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Spontaneous firing of sinoatrial (SA) node cells (SANCs) is regulated by cyclic adenosine
monophosphate (cAMP)-mediated, protein kinase A (PKA)-dependent (cAMP/PKA)
local subsarcolemmal Ca2+ releases (LCRs) from ryanodine receptors (RyR). The
LCRs occur during diastolic depolarization (DD) and activate an inward Na+/Ca2+

exchange current that accelerates the DD rate prompting the next action potential
(AP). Basal phosphodiesterases (PDEs) activation degrades cAMP, reduces basal
cAMP/PKA-dependent phosphorylation, and suppresses normal spontaneous firing of
SANCs. The cAMP-degrading PDE1, PDE3, and PDE4 represent major PDE activities
in rabbit SANC, and PDE inhibition by 3-isobutyl-1-methylxanthine (IBMX) increases
spontaneous firing of SANC by ∼50%. Though inhibition of single PDE1–PDE4 only
moderately increases spontaneous SANC firing, dual PDE3 + PDE4 inhibition produces
a synergistic effect hastening the spontaneous SANC beating rate by ∼50%. Here, we
describe the expression and distribution of different PDE subtypes within rabbit SANCs,
several specific targets (L-type Ca2+ channels and phospholamban) regulated by basal
concurrent PDE3 + PDE4 activation, and critical importance of RyR Ca2+ releases for
PDE-dependent regulation of spontaneous SANC firing. Colocalization of PDE3 and
PDE4 beneath sarcolemma or in striated patterns inside SANCs strongly suggests that
PDE-dependent regulation of cAMP/PKA signaling might be executed at the local level;
this idea, however, requires further verification.

Keywords: sinoatrial node cells, phosphodiesterases, PKA phosphorylation, L-type Ca2+ channel, sarcoplasmic
reticulum, sarco(endo)plasmic reticulum calcium ATPase

INTRODUCTION

The sinoatrial (SA) node, the primary physiological pacemaker of the heart, drives more
than 3 billion heartbeats during a human life span. The SA node automaticity is generated
within the SA node pacemaker cells (SANCs), which fire spontaneous action potentials (APs)
because of gradual depolarization of the membrane potential called diastolic depolarization (DD)
linked to complex interactions of ‘coupled clock’ mechanisms. The ‘membrane clock’ refers

Frontiers in Physiology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1301

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01301
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01301
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01301&domain=pdf&date_stamp=2018-10-09
https://www.frontiersin.org/articles/10.3389/fphys.2018.01301/full
http://loop.frontiersin.org/people/575765/overview
http://loop.frontiersin.org/people/29182/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01301 October 6, 2018 Time: 19:36 # 2

Vinogradova et al. PDE3 + PDE4 Co-activation Regulates Cardiac Pacemaking

to multiple voltage-gated ion channels and transporters in the
cell membrane, including hyperpolarization-activated “funny”
current If, L-type and T-type Ca2+ currents (ICa,L and ICa,T),
delayed rectifier potassium current (IK), Na+/Ca2+ exchange
current (INCX), Na+/K+ exchange current (INaK), etc. (Figures
1A,B; Irisawa et al., 1993; Mangoni and Nargeot, 2008).

Like other cardiac cells, SANCs have the sarcoplasmic
reticulum (SR) and are equipped to cycle Ca2+ via
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and
Ca2+ release channels, ryanodine receptors (RyRs). The SANCs
can generate spontaneous local Ca2+ releases (LCRs) from
RyR in the subsarcolemmal space during late DD before the
AP upstroke (Figures 1A,B; Bogdanov et al., 2001). Numerous
studies have confirmed the presence of rhythmic LCRs under
normal physiological conditions in SANCs of different species
(Huser et al., 2000; Lipsius et al., 2001; Vinogradova et al., 2004;
Joung et al., 2009; Wu et al., 2009; Sirenko et al., 2017). The
LCRs activate an inward INCX, which exponentially accelerates
the rate of DD, prompting the “Membrane clock” to generate
the next AP (Bogdanov et al., 2001; Sanders et al., 2006; Lakatta
et al., 2010). Colocalization of Na+/Ca2+ exchanger (NCX) and
RyRs in rabbit SANC (Lyashkov et al., 2007) permits a quick
conversion of LCRs beneath the sarcolemma into changes in
the inward current that depolarizes the membrane potential.
The SR-generated LCRs can occur independent of concurrent
changes in the membrane potential; they persist during the
voltage clamp of the cell membrane or in permeabilized SANCs
(Vinogradova et al., 2004; Lakatta et al., 2010), manifesting the
intracellular SR Ca2+ cycling “Ca2+ clock” in the absence of
the “Membrane clock.” The dynamic interaction of the “Ca2+

clock” and “Membrane clock” permits a high level of mutual
entrainment between two individual clocks on a beat-to-beat
basis (Figures 1A,B). This clock entrainment provides an
additional degree of flexibility and robustness to the generation
of spontaneous APs by the cardiac pacemaker cells (Lakatta et al.,
2010; Yaniv et al., 2015).

