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ABSTRACT
Research software, which includes both source code and executables used as part of
the research process, presents a significant challenge for efforts aimed at ensuring
reproducibility. In order to inform such efforts, we conducted a survey to better
understand the characteristics of research software as well as how it is created, used,
and shared by researchers. Based on the responses of 215 participants, representing a
range of research disciplines, we found that researchers create, use, and share software
in a wide variety of forms for a wide variety of purposes, including data collection,
data analysis, data visualization, data cleaning and organization, and automation. More
participants indicated that they use open source software than commercial software.
While a relatively small number of programming languages (e.g., Python, R, JavaScript,
C++, MATLAB) are used by a large number, there is a long tail of languages used by
relatively few. Between-group comparisons revealed that significantlymore participants
from computer science write source code and create executables than participants from
other disciplines. Differences between researchers from computer science and other
disciplines related to the knowledge of best practices of software creation and sharing
were not statistically significant. While many participants indicated that they draw
a distinction between the sharing and preservation of software, related practices and
perceptions were often not aligned with those of the broader scholarly communications
community.

Subjects Digital Libraries
Keywords Software sustainability, Reproducibility, Research software, Code, Finding software,
Sharing software

INTRODUCTION
Research software is an important consideration when addressing concerns related to
reproducibility (Hong, 2011; Hong, 2014; Stodden, Leisch & Peng, 2014; Goble, 2014).
Effective management and sharing of software saves time, increases transparency, and
advances science (Prlić & Procter, 2012). At present, there are several converging efforts
to ensure that software is positioned as a ‘‘first class’’ research object that is maintained,
assessed, and cited in a similar fashion as scholarly publications (e.g.,NIH, 2016; Katz et al.,
2013; Ram et al., 2017; Crouch et al., 2013). However, while there is a burgeoning literature
exploring the activities of researchers in relation to materials like data (Tenopir et al., 2015;
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Monteith, McGregor & Ingram, 2014; Kim & Stanton, 2016), those related to software have
received less attention. Specifically, we have been unable to find a study that thoroughly
examines how researchers use, share and value their software.

In this paper, we report the results of a survey designed to capture researcher practices and
perceptions related to software. Survey questions addressed a variety of topics including:
1. What are the characteristics of research software?
2. How do researchers use software?
3. To what extent do current practices related to software align with those related to

reproducibility?
4. How do researchers share software?
5. How do researchers preserve software?
After filtering, 215 researchers participated in our survey. Overall, our results

demonstrate that researchers create software using a wide variety of programming
languages, use software for a wide variety of purposes, have adopted some—but not
all—practices recommended to address reproducibility, often share software outside of
traditional scholarly communication channels, and generally do not actively preserve their
software. Participants from computer science reported that they write source code and
create executables significantly more than participants from other disciplines. However,
other between-group comparisons largely did not reach statistical significance.

In the following sections, we provide a more detailed description of our findings. We
start with an overview of the related literature (‘Related Work’) then a description of our
survey instrument (‘Methods’) and the demographic characteristics of our participants
(‘ParticipantDemographics’). In ‘Characteristics andUse of Research Software’, we describe
our findings related to the characteristics of research software and its usage. Responses to
questions involving reproducibility-related practices are detailed in ‘Reproducibility-related
Practices’. ‘Sharing and Preservation of the Research Software’ outlines the responses to
questions related to software sharing and preservation. We discuss the implications of our
findings in ‘Discussion’. Finally, ‘Conclusions and Future Work’ concludes our findings
and contains a discussion of future work.

RELATED WORK
While there is an emerging body of research examining researcher practices, perceptions,
and priorities for products like data (Fecher, Friesike & Hebing, 2015; Kratz & Strasser,
2015; Tenopir et al., 2011; Tenopir et al., 2015), work related to software has often focused
on how it is found, adopted, and credited (Howison & Bullard, 2015b; Hucka & Graham,
2018; Joppa et al., 2013). For example, research examining software reuse demonstrates
that the most common difficulty for users looking for software is a lack of documentation
and that finding software is a difficult task even within technology companies (Sadowski,
Stolee & Elbaum, 2015). However, as software is increasingly central to the research process
(Borgman, Wallis & Mayernik, 2012), understanding its characteristics, its uses, and the
related practices and perceptions of researchers is an essential component of addressing
reproducibility.
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The term ‘‘reproducibility’’ has been applied to a variety of efforts aimed at addressing the
misalignment between good research practices, including those emphasizing transparency
and methodological rigor, and the academic reward system, which generally emphasizes
the publication of novel and positive results (Nosek, Spies & Motyl, 2012; Munafò et al.,
2017). Attempts to provide a cohesive lexicon for describing reproducibility-related
activities are described elsewhere (Goodman, Fanelli & Ioannidis, 2016) but computational
reproducibility generally refers to the description and sharing of software tools and data in
such a manner as to enable their use and evaluation by others (Stodden, Guo & Ma, 2013).
Efforts aimed at fostering computational reproducibility are often focused on the sharing
of source code but may also include the establishment of best practice guidelines related to
how software tools are described, cited, and licensed (e.g., Stodden et al., 2016).

