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Auxin response factors (ARFs) are important transcription factors involved in both the
auxin signaling pathway and the regulatory development of various plant organs. In
this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated
from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their
conserved domains, exon/intron structures, related microRNAs, and alternative splicing
(AS) variants, were then characterized. Phylogenetic analysis revealed that members
of the TaARF family share close homology with ARFs in other grass species. qRT-
PCR analyses revealed that 20 TaARF members were expressed in different organs
and tissues and that the expression of some members significantly differed in the
roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment.
Moreover, protein network analyses and co-expression results showed that TaTIR1–
TaARF15/18/19–TaIAA13 may interact at both the protein and genetic levels. The results
of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A
subgenome of wheat exhibited high evolutionary rate and underwent positive selection.
Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and
leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after
auxin treatment. Our results will provide reference information for subsequent research
and utilization of the TaARF gene family.

Keywords: genomewide, ARFs, alternative splicing, expression pattern, PAML, transgenic functional verification

INTRODUCTION

Auxin signaling is key to many plant growth and developmental processes ranging from
embryogenesis to senescence (Strader and Zhao, 2016; Mironova et al., 2017). Auxin response
factors (ARFs), which generally consist of an amino-terminal DNA-binding domain (DBD),
a middle region (MR) that functions as either an activation domain or a repression domain,
and a carboxy-terminal dimerization domain (CTD), are transcription factors involved in the
well-described transport inhibitor response 1/auxin signaling F-Box (TIR1/AFB) auxin signaling
pathway (Boer et al., 2014; Dinesh et al., 2015). In the absence of auxin, auxin/indole acetic
acid (Aux/IAA) repressor proteins bind to the CTD of ARFs and inhibit their function. When
present, auxin promotes the TIR1/AFB-mediated ubiquitin–proteasome-dependent degradation
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of Aux/IAAs (Jing et al., 2015), thus relieving ARFs from
repression and allowing them to activate or repress the expression
of auxin-responsive genes; this activation or repression occurs via
the DBD that binds to auxin response elements (AuxREs) within
the promoters of target genes (Dinesh et al., 2015; Winkler et al.,
2017).

In the model plant Arabidopsis thaliana, 23 ARF genes have
been identified (Wei et al., 2006); several of these members, such
as AtARF1–8 (Ellis et al., 2005; Marin et al., 2010; Pitaksaringkarn
et al., 2014; Moller et al., 2017), AtARF10, AtARF16 (Yang et al.,
2014), AtARF17 (Gutierrez et al., 2009), and AtARF19 (Galvan-
Ampudia and Vernoux, 2014), are involved in regulating the
morphology and growth of roots, stems, leaves, flowers, and
fruits. Based on these AtARFs whose functions are known,
homology cloning has been used to identify many ARFs in other
species, including OsARF8 (Yang et al., 2006), SlARF8 (Ma et al.,
2015), GmARF8 (Wang et al., 2015, NtARF8 (Zhu et al., 2013),
and InARF8 (Glazinska et al., 2014), all of which are homologous
to AtARF8. In addition, whole-genome sequencing studies have
led to the isolation of 25 ARFs from rice (Wang et al., 2007), 24
ARFs from sorghum (Wang et al., 2010), 31 ARFs from maize
(Xing et al., 2011), 51 ARFs from soybean (Ha et al., 2013),
19 ARFs from tomato (Zouine et al., 2014), and 24 ARFs from
Medicago truncatula (Shen et al., 2015). However, few studies
have investigated this gene family in bread wheat (Triticum
aestivum L.), one of the most widely grown crops worldwide, as
this species has an enormous and complex hexaploid genome.
Currently, only one wheat expressed sequence tag (GenBank
No. AY902381) has been reported, which responds to aluminum
stress (Liu et al., 2017).

The rapid development of sequencing and assembly
technologies has led to the completion (via different sequencing
technologies) of the draft genome of “Chinese Spring” bread
wheat (Brenchley et al., 2012; Mayer et al., 2014; Zimin et al.,
2017). In addition, the physical map (IWGSC, 20171) as well
as a high-quality genome (Clavijo et al., 2017) have been
published, allowing the isolation and analysis of gene families
on a genomic scale. In this study, 23 ARF members, with
a total of 68 homeoalleles, were isolated in wheat, and the
genomic location, sequence characteristics, related microRNAs,
alternative splicing (AS) variants, phylogenetic relationships, and
expression patterns of those ARFs were analyzed. In addition,
the evolutionary rate and transgene function of TaARF15-A were
verified. These results will provide reference information for
subsequent research and utilization of the TaARF gene family.