The cyclic adenosine monophosphate (cAMP) is a ubiquitous
secondary messenger that modulates multiple cell processes,
e.g., cAMP-mediated protein kinase A (PKA)-dependent protein
phosphorylation. Basal level of cAMP in rabbit SANCs
is substantially higher than in ventricular myocytes (VM)
(Vinogradova et al., 2006; Younes et al., 2008; Lakatta et al.,
2010) due to constitutive activation of adenylyl cyclases (ACs).
This basal AC activity is independent of constitutive β-adrenergic
receptor (β-AR) activation, since neither the β1-AR antagonist,
CGP-20712A, nor the β2-AR inverse agonist, ICI 118,551
affect the spontaneous SANCs beating rate (Vinogradova et al.,
2006; Lakatta et al., 2010). Both the “Membrane clock” and
“Ca2+ clock” are regulated by cAMP and cAMP-mediated PKA-
dependent phosphorylation. Funny current is directly activated
by cAMP (DiFrancesco and Tortora, 1991; St Clair et al.,
2013). Several ion currents in SANCs are targets of the PKA-
dependent phosphorylation including ICa,L, IK, If, etc. (Irisawa
et al., 1993; Mangoni and Nargeot, 2008; Liao et al., 2010).
Proteins involved in the intracellular SR Ca2+ cycling in SANC
[i.e., phospholamban (PLB), RyR, and SERCA] are also regulated
by PKA-dependent phosphorylation (Vinogradova et al., 2006;

Lakatta et al., 2010). The generation of rhythmic spontaneous
LCRs and basal spontaneous firing of SANCs require a high
basal level of cAMP and cAMP-mediated PKA-dependent
phosphorylation (Vinogradova et al., 2006; Lakatta et al., 2010).

The cell cAMP level is the result of a balance between
cAMP production by ACs and its degradation into 5′-AMP by
cyclic nucleotide phosphodiesterases (PDEs), the only known
mechanism to degrade cAMP (Beavo and Brunton, 2002).
The PDE superfamily contains 11 distinct gene families (PDEs
1–11), and at least four PDE families (PDE1-PDE4) can
hydrolyze cAMP in the heart. Specifically, PDE1 is activated
by Ca2+/calmodulin, PDE2 is stimulated by cGMP, PDE3 is
inhibited by cGMP, and PDE4 is specific for cAMP. The PDE3
and PDE4 represent the major cAMP PDE activities in cardiac
myocytes (Takahashi et al., 2002; Wechsler et al., 2002; Mongillo
et al., 2004).

The normal AP firing of rabbit SANC is regulated by
basal PDE activation, and its inhibition by broad-spectrum
PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX), markedly
increases the level of cAMP and concurrently increases the
spontaneous SANC firing rate by ∼50%, which surpasses the
positive chronotropic effect of the β-AR agonist isoproterenol
(Vinogradova et al., 2008; Figure 1C). Combined activities of
PDE3 and PDE4 represent the major basal PDE activities in the
rabbit SA node, accounting for ∼50% in cytosolic and ∼90%
in SR fractions (Figure 1D; Shakur et al., 2002). A synergistic
relationship between PDE3 and PDE4 inhibition has been noted
in different cell types, including vascular smooth muscle cells
(Palmer et al., 1998), brown adipose tissue (Kraynik et al., 2013),
and rat VM (Mika et al., 2013). Normal automaticity of rabbit
SANC is regulated by dual PDE3 + PDE4 activation apparently
operating in a synergistic manner (Vinogradova et al., 2018).

This mini-review is focused upon how cAMP-degrading
PDEs regulate the normal spontaneous beating rate of SANCs,
including expression and distribution of different PDE subtypes
within SANCs, specific targets, and mechanisms of PDE-
dependent regulation of spontaneous SANC firing. Evidence for
compartmentalization of cAMP signaling in cardiac pacemaker
cells under basal conditions is also discussed.

