavior of intuitionistic negation.

A Hilbert-style proof theory for daC was first described by Castiglioni and Ertola
in (2014), which is presented here.4

Definition 6. The syntactic consequence relation ⊢daC is defined so that Γ ⊢daC ϕ holds
when there exists a proof of ϕ from premises in Γ by appealing to substitution instances
of the following axiom schema:

Int+ Standard set of axioms for positive intuitionistic logic
EM p ∨+p

and by the application of the following rules:

dR1 from ∅ ⊢daC p ∨ q, infer ∅ ⊢daC +p→ q
dR2 from ϕ and ϕ→ψ infer ψ

After having established that daC is an LFI, one of the contributions of Ferguson
(2014) was to explore the sense in which daC and its extensions (“sdc-logics”) ex-
hibit the standard features discussed in the literature of LFIs. In order to succinctly
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describe the behavior of the definable consistency connective, we first review some
perspicuous notation:

Definition 7. For a Kripke frame 〈W, R〉 and a w ∈W, we employ the following defini-
tions:

• w↑ = {w′ ∈W | wRw′}
• w↓ = {w′ ∈W | w′Rw}
• w↘ =
⋃

{w′↓ | w′ ∈ w↑}

The definition of the consistency connective described in Ferguson (2014) identifies
the formula ◦ϕ with ∼̇(ϕ ∧+ϕ). Let the notation “v(ϕ)” denote the set of points at
which formulaϕ is true. Then, by considering the truth condition of the definiens, the
defined consistency operator ◦ can be provided with the following forcing conditions:

• w ⊩ ◦ϕ iff either

¨

w↘ ⊆ v(ϕ), or

w↘ ∩ v(ϕ) =∅

Then in Ferguson (2014) the following observation is proven:

Observation 2. daC is an LFI with respect to +

One interesting fact is that the standard propagation axioms break apart. It is shown
in Ferguson (2014) that propagation holds over the extensional contexts of conjunc-
tion and disjunction:

Observation 3. (bc1), (ca1), and (ca2) are theorems of daC

In contrast, propagation fails to hold for the intensional connective of implication:

Observation 4. (ca3) is not valid in daC

We can observe here that (cc)0, too, fails to hold in daC:

Observation 5. (cc)0 is not valid in daC

Proof. Consider an arbitrary frame 〈W, R〉 including points w, w′, w′′ ∈ W such that
wRw′ and wRw′′ for which w′↑ ∩ w′′↑ = ∅. We construct a valuation on 〈W, R〉 wit-
nessing that (cc)0 is invalid in such a logic.

Define v in such a way that v(p) = w′↑ for some fixed atom p. Because w′↑ and
w′′↑ are disjoint, v(p)∩w′′↑ is empty, entailing that v(p)∩w′′↘ is also empty. Hence,
w′′ ⊩ ◦ p. However, at w′, both w′ ⊩ p and w′ ⊩ +p hold, so w′ witnesses that
∼̇(p ∧+p)—i.e., ◦ p—must fail at w. Because w ⊮ ◦ p and wRw′′, we also conclude
that w′′ ⊩ +◦ p.

So wRw′′ and w′′ ⊩ ◦ p ∧ +◦ p, whence we infer that w ⊮ ∼̇(◦ p ∧ +◦ p), i.e.,
w ⊮ ◦◦ p.
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That both (ca3) and (cc)0 fail to hold in daC suggests that there exists some connec-
tion between them. As we will see, the fates of the two axiom schema are closely tied
in this system. Before examining this relationship, we will first discuss the matter of
interpreting “◦” in daC.