MATERIALS AND METHODS

Isolation and Bioinformatic Analysis of
Protein Sequences
The TGACv1 collection of whole-protein sequences of “Chinese
Spring” wheat was downloaded from the Ensembl database2.
The sequences of the predicted wheat ARF proteins were

1http://www.wheatgenome.org/
2ftp://ftp.ensemblgenomes.org/pub/current/plants/fasta/triticum_aestivum/

obtained by retrieving the whole-protein sequence data based on
the ARF family Hidden Markov Model profiles (Pfam accession
number PF00931) and checking the ARF domains using the
hmmsearch and hmmscan programs of the nhmmer software
(Wheeler and Eddy, 2013) program, respectively; a cutoff of E
≤1e-5 was used. Via their registration number (Supplementary
Table S1), the protein sequences of ARFs from Arabidopsis,
rice and other species were downloaded directly from the NCBI
database (National Center for Biotechnology Information3).

Multiple sequence alignments of the ARFs were performed
using Clustal X (Larkin et al., 2007). Phylogenetic trees were
constructed using MEGA6.0 software (Tamura et al., 2013)
with the neighbor-joining method and 1000 bootstraps. The
secondary structures of the protein sequences were predicted
using the NPS@ server (Network Protein Sequence Analysis4;
Combet et al., 2000). The STRING database (Search Tool for
the Retrieval of Interacting Genes/Proteins5; Szklarczyk et al.,
2015) was used to predict interactions among ARFs, Aux/IAAs,
and TIR1 proteins in wheat. The TaTIR1 protein sequence was
retrieved from the Ensembl database by BLASTP queries of
the OsTIR1 sequence (Xia et al., 2012), and we obtained the
sequences of Aux/IAA proteins from our previous research (Qiao
et al., 2015).

Characterization and Evolutionary Rate
Analysis of Gene Sequences
The coding DNA sequences (CDS), AS variants, and genomic
sequences of the TaARF gene family members were extracted
(via their protein accession number) from the Ensembl database.
In reference to previous studies (Kim et al., 2007; Kaur et al.,
2017), the AS events of TaARFs were identified by comparing
the genetic structure of AS variants with the assumed wild-
type sequence (generally the AS variant numbered 1) so that
each variant was identified as one of the five categories: intron
retention (IR), alternative 5′ splicing (A5SS), alternative 3′
splicing (A3SS), exon skipping (ES), or mutually exclusive
exon (MXE). The position information of these members was
determined by using the RefSeq v1.0 iteration of the wheat whole
genome, which was downloaded from the IWGSC database6,
after which the TaARFs were assigned to their corresponding
chromosomes. The sequences of wheat microRNAs that may
regulate TaARFs were obtained by retrieving tae-miR target
sequence data (downloaded from the Ensembl database) using
TaARF CDS as queries with a similarity >90%. Then, a
professional small RNA target analysis server, psRNATarget (Dai
et al., 2018), was used for the validation of bioinformatics
with maximum expectation set as zero. Gene structures
were determined using GSDS 2.0 (Gene Structure Display
Server7; Hu et al., 2015). Putative promoter regions (2000 bp
upstream of the start codon) of TaIAAs were obtained from

3https://www.ncbi.nlm.nih.gov/
4https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.
html
5http://string-db.org/
6http://www.wheatgenome.org/tools-and-resources/sequences
7http://gsds.cbi.pku.edu.cn/
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their genomic sequences, and the AuxREs that bind ARF
proteins, TGTCTC (Ulmasov et al., 1995) and TGTCGG (Boer
et al., 2014), were identified by manually scanning the TaIAA
promoters.

The ARF codon sequences were used for constructing
phylogenetic trees and in subsequent calculations. The ratio
of non-synonymous substitutions per non-synonymous site to
synonymous substitutions per synonymous site (ω value) of
branches was computed by using the maximum likelihood
method of the branch model in the PAML 4.4 software package
(Yang, 2007). If the likelihood ratio test (LRT) indicated that
the ω value of a specified branch significantly differed from
the constant ω value across all branches, that branch was used
for the next positive selection analysis of the branch-site model
using the Bayes empirical Bayes method described by Yang et al.
(2005). The TuARF, AetARF, and TdARF sequences used for
the evolutionary analysis were obtained by using BLASTN to
query the TaARF15 CDS against the predicted gene sequences of
Triticum urartu (Ling et al., 2013), Aegilops tauschii (Zhao et al.,
2017), and Triticum dicoccoides (Avni et al., 2017), three ancestors
of wheat.