BASAL PDE ACTIVITY CONTROLS
NORMAL SPONTANEOUS FIRING OF
CARDIAC PACEMAKER CELLS

Suppression of PDE activity in isolated SA node produces an
increase in cAMP level (Shahid and Rodger, 1989), acceleration of
DD rate, and increase in the spontaneous SA node beating rate of
different species (Kodama et al., 1983; Orito et al., 1996; Liu et al.,
2011; Sharpe et al., 2017). The PDE3 is the most abundant PDE
isoenzyme in the myocardial tissue of most mammalian species
(Osadchii, 2007). Although PDE3 can hydrolyze both cAMP and
cGMP, the catalytic rates for cAMP are 5–10-fold higher, than
for cGMP, which makes PDE3 very efficient in degrading cAMP
(Bender and Beavo, 2006; Osadchii, 2007).

The PDE3 inhibition increases the spontaneous beating rate
of the SA node in guinea pigs (Orito et al., 1996), rabbits
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FIGURE 1 | A schematic illustration of regulation of the basal cardiac pacemaker function by PDEs and PKA-dependent phosphorylation in intact SANC. (A) The
coupled-clock pacemaker system. Intracellular SR Ca2+ cycling (in red) operates in conjunction with the ensemble of membrane ion channels on a beat-to-beat
basis. Note that L-type Ca2+ channel and INCX current are both Ca2+ cycling proteins and surface membrane currents. Constitutive activation of the basal AC
activity results in an elevated level of cAMP and cAMP/PKA-dependent phosphorylation, which is kept in check by a high basal PDE activity. The PKA-dependent
phosphorylation modulates function of Ca2+ cycling proteins (PLB, RyR, L-type Ca2+ channel, NCX current). (B) Schematic illustration of spontaneous SANC APs,
Ca2+ transients, LCRs, and several major ion currents involved in generation of the DD. The LCR-induced increase in local [Ca2+] beneath the sarcolemma activates
an inward NCX current creating exponential increase in the DD rate (Non-linear DD). See text for additional details. (C) Comparison of relative changes in the
spontaneous SANC beating rate produced by selective inhibitors of PDE1-PDE4 alone or in combination and expressed as % of control. One-way ANOVA with
Tukey post hoc test, ∗P < 0.05 vs. PDE3 + PDE4 or All PDEs inhibition. (D) Distribution of PDE3 and PDE4 activities in SR-enriched and cytosolic fractions in rabbit
SA node [modified from Shakur et al. (2002)]. (E) Average changes in PLB phosphorylation at Ser16 site in rabbit SANC by cilostamide (0.3 µmol/L) or rolipram
(2 µmol/L) alone, combination of cilostamide + rolipram or 100 µmol/L IBMX expressed as % of control (n = 7–9 rabbits). One-way ANOVA with Tukey post hoc test,
∗P < 0.05 vs. cilostamide or rolipram alone. (F) Regulation of L-type Ca2+ current amplitude by dual PDE3 + PDE4 activation; average increases in ICa,L amplitude
during inhibition of PDE3 or PDE4 alone, concurrent PDE3 + PDE4 inhibition, or IBMX presented as % of control (n = 5–7 SANC). One-way ANOVA with Bonferroni
post hoc test ∗P < 0.01 vs. rolipram alone; +P < 0.01 vs. cilostamide alone. (C,E,F) Modified from Vinogradova et al. (2008, 2018).

(Kaumann et al., 2009), dogs (Sato et al., 1986), and humans
(Jaski et al., 1985). In the murine heart, PDE4 is the major PDE
isoform and accounts for∼60% of the total cAMP hydrolyzing
activity (Osadchii, 2007). Inhibition of either PDE3 or PDE4
increases the spontaneous beating of the mouse SANCs (Hua
et al., 2012) or rat SA node (Kaumann et al., 2009).

The PDE1 is an abundant cytosolic PDE isoenzyme in
human ventricular myocardium (Wallis et al., 1999) or VM
(Johnson et al., 2012). Targets of PDE1-dependent regulation
in VM, however, remain obscure, since inhibition of PDE1
activity produces a decrease rather than increase in contraction
amplitude of human VM (Johnson et al., 2012). Nimodipine-
sensitive activity of PDE1, measured in lysates of isolated rabbit
SANCs, accounted for ∼40% of total PDE activity (Lukyanenko
et al., 2016), but PDE1 inhibition increased spontaneous firing of
rabbit SANCs by ∼15% (Figure 1C). The PDE1 activity might
have a greater impact at higher cAMP levels; indeed, stimulation
of ACs with forskolin markedly increases both cAMP level and
PDE1 activity in paced mouse VM (Sprenger et al., 2016).