3.2. Consistency-as-Verifiability in daC

Unlike intuitionistic logic, whose formalization was ancillary to the philosophical as-
sumptions underlying intuitionistic practice, daC has given resistance to a natural
interpretation. This is somewhat expected due to the fact that daC is a fragment
of HB. Rauszer’s (1980) describes the motivation for studying HB only in terms of
the elegance of its formal aspects. She notes that from the investigations of Rauzer
(1974) and (1977), the system is best motivated by model-theoretic concerns:

[I]t appeared that an intuitionistic logic with two negations and two implica-
tions, dual to itself, would have a more elegant algebraic and model-theoretic
theory than an ordinary intuitionistic logic. (Rauzer 1980, p.5)

For his part, Priest omits any discussion of interpreting the paraconsistent negation of
daC. Interpreting the dual intuitionistic connectives has historically been more com-
plicated than the intuitionistic connectives. It is on its face difficult to extend, for ex-
ample, the Brouwer-Heyting-Kolmogorov interpretation to the case ofHB—and thus,
to daC (although see the interpretation provided by Heinrich Wansing in (2010). In
his study of the general case of the dual intuitionistic connectives in (1998), Frank
Wolter concedes as much. Recalling that cointuitionistic negation + is definable in
HB as ⊤−< ϕ, Wolter writes:

We do not see however a natural interpretation of −< in terms of the inter-
pretation of Int as the logic of constructive proofs. (Wolter 1998, p.384)

However, as Wolter points out, the interpretation of Andrzej Grzegorczyk of intu-
itionistic logic as a logic of scientific research in (1964) is far more amenable to the
task of interpreting dual intuitionistic operations, and may be extended naturally to
the dual intuitionistic negation.

Grzegorczyk works with the following intuitive description of scientific research:

Scientific research (e.g. an experimental investigation) consists of the suc-
cessive enrichment of the set of data by new established facts obtained by
means of our method of inquiry. When making inquiries we question Na-
ture and offer her a set of possible answers. Nature chooses one of them.
(Grzegorczyk 1964, p.596)
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The formal picture becomes sharper as Grzegorczyk proceeds to suggest that “scien-
tific research may be conceived as a triple R= 〈J ,o, P〉,” (1964, p.596) where J is the
set of all potential experimental data, o represents a researcher’s initial information,
and P represents possible paths along which the research can unfold.

Wolter again suggests that coimplication—and, implicitly, the paraconsistent
negation of daC—enjoy an entirely natural interpretation in the context of scientific
research.

[F]or the interpretation of Int as the logic of scientific research in the sense
of Grzegorczyk [cf. (1964)], the connective−< has a clear meaning. (Wolter
1998, p.384)

This “clear meaning” works for both coimplication and the paraconsistent negation
of daC. Wolter’s adaptation of the Grzegorczyk-style interpretation of coimplication
is that “truth of ϕ−<ψ at a point x means that at some moment in the past (of x) ϕ
was known while ψ was unknown.” (Wolter 1998, p.354) It follows, on this picture,
that to assert a conegated formula +ϕ means simply that ϕ was not included among
a researcher’s (or among some researchers’) initial information, i.e., o. This temporal
picture is reinforced by Piotr Łukowski’s translation of the connectives of HB into the
tense logic KtT4 described in (1996), in which “+ϕ” is read as “ϕ was at some past
point false.” Let us now consider how this Grzegorczyk–Wolter-style interpretation
treats the consistency connective.

In a strong sense, intuitionistic logic plays a the role of an oracle in daC to the
extent that whenever ϕ is provable in Int, +ϕ is unsatisfiable in daC, i.e., +ϕ cannot
be asserted without triviality. Likewise, for intuitionistic theorems ∼ϕ, the assump-
tion of ϕ as a hypothesis triggers triviality in daC. We enjoy paraconsistency with
respect to some wide field of propositions—empirical statements of the sciences, for
example—but there remain propositions for which inconsistency is catastrophic. If
we think along Jaśkowskian lines, a collection of individual researchers embarking
on a joint investigation may disagree with respect to, e.g., political, empirical, or
moral assertions but there must be unanimity in the case of what is logically—that
is, intuitionistically—demonstrable.