Auxin Treatment, qRT-PCR, and Digital
Gene Expression
With respect to auxin treatment, the wheat cultivar “Chinese
Spring” was planted under a long-day photoperiod (15 h of light,
9 h of darkness). Seedlings with three fully opened leaves were
sprayed with 10 µM α-naphthylacetic acid (α-NAA) solution or
distilled water (mock treatment), as described previously (Zhao
et al., 2013). The roots, stems, and leaves of seedlings were
sampled at 0, 0.5, 1.5, and 3 h after auxin treatment, and at each
time point, samples from three plants were pooled, after which
they were stored at −80◦C. The total RNA was extracted using
an RNA extraction kit (Tiangen Biotech, China) and reverse-
transcribed into cDNA with an M-MLV reverse transcription
kit (Invitrogen, United States). qRT-PCR was subsequently
performed using SYBR Premix Ex Taq II (Takara Bio Inc.,
China), and each reaction was repeated three times; GADPH
and TaAux/IAA1 (Singla et al., 2006) served as the internal and
external control, respectively. The qRT-PCR primers listed in
Supplementary Table S2 were designed based on the consensus
sequence of homeoalleles for every TaARF member, and the
specific primers for each AS variant of TaARF15-A were also
designed. The qRT-PCR data were analyzed using the fold-change
(Navarro et al., 2006) and the 2−11Ct (Livak and Schmittgen,
2001) methods. Statistical analyses of the differences between the
treatment group and the control group were performed by using
t-tests (tails = 2, type = 1).

The expression data of TaARFs in different organs at different
growth stages of Chinese Spring (Ramírez-González et al., 2018)
were obtained from the expVIP database8 (Borrill et al., 2016)
and then viewed as a heat map using the MeV tool (Multiple
Experiment Viewer9).

8http://www.wheat-expression.com/
9http://www.tm4.org

Plant Transformation
To generate TaARF15-A1 overexpression plants, the primers
15A1-F and 15A1-R (Supplementary Table S2) were used to
amplify the coding sequence of the wheat cDNA, after which
the sequence under the control of the CaMV 35S promoter
was inserted into a pBI121 binary vector using Gateway BP
Clonase enzyme mix (Invitrogen, United States). The construct
was then transformed into Arabidopsis (Col-0) by Agrobacterium
tumefaciens strain GV3101 (Herrera-Estrella et al., 2005) via
the floral dip method. The transformed lines were first selected
on half-strength Murashige and Skoog medium that contained
50 mg L−1 kanamycin (Ahmed et al., 2012) and then screened
by PCR. The resistant seedlings were subsequently transferred
to a mixture of soil and vermiculite (1:1) at 22◦C under a
16/8-h light/dark cycle with 70% relative humidity, after which
homozygous lines were generated by self-fertilization. Plants
from the F3 generation and wild-type Arabidopsis were used for
morphological comparison. qRT-PCR was then used to detect
the expression of TaARF15-A.1 in the transgenic plants. The
total RNA was isolated from leaves of 20-day-old TaARF15-A1
overexpression plants and wild-type plants at 0, 0.5, and 2 h after
10 µM auxin treatment, and ACTIN2 served as an endogenous
control. qRT-PCR for each line was based on three independent
biological replicates.

RESULTS

Distribution and Domain of the TaARF
Family
By retrieving wheat protein sequence data and examining the
domains, we detected 68 full-length ARF proteins, which were
subsequently used to construct an unrooted tree for revealing
phylogenetic relationships. The results showed that these wheat
ARF proteins could be divided into 23 groups (Figure 1A); each
group containing two or three homeoalleles from the wheat A,
B, and D subgenomes was regarded as a member of the ARF
family in wheat (TaARF family). These 23 TaARF members
were distributed across all chromosomes except 4A, 4B, and 4D
and were named TaARF1–TaARF23 based on their chromosome
position (Supplementary Figure S1). The largest number of
members (TaARF18–23) were distributed across homologous
chromosome 7, while only one member (TaARF14) was found
on homologous chromosome 5. With the exception of TaARF23,
every TaARF member had three homeoalleles.

The length of the 68 TaARF proteins varied from 354
amino acids (AAs) for TaARF23-D to 1174 AA for TaARF20-B
(Supplementary Table S3). With the exception of TaARF20-A,
every TaARF protein contained a DBD for binding the promoter
region of target genes. Thirty-eight TaARF proteins contained
a CTD, suggesting that those proteins may be inhibited by
Aux/IAA proteins. In addition, all of the 68 TaARF proteins
contained a MR: 17 of the proteins contained an SPGL-rich MR,
14 contained an SG-rich MR, 14 contained an SP-rich MR, and
23 contained a QSL-rich MR (Figure 1B and Supplementary
Figure S2). The first three types may suppress the expression

Frontiers in Plant Science | www.frontiersin.org 3 September 2018 | Volume 9 | Article 1395

http://www.wheat-expression.com/
http://www.tm4.org
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01395 September 17, 2018 Time: 16:40 # 4