Although average increases in the basal spontaneous beating
rate of rabbit SANCs by inhibition of single cAMP-degrading
PDEs (PDE1–PDE4) are relatively small (Figure 1C), concurrent

inhibition of PDE3 + PDE4 increases the spontaneous SANC
beating rate by ∼48% (Vinogradova et al., 2018), creating an
effect comparable with that of IBMX (Figure 1C). An acceleration
of spontaneous SANC firing by concomitant PDE3 + PDE4
inhibition by ∼twofold exceeds the summed increases in the
spontaneous firing produced by inhibition of PDE3 (∼20%) and
PDE4 (∼5%) alone (Vinogradova et al., 2018), indicating that the
dual PDE3+ PDE4 activation operates synergistically to suppress
basal spontaneous firing of rabbit SANCs (Vinogradova et al.,
2018).

EFFECTS OF PDE INHIBITION ON
PROTEIN PHOSPHORYLATION IN SANC

An increase in cAMP-mediated PKA-dependent phosphorylation
of multiple proteins in cardiac cells occurs in response to PDE
inhibition. Among Ca2+ cycling proteins phosphorylated in
the basal state in rabbit SANC are PLB (Vinogradova et al.,
2006; Lakatta et al., 2010), RyRs (Li et al., 2016), and likely
L-type Ca2+ channels (Petit-Jacques et al., 1993). PLB modulates
kinetics of SR Ca2+ pumping: in unphosphorylated state PLB
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colocalizes with SERCA2 to inhibit its function to pump Ca2+

into SR (MacLennan and Kranias, 2003). Phosphorylation of
PLB by PKA at Ser16 site in VM relieves this inhibition
elevating SERCA activity by∼2–3-fold (MacLennan and Kranias,
2003). Phosphorylation status of PLB at Ser16 site is a useful
marker of PKA-dependent protein phosphorylation in SANC.
Inhibition of either PDE3 or PDE4 alone produces only minor
(∼20%, P > 0.05) increase in PLB phosphorylation at Ser16

site in SANC, but dual PDE3 + PDE4 inhibition increases
PLB phosphorylation by ∼110%, an effect comparable to that
of IBMX (Figure 1E). Therefore, basal PLB phosphorylation
at Ser16 site in SANC appeared to be regulated by synergism
of concurrent PDE3 + PDE4 activation (Vinogradova et al.,
2018). This boost in basal PKA-dependent phosphorylation,
produced by dual PDE3 + PDE4 inhibition and reflected in
PLB phosphorylation, might also affect multiple other proteins
involved in the regulation of cardiac pacemaker function which
require further investigation.

EFFECTS OF PDE INHIBITION ON IONIC
CURRENTS AND SR Ca2+ CYCLING IN
SANC

The L-type Ca2+ channels are a well-known target of cAMP-
mediated PKA-dependent pathway regulated by PDE activation.
Comparable increases in basal ICa,L amplitude by∼60 and∼72%
occur when PDE3 or PDE4 are inhibited in mouse SANC (Hua
et al., 2012), consistent with an important role of basal PDE3 and
PDE4 activity in the murine heart (Osadchii, 2007). Synergistic
effect of dual PDE3 + PDE4 inhibition on ICa,L amplitude was
observed both in human and rabbit atrial myocytes, creating
effect comparable to that of IBMX. In contrast, PDE4 inhibition
alone is without effect and PDE3 inhibition only moderately
increases ICa,L amplitude in human and rabbit atrial myocytes
(Kajimoto et al., 1997). The PDE4 inhibition in rabbit SANC,
as in human atrial myocytes, has no effect on ICa,L amplitude,
while inhibition of PDE3 increases ICa,L by ∼60% (Figure 1F).
Dual PDE3+ PDE4 inhibition increases ICa,L in rabbit SANC by
∼100%, markedly exceeding combined effects of separate PDE3
or PDE4 inhibition and creating effect comparable with that of
IBMX (Figure 1F). Therefore, dual PDE3 + PDE4 activation
regulates basal ICa,L amplitude in rabbit SANC in a synergistic
manner (Vinogradova et al., 2018).

Other ionic currents involved in the generation of DD are
also regulated by PDEs, e.g., inhibition of PDE3 in rabbit SANC
increases IK and shifts voltage dependence of If activation to
more positive potentials (DiFrancesco and Tortora, 1991; Hata
et al., 1998; Vinogradova et al., 2008). In mouse SANC, inhibition
of PDE activity by IBMX or PDE4 activity by rolopram shifts
voltage dependence of If current to more positive potentials (St
Clair et al., 2017). The PDE3 inhibitor, milrinone, significantly
increases If current amplitude by ∼20% (Springer et al., 2012)
without shift of the voltage dependence of If current (St Clair
et al., 2017).