In this sense, intuitionistic provability bounds reasoning in Priest–da Costa logic.
The reasoner in daC enjoys the ability to hold inconsistent premises without trivial-
ity so long as one respects intuitionistic demonstrations, that is, within the bounds
allowed by Int. The consistency connective, analyzed in this way, again allows an
interpretation of consistency-as-verifiability. Rehearsing the Grzegorczyk–Wolter in-
terpretation, the assertion of a formula ◦ϕ at some stage in an investigation is tan-
tamount to a type of decidability or verifiability in principle:
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◦ϕ holds iff

⎧

⎪

⎨

⎪

⎩

there have never—and will never be—any doubts about

the truth of ϕ, or

there will never be any confirmation of ϕ.

In other words, the truth of a formula ◦ϕ is to say that the rules of the investigation
stipulate—with the force of logic—that there can be no disagreement concerning ϕ.

This interpretation of the consistency connective in daC is underscored by its rela-
tionship with the intuitionistic axiom of the principle of weak excluded middle. Because
of the definability of intuitionistic negation within daC, the standard extraintuition-
istic theses—and the superintuitionistic logics that they determine—are reflected in
the structure of extensions of daC. Hence, we have a defined version of this axiom:

WEM∼̇ ∼̇p ∨ ∼̇∼̇p

The principle of weak excluded middle, although first considered axiomatically by
V. A. Jankov in (1968), was analyzed in the context of intuitionistic mathematics
by L. E. J. Brouwer himself, as a principle of testability:

Another corollary of the simple principle of the excluded third is the sim-
ple principle of testability saying that every assignment τ of a property to a
mathematical entity can be tested, i.e., proved to be either non-contradictory or
absurd.(Brouwer 1983, p.92)

In the broader field of intuitionistic logic, a formula ϕ is said to be testable in a
theory precisely when ∼ϕ ∨∼∼ϕ is provable in that theory. Now, evidence for the
interpretation of ◦ as a type of verifiability can be found in its hypertestability, i.e.,
that if ◦ϕ is provable in a theory, then ϕ is testable in that theory:

Observation 6. For a daC theory T , if T ⊢daC ◦ϕ then T ⊢daC ∼̇ϕ ∨ ∼̇∼̇ϕ, i.e., ϕ is
testable in T .

Proof. We prove that ◦ϕ→ (∼̇ϕ∨∼̇∼̇ϕ) is a theorem of daC. Suppose for contradic-
tion that in some model, w ⊩ ◦ϕ—i.e., w ⊩ ∼̇(ϕ ∧+ϕ)—although w ⊮ ∼̇ϕ ∨ ∼̇∼̇ϕ.
Then w ⊮ ∼̇ϕ and w ⊮ ∼̇∼̇ϕ.

From this, we draw two inferences. In the first case, because w ⊮ ∼̇ϕ, there exists
a point w′ such that wRw′ at which w′ ⊩ ϕ. In the second case, because w ⊮ ∼̇∼̇ϕ,
there exists a point w′′ accessible from w such that w′′ ⊩ ∼̇ϕ and, consequently, such
that w′′ ⊮ ϕ.

By the property of heredity, we know that w′ ⊩ ∼̇(ϕ ∧+ϕ) as well, whence we
infer that w′ ⊮ ϕ ∧ +ϕ and that either w′ ⊮ ϕ or w′ ⊮ +ϕ. Both cases lead to
contradiction. The first case directly contradicts the observation that w′ ⊩ ϕ. In the
second case, that wRw′ entails that w ⊩ ϕ and by heredity, this means that w′′ ⊩ ϕ,
contradicting the earlier observation that w′′ ⊮ ϕ.
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However, this notion of consistency-as-verifiability is not equivalent to testability.

Observation 7. The statement “◦ϕ” is strictly stronger than the statement that ϕ is
testable.

Proof. Consider a simple Kripke frame with two points w and w′ such that wRw′, and
consider a model such that v(p) = {w′}. Then as w′ ⊩ p, w′ ⊩ ∼̇∼̇p and, consequently,
w′ ⊩ ∼̇p ∨ ∼̇∼̇p, i.e., p is testable at w′. However, because w ⊮ p, w′ ⊩ +p, entailing
that w′ ⊩ p ∧+p. This requires that w′ ⊮ ∼̇(p ∧+p), i.e., that w′ ⊮ ◦ p.