Qiao et al. TaARFs in Wheat

FIGURE 1 | Phylogenetic relationships, domains, in silico expression profiling, and gene structure of ARFs in wheat. (A) Phylogenetic tree of TaARFs constructed
from the complete alignment of 68 wheat ARF protein sequences by the neighbor-joining method with 1000 bootstrap replicates using MEGA 6.0. The bootstrap
scores are indicated on the nodes, and the 23 TaARF members, all of which are coded by homeoalleles, are indicated in blue or pink boxes. The branch of
paralogous TaARF members is shown in bold. (B) Conserved domains of TaARFs. DBD, DNA-binding domain; CTD, C-terminal dimerization domain; MR, middle
region; S, serine; P, proline; G, glycine; L, leucine; Q, glutamine. (C) In silico expression profiling of TaARF homeoalleles in different organs at different growth stages
of Chinese Spring wheat. The expression data were generated from the expVIP database (http://www.wheat-expression.com/). The color scale at the top represents
the expression values: black indicates low levels of transcript abundance, and yellow indicates high levels. R, root; L/S, leaf/stem; Sp, spike; G, grain; Se, seedling
stage; Ve, vegetative stage; Re, reproductive stage. (D) Exon/intron structures in the CDS of TaARF genes. The number of AS variants is listed before each gene. For
genes that represent predicted AS variants, the variant with the highest in silico expression level has been selected for the gene structure analysis. Exons are
represented by black boxes and introns by black lines. The size of exons and introns can be estimated using the scale at the bottom.
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of target genes, while the last one may promote it (Guilfoyle
and Hagen, 2007). Furthermore, 34 TaARF proteins contained all
three domains.

MicroRNAs, AS Events, and Expression
Profiling Related to TaARF Genes
The full lengths of the TaARF genes varied from 1119 bp for
TaARF23-A to 7915 bp for TaARF20-B, and the number of
introns ranged from zero to 14 (Supplementary Table S3). The
homeoalleles for most TaARF members, including TaARF1, 3,
5, 6, 8, 10, 13, 14, 17, 19, 21, 22, and 23, showed analogous
exon/intron structures (Figure 1D). Furthermore, high sequence
similarities (93.76–100%) were observed between several target
sequences of wheat microRNAs and the sequences of TaARF1, 5,
7, 17, 21, and 22. Finally, TaARF1-A, -B, and -D and TaARF17-B
were predicted to be the targets for tae-miR160 (Supplementary
Figure S1 and Supplementary Table S4).

Furthermore, 41 homeoalleles of 17 TaARF members were
found to have 103 AS variants; 16 homeoalleles had only one
AS variant, while TaARF19-B had the most (12) AS variants
(Figure 1D and Supplementary Table S3). Furthermore, 33
of the 103 AS variants resulted from two or more AS events,
resulting in a total of 149 AS events. Among these AS events,
76 were IR events, which were the most abundant (51.7%),
followed by A5SS (29), A3SS (23), ES (20), and MXE (1) events
(Figure 2A). On the whole, the AS variants in the wheat B
subgenome presented the most AS events among all AS types
(Figure 2B).

In addition, the in silico expression data revealed that TaARF4,
12, 13, and 22 were highly expressed during seedling, vegetative,
and reproductive stages in wheat (Figure 1C). The expression
levels of TaARF5 and TaARF9 were highest in the root, while
TaARF2 and TaARF3 were expressed highly in the spike.

Phylogeny of ARFs
We constructed a phylogenetic tree of the protein sequences of
68 TaARFs, 23 AtARFs, 25 OsARFs, and 14 ARFs with known
functions from other species. These ARFs can be classified into
nine groups: Groups I–IX (Supplementary Figure S3). TaARFs
were distributed among all groups, and each TaARF member has
an orthologous OsARF.

Based on homology cloning in previous studies, many
ARFs were shown to have functions similar to those of their
orthologous AtARFs, such as SlARF2 (Ren et al., 2017)–AtARF2
(Ellis et al., 2005), MtARF3 (Peng et al., 2017)–AtARF3 (Marin
et al., 2010), SlARF4 (Sagar et al., 2013)–AtARF4 (Marin et al.,
2010), GmARF8 (Wang et al., 2015)–AtARF8 (Pitaksaringkarn
et al., 2014), SlARF9 (de Jong et al., 2015)–AtARF9, and BnARF18
(Liu et al., 2015)–AtARF18, and each of these ortholog pairs
was located in the same branch (Supplementary Figure S3).
Thus, TaARFs may also have functions similar to those of their
orthologous OsARFs in the same branch. For example, TaARF9–
OsARF1 (Shen et al., 2013) from Group V, TaARF15–OsARF5
(Indoliya et al., 2016 and TaARF20–OsARF19 (Zhang et al., 2015)
from GroupVII, TaARF7–OsARF12 (Yang et al., 2006) from
Group VIII, and TaARF16–OsARF6 (Meng et al., 2009) from
Group IX, may have similar functions.