The LCRs are also regulated by basal PDE activation
both in intact and permeabilized rabbit SANCs

(Vinogradova et al., 2008, 2018; Lakatta et al., 2010). During
each spontaneous cycle, AP-induced Ca2+ influx through
L-type Ca2+ channels triggers global Ca2+ transient, depleting
SR Ca2+, resetting the “Ca2+ clock,” and leading to LCR
termination. When the SR Ca2+ content is refilled by SERCA,
LCRs start to occur, and the time from AP-induced Ca2+

transient to the onset of LCRs is the LCR period (Figure 1B). An
increase in cAMP-mediated PKA-dependent phosphorylation
of Ca2+ cycling proteins concurrently elevates amount of Ca2+

(influx via ICaL) available for pumping into SR, accelerates
the SR Ca2+ refilling (PLB), and likely alters the threshold
for spontaneous Ca2+ releases (RyR), creating conditions
required to boost spontaneous LCRs and speed up their
appearance.

In intact rabbit, SANCs inhibition of PDE3 markedly increases
the LCR size and number per each spontaneous cycle by ∼20%
each (P < 0.05) and decreases the LCR period by ∼15%
(P < 0.05), while changes in these parameters by rolipram
are relatively small. Dual PDE3 + PDE4 inhibition, however,
produces a synergistic effect and augments both the LCR size and
number by ∼45% (P < 0.01) each, as RyR activation becomes
more synchronized via RyR recruitment and decreases the LCR
period by ∼40% (P < 0.01). An amplification of local RyR Ca2+

release activates augmented INCX at earlier times leading to an
increase in the DD rate and spontaneous SANC beating rate
(Vinogradova et al., 2018).

The contribution of “funny” current in the acceleration of
spontaneous SANC beating rate by dual PDE3+ PDE4 inhibition
was assessed in the presence or absence of If current inhibitors.
Suppression of If current by either ivabradine or Cs+ markedly
decreased the spontaneous SANC beating rate. The positive
chronotropic effect of dual PDE3 + PDE4 inhibition or IBMX,
however, remained preserved even in the absence of If current
(Vinogradova et al., 2018), indicating that the If current was
not indispensable for the positive chronotropic effect of dual
PDE3 + PDE4 inhibition. This might be related to specific
locations of If channels within lipid raft domains of rabbit
SANC (Barbuti et al., 2004), which could provide spatial barriers
shielding If channels from cAMP elevation produced by dual
PDE3+ PDE4 inhibition.

In contrast, when RyR function is disabled by ryanodine,
dual PDE3 + PDE4 inhibition failed to accelerate the DD rate
or increase the spontaneous SANC beating rate (Vinogradova
et al., 2018), despite preserved increase of ICa,L and IK
amplitudes (Vinogradova et al., 2008), indicating requirement
of intact RyR function. Therefore, effects of PDE inhibition
to increase function of ionic currents alone are not sufficient
to increase the basal spontaneous SANC beating rate, which
requires a link between PDE inhibition-induced increases in ionic
currents and SR Ca2+ cycling within the coupled clock system
(Figures 1A,B).

Though L-type Ca2+ channels or PLB and likely others
are regulated by concurrent PDE3 + PDE4 activation in a
synergistic manner (Figure 1), changes in global intracellular
cAMP in SANC did not follow this pattern. Specifically, dual
PDE3 + PDE4 inhibition in SANC lysates increases cAMP level
by only ∼90% less than the effect produced by IBMX (∼160%)
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or the sum of cAMP elevations created by inhibition of either
PDE3 (∼45%) or PDE4 (∼56%) alone (Lukyanenko, unpublished
data). Therefore, an increase in the spontaneous SANC beating
rate by dual PDE3 + PDE4 inhibition (Figure 1C) is not created
by changes in global cAMP, but likely by changes in local cAMP
levels produced in the vicinity of PLB or L-type Ca2+ channels
(scheme in Figure 2) or RyR etc.

Rabbit SANC lack t-tubular system, but they have considerable
number of caveolae, flask-like invaginated lipid rafts containing
caveolin, which could provide abundant physical boundaries for
localized cAMP signaling. In rabbit SANCs, caveolae increase the
surface plasma membrane by ∼115 and ∼30% in VM (Masson-
Pevet et al., 1980). A variety of signaling molecules could be
targeted to caveolae, including GPCRs, ACs, and PKA (Rybin
et al., 2000; Younes et al., 2008; Bhogal et al., 2018). The
subpopulation of L-type Ca2+ channels and HCN4 channels are
also localized to caveolae (Barbuti et al., 2004; Glukhov et al.,
2015). Caveolae have been identified as membrane subdomains
that compartmentalize β-adrenergic receptor signaling and as
negative regulators of cAMP accumulation in cardiac myocytes
(Rybin et al., 2000; Bhogal et al., 2018). Though activity of PDE3
and PDE4 in rabbit SA node has been measured (Figure 1D),
there is no information on how much of that activity might be
inside or outside of caveolae.