So, that ◦ϕ is true corresponds toϕ’s satisfying some epistemic property that stronger
than intuitionistic testability; it is a type of hypertestability.

Despite the inequivalence of the consistency of a formula ϕ and its testability,
there remains a surprising equivalence between the consistency of the consistency of
ϕ and its testability, that is, an equivalence between (cc)0 and the principle of weak
excluded middle.

3.3. The Convergence of (cc)0 and Testability

The aforementioned principle of weak excluded middle WEM∼̇ plays a particularly
important role during the discussion daC as an LFI in Ferguson (2014). Intuition-
istically, the axiom scheme corresponds to a superintuitionistic logic known as the
“logic of weak excluded middle” or “Jankov’s logic.” In Ferguson (2014), the name
“KC” was employed, so that the corresponding extension of daC was called “KC∼̇.”

Formally, we define this system by using the notation “L ⊕ A” to indicate the
deductive system corresponding to a logic L enriched with axiom A and closed under
the rules of L.

Definition 8. KC∼̇ = daC⊕WEM∼̇

In order to semantically characterize KC∼̇, we recall a well-known frame condition
of forward convergence:

Definition 9. A frame 〈W, R〉 is forward convergent if for all w, u, v ∈W:

if wRu and wRv then there is a y ∈W such that uRy and vRy

We will say that a model is forward convergent if its underlying frame is forward
convergent.

Now, in the case of superintuitionistic logics, KC itself is characterized by for-
ward convergent models for intuitionistic logic.5 As intuitionistic negation is defin-
able in Priest–da Costa logic, the arguments immediately transfer to the case of KC∼̇,
whence:
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Observation 8. Γ ⊢KC∼̇ ϕ iff the inference Γ ⊨ ϕ is valid with respect to the class of
forward convergent models.

We are now able to articulate an interesting convergence between the superintu-
itionistic principle of weak excluded middle, the propagation axiom (ca3), and the
axiom (cc)0. Over daC, the latter two theses—central theses in the context of logics
of formal inconsistency—are equivalent not only to each other, but also to WEM∼̇.

To show this, we employ the method of canonical models, recalling the following
from Priest(2009) or Ferguson (2014):

Definition 10. For a logic L extending daC, the canonical model ML is a model in
which:

• W = {Γ | Γ is a prime and non-trivial L theory}
• R is the subset relation
• for all atoms p, v(p) = {Γ ∈W | p ∈ Γ }

As a theory in an extension of daC is a fortiori a daC theory, the standard proofs
of appropriateness of a canonical model—such as that described in Priest (2009)—
apply immediately to any normal extension of daC.

Observation 9. For a logic L extending daC for which the rules dR1 and dR2 are
admissible, we have the following in the canonical model ML:

Γ ⊩ ϕ iff ϕ ∈ Γ

Now, let us consider two prima facie novel sdc-logics by adding (ca3) and (cc)0,
respectively, as axiom schema. These will turn out to be merely alternative axioma-
tizations for KC∼̇, but this fact must be established.

Hence, we will independently define the following extensions of daC:

Definition 11. The logics daC⊕ (cc)0 and daC⊕ (ca3) are defined as the extensions
of daC by the axiom schema (cc)0 and (ca3), respectively.

To show the equivalence, we first prove soundness of syntactic consequence in daC⊕
(cc)0 with respect to the class of forward convergent models:

Observation 10. If Γ ⊢daC⊕(cc)0 ϕ, then the inference Γ ⊨ ϕ is valid with respect to the
class of forward convergent models.