There have been numerous calls urging researchers to more thoroughly describe
and share their software (Barnes, 2010; Ince, Hatton & Graham-Cumming, 2012; Joppa et
al., 2013; Morin et al., 2012). Such calls are increasingly backed by mandates from funding
agencies. For example, theWellcome Trust now expects that grant recipients make available
‘‘any original software that is required to view datasets or to replicate analyses’’ (Wellcome,
2017). In parallel, a myriad of guidelines, organizations, and tools have emerged to help
researchers address issues related to their software. Software-related best practices have
been outlined for both individuals working in specific research disciplines (Eglen et al.,
2017;Marwick, 2017) and for the research community in general (e.g., Piccolo & Frampton,
2016; Sandve et al., 2013; Jimenez et al., 2017). In general, such best practice documents
focus on the importance of concepts such as proper documentation and version control
in ensuring that code is shared in a way that facilitates computational reproducibility. In
contrast, the focus of community organizations such as The Carpentries (Wilson, 2006;
Teal et al., 2015) and the Software Sustainability Institute (Crouch et al., 2013) is training
researchers to better develop, use, and maintain software tools. Bridging the perspectives of
stakeholders focused on encouraging best practices in sharing software and those focused
on educating researchers in its creation and use are organizations such as Force11, who
have published guidelines for describing and citing software in the scholarly literature
(Smith, Katz & Niemeyer, 2016).

Complementing best practices and educational materials, a variety of tools have been
developed to facilitate computational reproducibility. For example, literate programming
tools such as Jupyter notebooks (Perez & Granger, 2007) allow researchers to combine
data, code, comments, and outputs (e.g., figures and tables) in a human-readable fashion,
while packaging and containerization platforms such as ReproZip (Chirigati, Shasha &
Freire, 2013) and Docker (Boettiger, 2015) enable the tracking, bundling, and sharing
of all of the software libraries and dependencies associated with a research project.
Through their integration with GitHub (https://github.com/), services like Figshare
(https://figshare.com/) and Zenodo (https://zenodo.org/) allow researchers to deposit,
archive, and receive persistent identifiers for their software.

As is evident in the above description, reproducibility-related efforts involving software
often, but not always, overlap with those related to data. However, software presents a
number of unique challenges compared to data and other research products (Chassanoff
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et al., 2018). Even defining the bounds of the term ‘‘software’’ is challenging. For example,
the National Institute of Standards and Technology (NIST) defines software as ‘‘Computer
programs and associated data that may be dynamically written or modified during
execution.’’ (Kissel et al., 2011), a definition that is as recursive as it is potentially confusing
for researchers without a background in computer science or software development.
Software involves highly interdependent source and binary components that are sensitive
to changes in operating environment and are difficult to track (Thain, Ivie & Meng, 2015).
Evaluating the validity and reliability of software often requires inspecting source code,
which is not possible when proprietary licenses are applied (Morin, Urban & Sliz, 2012;
Stodden, 2009). Even when source code is technically available, important information
about versions, parameters, and runtime environments is often missing from the scholarly
record (Howison & Bullard, 2015b; Pan, Yan & Hua, 2016; Stodden, Guo & Ma, 2013).
Seemingly small alterations, even for well described and openly available software tools,
can lead to significant effects on analytical outputs (McCarthy et al., 2014), a problem
exacerbated by the fact that researchers often have minimal formal training in software
development practices (Hannay et al., 2009; Joppa et al., 2013; Prabhu et al., 2011). The
iterative and collaborative nature of software development also means that it does not fit
easily within existing academic incentive structures (Hafer & Kirkpatrick, 2009; Howison &
Herbsleb, 2011; Howison & Herbsleb, 2013), which makes it difficult to create incentives to
follow best practice.

Beyond the communities actively using it as part of the research process, software
is also a growing concern among research service providers. For example, services
related to software preservation (e.g., Rios, 2016) and emulation (e.g., Cochrane, Tilbury &
Stobbe, 2018) have been explored by academic libraries and promoting specific tools and
best practices related to software is central to approaches that can be broadly defined
as ‘‘reproducibility librarianship’’ (Sayre & Riegelman, 2018; Steeves, 2017). Through
workshops, often facilitated through organizations such as The Carpentries (Wilson,
2006; Teal et al., 2015), many academic libraries have also begun to provide guidance and
training to researchers looking to create and use software tools. However, these activities
remain relatively nascent and it is presently unclear what a mature set of services related
to research software and computational reproducibility might look like. By identifying
the characteristics of research software, its uses, and elucidating the related practices and
perceptions of researchers, we hope to establish a benchmark that can be applied to inform
the development of such services in the future. We also hope that our survey instrument,
which we purposely designed to assess a wide picture of how researchers use and share their
software, will be reused or adapted by research service providers and digital libraries as they
design or refine services related to research software and computational reproducibility.