EVIDENCE FOR COMPARTMENTALIZED
cAMP-PKA SIGNALING IN VM

In VM, intracellular cAMP concentration in the basal conditions
is close to 1 µmol/L, and this value is ∼10-fold higher during
hormone or neurotransmitter activation (Iancu et al., 2008;
Borner et al., 2011; Koschinski and Zaccolo, 2017). Multiple
PDEs are expressed in each cell, with different affinities for
cAMP: PDE3 in the range of 10–100 nmol/L (Manganiello et al.,
1995), PDE4 in the range of 2–8 µmol/L (Salanova et al., 1998),
while affinity of PDE1A or PDE2 exceeds 10 µmol/L (Bender
and Beavo, 2006). Thus, cAMP is degraded over a wide range
of concentrations and cells can maintain cAMP level at the
physiological range both in the basal state or during hormone and
neurotransmitter stimulation.

Because affinity of endogenous PKA for cAMP is in the range
100–300 nmol/L (Mongillo et al., 2004) and free diffusion of
cAMP within the cell is relatively fast (∼200 µm2/s) (Saucerman
et al., 2014), cAMP would rapidly spread, PKA would be fully
activated under basal conditions, and hormones would not be
able to produce any cAMP-mediated PKA-dependent functional
responses. This controversy led to a hypothesis that PKA is
compartmentalized in special domains with significantly lower
basal cAMP level compared with that of the global cytosol (Iancu
et al., 2007). Therefore, intracellular pools of cAMP in the cell,
their signaling pathways, and functional responses are spatially
and functionally compartmentalized by PDEs, which rapidly
degrade cAMP, providing functional barriers to cAMP diffusion
(Bender and Beavo, 2006; Houslay, 2010; Francis et al., 2011;
Keravis and Lugnier, 2012; Conti et al., 2014). The PDEs might
create local pools “microdomains” with high or low cAMP levels;

in the latter case, PDEs act like “black holes” converting cAMP
into 5′-AMP and thus, protecting specific compartments from
cAMP influx and PKA activation (Conti et al., 2014; Maurice
et al., 2014).

Genetic manipulations of mice showed that both PDE3
and PDE4 may reside in the same localized compartments
associated with either L-type Ca2+ channels or SR in VM. Indeed,
PDE3A is colocalized with SERCA2-PLB-AKAP18 multiprotein
complex or “signalosome” that regulates refilling of SR through
modulation of PLB phosphorylation both in mouse and human
VM (Ahmad et al., 2015). In the mouse heart, PDE4B is a part of
the L-type Ca2+ channel complex and represents the major PDE
isoform modulating ICa,L amplitude during β-AR stimulation
(Leroy et al., 2011). The PDE4D is incorporated in the SERCA2-
PLB signaling complex in mouse VM (Kerfant et al., 2007),
while PDE4D3 was integrated into SR-associated RyR2 complex
(Lehnart et al., 2005).

RNA ABUNDANCE, PROTEIN
EXPRESSION, AND DISTRIBUTION OF
DIFFERENT PDE SUBTYPES IN SANC

At the messenger RNA level, PDE3A, PDE4A, PDE4B, and
PDE4D are the major cAMP-degrading PDE subtypes expressed
in both rabbit SANC and VM (Vinogradova et al., 2018).
Expressions of PDE3A and PDE4B mRNA in rabbit SANC
are comparable and exceed expression of other PDE subtypes
(Figure 2A). Compared with PDE3 or PDE4, PDE1 mRNA in
rabbit SANC is relatively low, but PDE1A transcript abundance
in SANC surpasses that in VM by fourfold (Lukyanenko et al.,
2016). Interestingly, mRNA transcripts for PDE2A, PDE3A,
PDE4A, PDE4B, and PDE4D are comparably expressed in the
mouse SA node (Figure 2B; Hua et al., 2012). Expression of
PDE3A and PDE4A protein was less abundant in the rabbit
SA node compared with the left ventricle; expression of PDE4B
protein was similar in both tissues, while expression of PDE4D
(Vinogradova et al., 2018) and PDE1A protein (Lukyanenko et al.,
2016) was significantly higher in the rabbit SA node than in
ventricle (Figure 2C).