Proof. Clearly, as the rules and axioms of daC hold for all Kripke models, they hold
a fortiori for forward convergent models. The problem, then, reduces to showing the
validity of (cc)0 with respect to such models.
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Suppose for contradiction that there exists a point w in a forward convergent
model such that w ⊮ ◦◦ϕ. Then—because the formula is shorthand for the formula
∼̇(◦ϕ ∧ +◦ϕ)—there exists a point w′ such that wRw′, w′ ⊩ ◦ϕ, and w′ ⊩ +◦ϕ.
From the latter of these observations, we infer the existence of a point w′′ such that
w′′Rw′ at which w′′ ⊮ ◦ϕ. That ◦ϕ fails at w′′ itself entails the existence of a point
w′′′ such that w′′Rw′′′ and both w′′′ ⊩ ϕ and w′′′ ⊩ +ϕ.

That the frame is by hypothesis forward convergent yields a contradiction. We
have w′—at which ◦ϕ holds—and w′′′—at which both ϕ and +ϕ hold—such that
both w′′Rw′ and w′′Rw′′′. By forward convergence, we have a point u ∈ (w′↑ ∩w′′′↑).
Because w′ ⊩ ◦ϕ, neither ϕ nor +ϕ may hold at u. But by the heredity condition,
that w′′′Ru entails that u ⊩ ϕ and u ⊩ +ϕ.

By employing the method of canonical models, completeness may be established by
showing the canonical frame for daC⊕ (cc)0 to be forward convergent:

Observation 11. If the inference Γ ⊨ ϕ is valid with respect to the class of forward
convergent models, then Γ ⊢daC⊕(cc)0 ϕ.

Proof. We begin by showing that the canonical model MdaC⊕(cc)0 is forward con-
vergent. Suppose otherwise for contradiction. Then there exists a non-trivial, prime
theory ∆ with non-trivial, prime extensions Γ and Θ such that the deductive closure
of Γ ∪Θ is trivial. By compactness, there exist formulae ϕΓ ∈ Γ ∖∆ and ϕΘ ∈ Θ∖∆
such that ∆,ϕΓ ,ϕΘ ⊢ ⊥ in daC⊕ (cc)0.

Now, for any non-trivial extension Γ ′ ⊇ Γ , also Γ ′,ϕΘ ⊢ ⊥, whence we easily infer
that Γ ,ϕΘ,+ϕΘ ⊢ ⊥ and, consequently, that Γ ⊢ (ϕΘ ∧+ϕΘ)→⊥, i.e., that Γ ⊢ ◦ϕΘ.

On the other hand, as ∆ ⊆ Γ , also ϕΘ /∈ ∆ and, because ϕΘ ∨ +ϕΘ ∈ ∆, by
primeness, we infer that +ϕΘ ∈ ∆. Because Θ ⊇ ∆, also +ϕΘ ∈ Θ, whence ϕΘ ∧
+ϕΘ ∈ Θ. By the non-triviality of Θ, ◦ϕΘ cannot thereby be included in Θ, i.e.,
◦ϕΘ /∈ Θ. Because ∆ ⊆ Θ, also ◦ϕΘ /∈ ∆ and, because ◦ϕΘ ∨ +◦ϕΘ ∈ ∆ and
primeness of ∆, we infer that +◦ϕΘ ∈∆. As Γ is an extension of ∆, this entails that
+◦ϕΘ ∈ Γ as well.

Because ◦ϕΘ ∈ Γ and +◦ϕΘ ∈ Γ , also ◦ϕΘ∧+◦ϕΘ ∈ Γ . But because ◦◦ϕΘ is by
hypothesis a member of all theories in the model, this entails that⊥ ∈ Γ , contradicting
the assumed nontriviality of Γ .

Hence, whenever Γ ⊬daC⊕(cc)0 ϕ, we can extend Γ to a prime theory Γ ⋆ such that
ϕ /∈ Γ ⋆. Then the canonical model MdaC⊕(cc)0 provides us an instance of a forward
convergent model witnessing that the inference Γ ⊨ ϕ fails.