Response of TaARFs to Exogenous
Auxin
qRT-PCR analysis of TaARFs in the roots, stems, and leaves
of wheat seedlings revealed no expression of TaARF5, TaARF7,
or TaARF17. The response of the other 20 TaARF members
to exogenous auxin stimuli was investigated in wheat seedlings
treated with 10 µM NAA. qRT-PCR analysis revealed that
seven TaARF members (TaARF7, 11, 12, 13, 15, 19, and 20)
were upregulated and that two members, TaARF6 and 9, were
downregulated in the roots in response to exogenous auxin
treatment (Figure 3A). Among those TaARFs, the expression
levels of TaARF11, 12, 13, 15, 19, and 20 increased gradually
within 1.5 h after treatment (HAT) but decreased later, and
the expression of TaARF6 was downregulated across all time
points. Moreover, in wheat stems, the expression levels of 10
genes (TaARF1, 4, 9, 10, 12, 13, 15, 16, 19, and 20) were
significantly upregulated by auxin (Figure 3B). Among those
genes, the expression levels of TaARF1, 4, 10, 12, 19, and 20 were
downregulated within the first 0.5 HAT but were continuously
upregulated after 1.5–3 HAT, while the expression levels of
TaARF9 and 13 were lower at 3 HAT than at 1.5 HAT; the
expression of TaARF15 was upregulated across all time points.
In addition, in wheat leaves, the expression levels of seven genes,
TaARF4, 6, 9, 13, 15, 21, and 23, were significantly upregulated
in response to auxin (Figure 3C), and TaARF4-21 and TaARF15-
23 exhibited similar expression patterns in response to auxin.
Overall, in the roots, stems, and leaves of wheat seedling, TaARF9,
13, and 15 responded significantly to auxin treatment.

In addition, the expression level of external control
TaAux/IAA1 was similar to that reported in a previous
study (Singla et al., 2006), indicating that the results are reliable
(Supplementary Figure S4).

Prediction of Protein Interactions Among
TaARFs, TaIAAs, and TaTIR1
Based on the Arabidopsis and rice interaction network models,
46 proteins expressed in wheat, including 20 TaARF members,
25 TaIAA members (Qiao et al., 2015), and one TaTIR1, were
subjected to an interaction analysis. The results showed that
four closely related TaARF members (TaARF15, 18, 19, and 20;
Figure 1A) could bind to TaIAA12, 13, and 19 in both models and
that TaTIR1 could also bind to TaIAA proteins and inhibit their
function (Figures 4A,B); these results are consistent with the
TIR1/AFB–IAA–ARF interaction model in the auxin signaling
pathway (Boer et al., 2014; Dinesh et al., 2015). The clustering
results showed that the common domain III and domain IV of
the CTD of TaARF15, 18, 19, and 20 as well as those of TaIAA12,
13, and 19 showed high sequence similarity, which suggests the
occurrence of a similar secondary structure that facilitates protein
interactions (Figure 4C).

Expression Pattern of
TaTIR1-TaARF15/19/20-TaIAA13
At the protein level, by interacting with CTDs, Aux/IAAs inhibit
ARFs. However, at the gene expression level, Aux/IAAs are
regulated by ARFs because Aux/IAAs are the target genes of
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FIGURE 2 | Summary of AS in TaARFs. (A) Five types of AS in 103 splice variants from TaARF homeoalleles. The number of splice variants is represented in each
intersection of the Venn diagram. IR, intron retention; ES, exon skipping; A5SS, alternative 5′ splicing site; A3SS, alternative 3′ splicing site; MXE, mutually exclusive
exon. (B) One hundred forty-nine AS events occurring in 103 splice variants. The AS events that occurred in the A, B, and D subgenomes are indicated in blue, red,
and green, respectively.

ARFs. Previous transcriptomic research in rice has shown that
the expression levels of TIR1 and most ARF genes increased in
response to exogenous auxin stimulation, which subsequently
regulated the expression of downstream Aux/IAAs (Indoliya
et al., 2016). In this study, in response to auxin treatment, the
expression levels of seven of eight proteins that may interact
were analyzed; TaARF18 was not chosen because its response to
auxin was not significant (Figure 3). The results showed that the
expression trends of TaTIR1, TaIAA13, TaARF15, TaARF19, and
TaARF20 were consistent in wheat roots and that the expression
patterns of TaTIR1, TaIAA13, and TaARF15 were similar not only
in the stems but also in the leaves (Figure 5A). In addition, the
TaIAA13 promoter contains AuxRE elements that are the binding
sites for the DBD of ARF proteins (Supplementary Figure S5).
Therefore, we inferred that TaTIR1–TaARF15/19/20–TaIAA13
could also interact at the gene expression level.

Evolutionary Rate Analysis of the
Transcripts of TaARF15
On the whole, in response to auxin treatment,TaTIR1–TaARF15–
TaIAA13 showed the same expression trends in the roots, stems
and leaves. In addition to those of TaARF15-A, TaARF15-B,
and TaARF15-D, the transcripts of TaARF15 can exist as two
or one additional AS variant in the A and B subgenomes,
respectively. These six transcripts of TaARF15 and their orthologs
in both wheat ancestral species and rice were used to construct a
phylogenetic tree. The result showed that ARF genes from wheat
and its ancestors clustered into the same group (Figure 5B).
Among those genes, TaARF15-D is located in the same branch as
its orthologAetARF inA. tauschii, which is the donor of the wheat
D subgenome. Furthermore, TaARF15-A is located in the same
branch as its orthologs TdARF-A and TuARF from the ancestral
species of the A subgenome. However, TaARF15-B is distantly
related to its ancestral ortholog TdARF-B.