Very little is known about the distribution of major PDE
subtypes within SANC. Recent studies established that PDE1A,
PDE3A, and PDE4B are localized beneath the sarcolemma of
rabbit SANC (Figure 2; Lukyanenko et al., 2016; Vinogradova
et al., 2018). Colocalization of PDE3A and PDE4B beneath
the sarcolemma of rabbit SANC (Figure 2D) suggests that,
like in the mouse heart, these PDE subtypes could work
together limiting Ca2+ influx through L-type Ca2+ channels in
a synergistic manner (Figure 1F). The PDE3A is also detected
in a striated pattern and colocalizes with the Z-line associated
protein α-actinin in rabbit SANC. Similar to human or mouse
VM (Ahmad et al., 2015), PDE3A is colocalized with SERCA,
PLB, and PDE4D in striated patterns inside SANCs (Vinogradova
et al., 2018; Figure 2). Colocalization of PDE3A and PDE4D
with SERCA and PLB suggests that these PDE isoforms could
likely regulate cAMP-mediated PKA-dependent phosphorylation
of major SR proteins in SANC (Figure 2).
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FIGURE 2 | Expression of cAMP-degrading PDEs at RNA and protein levels in the cardiac pacemaker and ventricle. Possible organization of PDE1A and major
PDE3 and PDE4 subtypes within compartments in single rabbit SANC. (A) Relative expression of PDE-coding transcripts (mean ± SEM) in rabbit SANCs and VM;
(n = 4–9); 1-way ANOVA with Tukey post hoc test, adjusted ∗P < 0.05 (SANC vs. VM for each PDE subtype); +P < 0.05 (PDE subtypes in SANC vs. PDE3A or
PDE4B); (B) Quantitative mRNA expression of PDE 2, 3, and 4 subtypes in mouse SA node, right atrium (RA) and right ventricle (RV). Expression of PDE2A, PDE3A,
PDE3B, PDE4A, PDE4B, and PDE4D are shown relative to GAPDH as (mean ± SEM); n = 5 SA node trials, 5 RA trials, and 3 RV trials; ∗P < 0.05; +P < 0.001 by
two way ANOVA with Tukey’s post hoc test [modified from Hua et al. (2012)]. (C) (left) average data (n = 8) of PDE1A, PDE3A, PDE4A, PDE4B, and PDE4D protein
expression in the rabbit SA node compared with the left ventricle (LV = 100%), column statistics ∗P < 0.05; (right) representative Western blots of major PDE
subtypes in the rabbit SA node and left ventricle. (D) Double immunostaining for PDE3A, PDE4B, and superimposed images (inset shows magnification of the
rectangular area in overlay); intensity plots (taken along the line in inset) show overlapping distribution of PDE3A with PDE4B beneath sarcolemma of SANC.
(E) Double immunostaining for PDE3A, PDE4D, and merged images (inset shows magnification of the rectangular area in overlay); intensity plots (taken along the line
in inset) display overlapping distribution of PDE3A with PDE4D along Z-lines in SANC. (F) Double immunostaining for PDE3A, PLB, and merged images (inset shows
magnification of the rectangular area in overlay); intensity plots (taken along the line in inset) display overlapping distribution of PDE3A and PLB. (G) Double
immunostaining for PDE1A, HCN4, and merged images. (H) A schematic of possible organization of compartmentalized signaling in rabbit SANC associated with
L-type Ca2+ channels or PLB-dependent regulation of SR Ca2+ cycling. (A,C–G) modified from Vinogradova et al. (2018) and Lukyanenko et al. (2016).
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SYNERGISTIC EFFECTS OF DUAL
PDE3 + PDE4 INHIBITION IN SANC ARE
LIKELY EXECUTED AT THE LOCAL
LEVEL

Though dual PDE3 and PDE4 inhibition could interact
synergistically to modulate functional effects mediated by
cAMP in multiple cell types, the mechanisms underlying these
synergistic effects remain unclear. This synergistic effect could
be based on colocalization and interaction of different PDE3
and PDE4 subtypes (Figure 2). Since PDE3 affinity is ∼10–
100 nmol/L, it is likely that PDE3 is active and degrades cAMP
in the basal state, while PDE4 remains dormant. An increase
in local cAMP level by inhibition of PDE3 alone may increase
cAMP to a range required for PDE4 activation, concurrently
elevating PKA-dependent phosphorylation of PDE4, which is
associated with 2–6-fold increase in PDE4 activity (Sette and
Conti, 1996). Activation of PDE4 would lead to a more efficient
degradation of cAMP, creating a PKA-mediated feedback loop to
promote local cAMP degradation. Therefore, PDE3- and PDE4-
dependent modulation of spontaneous beating of SANC can be
self-adaptive, i.e., the full functional effect being achieved only
when both PDE3 and PDE4 are concurrently inhibited, elevating
local level of cAMP and PKA-dependent phosphorylation to their
highest levels and leading to a full-sized synergistic functional
response. Coordinated regulation of several targets (L-type Ca2+