As a corollary, we infer that:

Observation 12. daC⊕ (cc)0 is characterized by the class of models based on forward
convergent frames.
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Now, we repeat the same steps to characterize consequence in the system daC⊕(ca3).
In Ferguson (2014), the validity of (ca3) in KC∼̇ was proven. Given the character-
ization of KC∼̇, this gives us the soundness of daC⊕ (ca3) with respect to forward
convergent models:

Observation 13. If Γ ⊢daC⊕(ca3) ϕ, then the inference Γ ⊨ ϕ is valid with respect to the
class of forward convergent models.

Finally, completeness for daC⊕ (ca3) follows from a canonical model argument:

Observation 14. If the inference Γ ⊨ ϕ is valid with respect to the class of forward
convergent models, then Γ ⊢daC⊕(ca3) ϕ.

Proof. Suppose for contradiction that the canonical model MdaC⊕(ca3) is not forward
convergent. As before, this hypothesis commits us to the existence of a non-trivial,
prime theory ∆ with extensions Γ and Θ such that any prime theory extending Γ ∪Θ
is trivial.

As before, we have a ϕΘ ∈ Θ such that Γ ,ϕΘ ⊢ ⊥. From this, we may infer
that ◦ϕΘ ∈ Γ . Additionally, by selection of ⊥, we are able to infer that ◦⊥ ∈ Γ and,
therefore, that ◦ϕΘ∧◦⊥ ∈ Γ . As all instances of (ca3) are included in Γ , by deductive
closure, we infer that ◦(ϕΘ → ⊥) ∈ Γ . By the assumption of the non-triviality of Γ ,
this requires that (ϕΘ→⊥)∧+(ϕΘ→⊥) /∈ Γ .

However, our hypothesis that Γ ,ϕΘ ⊢ ⊥ holds also entails that Γ ⊢ ϕΘ → ⊥.
However, this cannot be said for ∆ itself. Were ϕΘ → ⊥ ∈ ∆, because Θ ⊇ ∆, it
would follow that ϕΘ→⊥∈ Θ. But because ϕΘ ∈ Θ, deductive closure would entail
that ⊥ ∈ Θ, contradicting the assumption of Θ’s non-triviality. So ϕΘ → ⊥ /∈ ∆. By
hypothesis, though, (ϕΘ → ⊥) ∨+(ϕΘ → ⊥) ∈ ∆, and by primeness, we infer that
+(ϕΘ→⊥) ∈∆. Because Γ ⊇∆, also +(ϕΘ→⊥) ∈ Γ , whence (ϕΘ→⊥)∧+(ϕΘ→
⊥) is a member of the theory Γ , contradicting our earlier inference.

Again, we finish by noting that whenever Γ ⊬daC⊕(ca3) ϕ, MdaC⊕(ca3) includes a
point extending Γ at which ϕ is not true, witnessing that the inference Γ ⊨ ϕ does
not hold with respect to the class of forward convergent models.

Insofar as the systems KC∼̇, daC⊕ (cc)0, and daC⊕ (ca3) are characterized by pre-
cisely the same class of models, they share precisely the same counterexamples.
Hence, we infer the following corollaries:

Corollary 1. The logics KC∼̇, daC⊕ (cc)0, and daC⊕ (ca3) are equivalent.

Corollary 2. WEM∼̇, (cc)0, and (ca3) are equivalent over daC.

The coincidence of the axiom schema WEM∼̇, (ca3), and (cc)0 in daC is extraor-
dinarily suggestive. These principles, on their faces, appear to encode very distinct
notions:
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• In its primitive form, WEM∼̇ was considered as a principle of testability by
Brouwer, so that weak excluded middle holds of a sentence when it is either
demonstrably absurd or demonstrably unfalsifiable. Importantly, this state-
ment does not appeal to the paraconsistent negation of daC and, therefore,
is independent of the matter of interpreting “+.”

• The logic daC allows propagation of consistency through extensional contexts
only, that is, through conjunction and disjunction. The axiom (ca3) corre-
sponds to the propagation of consistency through intensional contexts as well
and its inclusion indicates a sort of total propagation.