Based on the two-ratio model, the evolutionary rates of
TaARF15-A.1–3 (ωa = 0.66) and TaARF15-B.1 (ωb1 = 0.99)
were significantly higher than those of the background branch
(ω0 = 0.17–0.18, Supplementary Table S5). Additional analyses

revealed that only branch-an underwent positive selection; the
specific site was the 717L–736S segment of the TaARF15-A.1
protein-coding sequence, which is located on the exon 12 of
the gene. TaARF15-A.2 also contains a positive selection site,
but its translation is terminated prematurely because of an IR
event within intron 12. In addition, TaARF15-A.3 lost a positive
selection site in exon 12 because of an A5SS event. These
examples may represent techniques used by wheat to regulate
genes in different organs or stages.

Overexpression of TaARF15-A1 in
Arabidopsis
qRT-PCR analysis for three AS variants of TaARF15 showed
that TaARF15-A.1 was more highly expressed than TaARF15-
A.2, while the expression of TaARF15-A.3 was not detected.
Because of the response to exogenous auxin and the more
complete gene structure among TaARF15-A transcripts,
TaARF15-A.1 was transformed into Arabidopsis for functional
verification. The results showed that the root length of the
overexpression lines were significantly higher than those of
the Col control lines (Figure 5C). Additionally, the leaf area
of the overexpression lines exceeded those of the control lines
(Figure 5D). Furthermore, qRT-PCR showed that TaARF15-
A.1 was upregulated in the overexpression plants in response
to exogenous auxin treatment. Thus, it can be inferred that
TaARF15-A.1 participates in the development of roots and leaves
during the vegetative growth stage of the plants (Figure 5E).

DISCUSSION

Distribution and Evolution of Members of
the ARF Family in Wheat and Other Plant
Species
In this study, 23 members of the ARF family were isolated from
the hexaploid wheat genome, which is closely related to that of
its ancestral species, which include T. urartu (21), A. tauschii
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FIGURE 3 | Induction (fold change) of TaARF genes in response to exogenous auxin stimuli in the roots (A), stems (B), and leaves (C) of wheat seedlings. The roots,
stems and leaves of wheat cultivar “Chinese Spring” at the three-leaf stage were harvested at 0, 0.5, 1.5, and 3 HAT; the plants were treated with 10 µM α-NAA
solution or distilled water (mock treatment). The relative expression level of each gene was measured three times and then normalized to that of the GADPH gene,
after which the levels were analyzed using the fold-change method. Paired t-tests were used to detect significant differences in relative expression levels of genes
between the auxin treatment and the mock treatment at each time point. The asterisks indicate significant differences, and the error bars indicate the SD.
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FIGURE 4 | Prediction of protein interactions among TaARFs, TaIAAs, and TaTIR1. (A,B) Interaction networks of 20 TaARF members, 25 TaIAA members, and
TaTIR1 expressed in wheat based on the interaction models of Arabidopsis and rice. Proteins for which interactions were not detected are not shown. The line colors
indicate the types of interactions, which are listed in the bottom. (C) Residues predicted to participate in ARF and IAA protein interactions. The sequence alignment
of TaARF and TaIAA proteins revealed canonical CTD domain features, including the conserved domain III and domain IV. The variable linker region is indicated by
var. The α structures are shown by a spiral, and the β structures are shown by arrows.

(23), and Triticum turgidum (25); gramineous grasses such as
barley (25), Brachypodium distachyon (28), and rice (25, Wang
et al., 2007); and the dicotyledon A. thaliana (23, Wei et al.,
2006), and each ARF member exhibited good homology among
grass species (Supplementary Figure S6). Phylogenetic analyses
(Supplementary Figures S3, S6) revealed the poor sequence
homology between TaARFs and AtARFs, which indicated that
the ARF family differentiated after the divergence of mono-
and dicotyledons (∼130 MYA, D’Hont et al., 2012) and that
further specific differentiation occurred in Arabidopsis and
gramineous plants. Interestingly, there are no ARF members on
chromosome 4 in wheat, T. urartu, A. tauschii, T. turgidum,
or barley. Therefore, the ARF family evolutionary progress at
the stage during which the Triceae diverged from their grass
ancestors (10–95 MYA, Pont et al., 2013) warrants further
study.