channels, PLB, etc.) by synergistic dual PDE3 + PDE4 activation
could be energetically beneficial, since slight variations in local
cAMP levels at multiple locations could lead to substantial
functional effects.

Recent studies demonstrated that physiologically relevant
cAMP signals operate within the nanometer range, creating
local cAMP nanodomains, while ‘global cAMP’ is less involved
in functional responses (Surdo et al., 2017). Computational
models of cAMP signaling help to understand changes in
cAMP activity at the local level in the subcellular compartments
of cardiac cells. Models predict that low basal [cAMP] in
caveolae is critically dependent on restricted cAMP diffusion
between membrane compartments and cytosol (Iancu et al.,
2007). The cAMP gradients might be also shaped by enhanced
PDE activity (Saucerman et al., 2014), as e.g., in rabbit SANC.
Future numerical models might explain how specific patterns
of different PDE3 and PDE4 subtype protein expressions in
rabbit SANC could impact local and global cAMP levels and
affect numerous players involved in generation of the cardiac
pacemaker function.

FUTURE DIRECTIONS IN
MEASUREMENTS OF LOCAL cAMP-PKA
SIGNALING IN SANC

Though it is helpful to directly measure PDE activity using
classical biochemical assays, this experimental approach lacks
spatial resolution. Local degradation of cAMP produced by PDEs
creates cAMP gradients and forms nanodomain organization

of cellular signaling (Lohse et al., 2017). Real-time imaging
of changes in [cAMP] dynamics using fluorescence resonance
energy transfer (FRET)-based reporters is a powerful tool
to study local intracellular signaling events linked to PDE
activity. Multiple FRET sensors have been constructed to
image local changes in cAMP in living cells based mostly on
interaction between pairs of green (GFP) and yellow (YFP)
fluorescent proteins. Upon cAMP binding, the conformation
of FRET sensor protein changes, leading to displacement of
fluorophores and alteration of FRET signal. Though FRET
imaging has enhanced our understanding of compartmentalized
cAMP signaling in different cell types, i.e., cardiomyocytes,
pancreatic-β cells, neuron, and cancer cells (Henderson et al.,
2014; Larsen et al., 2016; Maiellaro et al., 2016; Beltejar
et al., 2017; Elliott et al., 2017), employment of FRET in
the cardiac pacemaking field has only recently begun to
emerge (Yaniv et al., 2015). Exploration of local signaling
in cardiac pacemaker cells using FRET sensors, however, is
a challenging task, because expression of detectable level of
FRET sensors requires a culture of SANC. Even a short-
term culture markedly changes basal characteristics of rabbit
SANC via significant decrease in the level of type 2 regulator
of G-protein signaling (RGS2) that facilitates activation of
the AC/cAMP/PKA pathway via Gi inhibition, leading to
a diminished level of cAMP/PKA-dependent phosphorylation
accompanied by a ∼50% decrease in spontaneous SANC
firing rate (Yang et al., 2012). Furthermore, cultured SANCs
lose their spindle shape and became spherical or spread
out with more than three projections (Yang et al., 2012).
Changes in the cell shape alter the surface-to-volume ratio and
modify the local balance of cAMP synthesis and degradation
(Saucerman et al., 2014). Because of substantial differences
in the shape and basal cAMP-PKA signaling, changes in
local cAMP levels recorded with FRET sensors in cultured
SANCs might be different from those in freshly isolated
SANC. Moreover, because cAMP levels in the vicinity of
individual PDEs could be relatively low (∼100 nmol/L), it
might be beyond detection by currently available FRET sensors
(Koschinski and Zaccolo, 2017). Recently developed AKAP79–
CUTie FRET, however, shows some promise in this regard,
and detects statistically significant changes of cAMP in the
range of 100 nmol/L−1 µmol/L (Koschinski and Zaccolo,
2017). In short, future studies that utilize advanced methods of
local cAMP measurements are required to understand specific
mechanisms of compartmentalized PDE-regulated signaling and
synergism of dual PDE3+ PDE4 inhibition in cardiac pacemaker
cells.
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