• Given the reading of “◦” as a type of verifiability (or hypertestability), (cc)0
is the assertion that the verifiability of any formula is itself verifiable. Alter-
nately —according to the Grzegorczyk–Wolter-style analysis—the adoption
of (cc)0 corresponds to scientific investigations in which there is no disagree-
ment concerning what may or may not be disagreed upon. As (cc)0 also in-
cludes ◦◦◦ϕ, ◦◦◦◦ϕ, and so forth, this also may be understood as a type of
common knowledge among researchers concerning the rules—or scope—of
a Grzegorczyk-type investigation.

The equivalence to weak excluded middle also indicates that the operator “◦” may
admit a natural interpretation in standard intuitionistic logic; whether or not there
the consistency operator may be fruitfully imported to Int itself is intriguing, but set
aside for now.

4. Concluding Remarks: The Upshot for the LFI Community

As described by da Costa in (1974), the notions of “classicality” or “consistency” are
too general to conclusively decide many facts concerning the semantic behavior of
the operator “◦,” and hence, to decide the validity or invalidity of many axiom schema
in which it appears. In particular, the inchoate notion of “classicality” provides little
evidence for or against the status of axiom (cc)0. Even interpretations that precisify
the notion of “consistency”—such as the interpretation in “evolutionary databases” in
Carnielli, Marcos and de Amos (2000)—are inconclusive. E.g., the status of (cc)0 in
this setting stands or falls with whether one should allow databases in which both ◦ϕ
and ∼◦ϕ may appear, but there appears to be little evidence to settle this normative
question.

It may be worthwhile to ask whether the model theories for the more canonical
LFIs can be reevaluated in this light. The most commonly encountered semantical
treatments—e.g., bivaluations, possible translation semantics, and Nmatrices—share
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a strongly non-deterministic character, in which the evaluation of a complex formula
is informed by—but not wholly determined by—the evaluation of its subformulae. Al-
though the semantics for C and daC are wholly compositional, connections between
consistency-as-verifiability and non-deterministic treatments of the consistency con-
nective might well exist. Exporting the verifiability readings of these extracanonical
systems to the core logics of formal inconsistency is worth considering in the future.

In any case, by broadening the search and looking to contexts in which the cor-
responding notion of “consistency” is more well-defined, we are able to search for
evidence that weighs not only on the adoption of (cc)0, but other axiom schema of
interest. This paper has focused on the interpretation of consistency-as-verifiability
and, I hope, has shown that viewing the consistency operator under a different light
provides new ways of looking at logics of formal inconsistency in general.
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Notes
1 Although Halldén employs the symbol “+” as the unary “meaningfulness” connective, we
appeal to the presentation in Omori (2016)—in which the more familiar “◦” symbol is em-
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ployed—in recognition of C’s status as an LFI. Hence Halldén’s “+” operator is assumed to be
a notational variant of the consistency connective, no more unusual than Newton da Costa’s
(1974) use of the notation “◦ϕ” rather than the contemporary “◦ϕ.”
2 C. I. Lewis’ famous proof of the validity of the principle of explosion in classical logic re-
quires the use of disjunctive syllogism. To those philosophically opposed to the principle of
explosion, the rejection of disjunctive syllogism is sometimes described as a strategy of resist-
ing the soundness of Lewis’ argument.
3 Priest does not assume antisymmetry in (2009) but daC is shown in Ferguson (2014) to be
sound and complete to this class of Kripke frames as well.
4 Priest offers a natural deduction calculus and a tableaux-style proof theory in Priest (2009).
A restricted Hilbert calculus was independently described by Osorio, Borja, and Arrazola in
(2016).
5 N.b. that this is typically just known as “convergence” in the context of superintuitionistic
logic because the dual property of backward convergence can be assumed to hold without loss
of generality. As backward convergence is nontrivial in extensions of daC, we take care to
distinguish the two in this case.
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