There are eight pairs of paralogs in the TaARF family
(Figure 1A). Among those paralogs, TaARF12-13 are both
located on the long arm of wheat chromosome 3 at a
close genomic distance, suggesting that those genes may
have undergone a tandem duplication event. TaARF12-13 had
homologous gene pairs in allied Triceae species but only one
common ortholog in A. thaliana, rice, and B. distachyon,
indicating that the tandem duplication occurred after the

divergence of the Triceae ancestor (∼10 MYA, Pont et al.,
2013). The remaining seven paralog pairs may have undergone
segmental duplication events. Among these paralogs, TaARF1-21
has a homologous gene-pair, AtARF10-16, in A. thaliana,
suggesting that this duplication event occurred the earliest,
before the monocot–dicot divergence (∼130 MYA, D’Hont
et al., 2012); however, the origins of TaARF2-11, TaARF3-10,
TaARF5-17, TaARF8-23, TaARF15-20, and TaARF16-22 may
occurred after the divergence. In addition, some redundant
genes produced during genome doubling and duplication events
may be recombined or modified, causing loss of function; these
modifications include changes in structural variation, domains,
and gene expression regulation as well as gradual loss (Chen,
2007; Otto, 2007). In this study, TaARF2-A and TaARF9-B lacked
some exons, while TaARF20-A and TaARF20-D lacked a DBD
and a CTD, respectively. Thus, these genes may suffer from the
same lost fate as did TaARF23-B.

AS in the TaARF Family
Alternative splicing is important for increasing the diversity and
adaptability of plants (Matlin et al., 2005). In the hexaploid
wheat genome, approximately 31% of the predicted coding genes
have AS variants, among which IR events were the prevalent
AS event (34%), followed by A3SS (27%), ES (20%), A5SS
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FIGURE 5 | Co-expression, evolutionary, and functional analysis of TaARF15. (A) Auxin-related genes expressed simultaneously with TaARF15 in the roots, stems,
and leaves of wheat cultivar “Chinese Spring” at the seedling stage. The qRT-PCR data were processed by the 2-11Ct method, and GADPH served as the control.
(B) Phylogenetic analyses of the six transcribed sequences of TaARF15 as well as those of its homologs in T. urartu (TuARF, TRIUR3_19224), Aegilops speltoides
(AetARF, AEGTA09095), T. dicoccoides (TdARF-A, TRIDC6AG014880.2; TdARF-B, TRIDC6BG020370.14), and rice (OsARF5, Os02g04810); AtARF7
(AT5G20730.3) and AtARF19 (AT1G19220.1) served as out branches. The exon/intron structures are listed on the right. The branches with TaARF15-A, B, and D are
shown as thick lines and labeled with letters a, b1/b2, or c, respectively, and the ω values were calculated in accordance with the two-ratio model. The branch that
underwent positive selection is labeled in red, and the positive selection sites of sequences are marked with red triangles. (C,D) Morphology of the roots and leaves
of 35S::TaARF15-A.1 lines and Col, the latter of which represents wild-type Arabidopsis plants. (E) Relative expression levels of TaARF15-A.1 in both Col and
homozygous F3 transgenic lines. The total RNA was isolated from 20-day-old leaves of Arabidopsis plants at 0, 0.5, and 2 h after 10 µM auxin solution treatment.
ACTIN2 served as an endogenous control.

(19%), and MXE (0.04%) events (Clavijo et al., 2017). In this
study, 103 AS variants were identified from 41 sequences of 17
TaARF members, and a total of 149 AS events, including IR
(51.0%), A3SS (15.4%), ES (13.4%), A5SS (19.5%), and MXE
(0.7%) events, occurred. IRs still represented the most common
AS event in the TaARF splicing variants, and 18 of 77 IR
events resulted in premature termination codons (PTCs). These
PTC transcripts are often recognized and degraded by the
nonsense-mediated mRNA decay (NMD) mechanism to avoid
cell toxicity resulting from the accumulation of truncated protein

products (Lykke-Andersen and Jensen, 2015); occasionally, these
PTC transcripts encode shortened protein products that have new
structures and functions (Romero et al., 2006). In addition, 17 of
the 149 AS events occurred in the 5′-untranslated (UTR) region;
if located in the regulatory protein binding site, the AS sites in
this region can lead to altered expression of the TaARF gene.
Similarly, 10 AS events occurred in the 3′-UTR region; these
occurrences may also affect the microRNA- or long non-coding
RNA (lncRNA)-based regulation of TaARF expression (Hughes,
2006).

Frontiers in Plant Science | www.frontiersin.org 9 September 2018 | Volume 9 | Article 1395

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01395 September 17, 2018 Time: 16:40 # 10

Qiao et al. TaARFs in Wheat

Expression Patterns of TaARF Members
Since the homeoalleles of most tri-genes exhibited similar
expression levels (Pfeifer et al., 2014), we used universal genomic
primers to analyze the expression of each TaARF member. The
results showed that three TaARF members, TaARF5, 7, and
17, were not expressed, but the remaining members were all
expressed in the roots, stems and leaves of wheat seedlings.
Among the TaARF members, TaARF9 and 13 in Group IV and
TaARF15 in Group VI both significantly responded to exogenous
auxin. Since other ARFs in the same group, including AtARF2,
SlARF2, OsARF1, and OsARF24 in Group IV as well as AtARF7,
AtARF19, OsARF19, SlARF19, and OsARF5 in Group VI, were
confirmed to be involved in the regulatory development of plant
roots, stems, and leaves (Ellis et al., 2005; Inukai et al., 2005;
Sakamoto and Inukai, 2013; Galvan-Ampudia and Vernoux,
2014; Ma et al., 2015; Zhang et al., 2015; Indoliya et al., 2016;
Ren et al., 2017), it is speculated that TaARF9, 13, and 15 also
have similar functions. In addition, the in silico expression data
revealed that in Group IV, TaARF9 showed a high expression
level in roots and TaARF12 as well as TaARF13 were highly
expressed during seedlings, vegetative and reproductive stages
in wheat. Moreover, OsARF1, the homologous gene of TaARF9,
promoted the response of primary roots, lateral roots, and root
hair to auxin (Shen et al., 2013; numbered as OsARF16); AtARF2
(Ellis et al., 2005; Okushima et al., 2005; Lim et al., 2010),
SlARF2 (Xu et al., 2016; Ren et al., 2017), and ZmARF25 (von
Behrens et al., 2011; Li et al., 2014), in the same subgroup as
TaARF12 and TaARF13, were all confirmed to be involved in the
regulation various growth stages. Therefore, TaARF9, 12, and 13
may also have similar functions. Furthermore, TaARF13 has a
very close relationship with the expressed sequence tag AY902381
(Supplementary Figure S7), the only ARF sequence reported in
wheat (Liu et al., 2017).

In addition to the temporal and spatial specificity of TaARF
members and their induction by exogenous hormones, the
expression of TaARF members may also be regulated by
microRNA, which is a complex processes. For example, TaARF17
is predicted to be the target gene of tae-miR160; thus, the lack of
expression of TaARF17 in the roots, stems, and leaves of wheat
seedlings in this study is most likely due to the inhibition of
miRNA. Next, we will focus on the impact of AS and microRNAs
on the expression levels of some TaARF members.

TaARF15-A.1 May Be Involved in the
Regulation of Roots and Leaves
TaARF15 is an ortholog of OsARF5, which regulates the
development of rice at different stages (Indoliya et al., 2016).
In this study, TaARF15 was expressed in the roots, stems, and
leaves of wheat seedling, and its expression levels significantly
differed in response to exogenous auxin treatment. Because
stems are the major organ involved in polar transport and
are relatively insensitive to auxin, ARFs could be constantly
upregulated by auxin stimuli. Therefore, the expression level of
TaARF15 continuously increased in wheat stems. In the roots and
leaves, however, the expression level of TaARF15 continuously
increased during the first 1.5 HAT but decreased at 3 HAT,

suggesting that a negative autoregulatory feedback loop (de Jong
et al., 2009) occurs in the roots and leaves sensitive to auxin
treatment, causing the expression of TaARF15 to gradually return
to its initial level. In the above process, the expression patterns
of the genes TaARF15 and TaTIR1 and the downstream gene
TaIAA13 were consistent. Because the TaARF15 protein has a
QSL-MR, which may promote downstream gene expression, as
well as a DBD that can bind with the AuxRE of the TaIAA13
promoter, we speculated that TaIAA13 is the target gene of
TaARF19. The network prediction indicated that there is also a
protein-level interaction involving TaTIR1–TaIAA13–TaARF15.
Furthermore, TaARF15 can express a total of six transcripts, in
which TaARF15-A.1–3 from the A subgenome exhibited a high
evolutionary rate, and positive selection sites were detected in
TaARF15. In addition, TaARF15-A.1, which has a more complete
gene structure and can better respond to exogenous auxin
than TaARF15-A.2 and -A.3, was transferred to A. thaliana.
Compared with the wild-type plants, the transgenic plants had
longer roots and greater leaf area, and TaARF15-A.1 could
respond to exogenous auxin, which meant thatTaARF15-A.1may
participate in the regulatory development of the roots and leaves.
The function of the remaining five transcripts needs further
study.

CONCLUSION

The TaARF family has a total of 23 members, and each member
except two TaARF members may be the targets of tae-miR160.
Seventeen TaARF members have extra transcripts that undergo
149 AS events, including IR (76), A5SS (29), A3SS (23), ES
(20), and MXE (1) events. Thirty-seven (54%) TaARF protein
sequences have a DBD, MR, and CTD. Twenty TaARF members
are expressed among different organs and tissues. In response to
auxin treatment, the expression of nine, 10, and seven TaARF
members significantly differed in the roots, stems, and leaves
of wheat seedlings, respectively. Overall, TaARF9, 13, and 15
responded significantly to auxin treatment in all the three organs.
In addition, TaTIR1-TaARF15, 18, 19, and 20-TaIAA12, 13,
and 19 were predicted to be interactive proteins, and TaTIR1–
TaARF15/19/20–TaIAA13 exhibited similar expression patterns
at the genetic level. TaARF15-A.1 is likely involved in the
regulation of roots and leaves of A. thaliana.
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