METHODS
In order to understand researcher practices and perceptions related to software and
computational reproducibility, we designed and disseminated an online survey via the
Qualtrics platform (http://www.qualtrics.com). The survey was advertised through blog
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posts, social media, and data- and research-related e-mailing lists and listservs. Because we
cannot know how many potential participants saw the survey and chose not to respond,
we were unable to calculate a response rate. In ‘Participant Demographics’, we detail the
demographics of the survey’s participants. Though these participants represent a broad
range of research areas, it is likely that our responses were influenced by our use of computer
science and neuroscience-focused e-mail lists.

All study materials and procedures were approved by the University of California
Berkeley Committee for Protection of Human Subjects and Office for the Protection of
Human Subjects (protocol ID 2016-11-9358). The full text of the survey can be found in
the supplementary materials. Before beginning the survey, participants were required to
read and give their informed consent to participate. After reading the informed consent
form (see survey), participants indicated their consent by checking a box. Information
from participants who did not check this box was removed from all subsequent analyses.
An anonymized version of our survey results (AlNoamany & Borghi, 2018a), in which
information that could be potentially used to identify study participants (e.g., institution), as
well as the code we used for the analysis (AlNoamany & Borghi, 2018b) are available through
the University of California’s data publication platform Dash and Zenodo, receptively.
Study materials are also available on GitHub (https://github.com/yasmina85/swcuration).

Survey design
The survey was developed to capture a broad range of information about how researchers
use, share, and value their software. The final survey instrument consisted of 56 questions
(53 multiple choice, three open response), divided into four sections. In order, the sections
focused on:
1. Demographics: included questions related the participant’s research discipline, role,

degree, age, institution, and funding sources (seven questions).
2. Characteristics of research software: included questions related to how the participants

use software and the characteristics of their software (17 questions).
3. Software sharing practices: included questions related to how participants make their

software available to others (18 questions).
4. How researchers assign value to software (14 questions).
Because only ‘Related Work’ and ‘Methods’ addressed topics related to computational

reproducibility, this paper is focused on responses to questions in the first three sections.
Future work will further delineate how researchers value software.

To the extent possible, survey questions that included a set of predefined responses
drew upon existing data on the characteristics of research software and activities related
to its use and sharing. For example, the choices for the question ‘‘Which programming
language(s) do you use for writing code?’’ were partially based on a 2016 Stack Overflow
survey (Stack Overflow, 2017) while the choices for the question ‘‘How have you cited
a piece of code or software?’’ drew upon research into the visibility of software in the
scholarly literature (Howison & Bullard, 2015a). For the non-multiple choice questions,
we have used a selection of responses throughout this paper in order to illustrate trends
observed in our quantitative data.
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Table 1 Demographic breakdown for study participants.

Count Percentage Count Percentage

Discipline Institution
Computer Science 39 18.3% Academic: Research

Focused
164 77.0%

Biology 29 13.6% Academic: Teaching
Focused

22 10.3%

Psychology 28 13.1% Government 13 6.1%
Engineering 13 6.1% Nonprofit 7 3.3%
Interdisciplinary
Programs

12 5.6% Academic: Medical
School

3 1.4%

Mathematics 12 5.6% Commercial 2 0.9%
Physics 12 5.6% Other 2 0.9%
Earth Science 9 4.2% Role
Library Sciences 9 4.2% Graduate Student 67 31.5%
Social Sciences 9 4.2% Postdoc 38 17.8%
others 41 19.20% Research Faculty 35 16.4%
Highest degree Staff 29 13.6%
Doctorate 110 51.9% Principal Investigator 25 11.7%
Masters 72 34.0% Research Assistant 10 4.7%
Bachelors 26 12.3% Undergraduate Student 2 0.9%
High school 3 1.4% Research 1 0.5%
Professional degree 1 0.5% Other 6 2.8%

Because we hypothesized that study participants would come to our survey with different
levels of knowledge about software development practices and terminology, we included a
brief list of definitions in our survey for terms like ‘‘source code’’, ‘‘executable’’, and ‘‘open
source software’’ that participants could refer back to at any time. Participants were also
not required to answer every question in order to proceed through the survey.

Filtering and exclusion criteria
We collected 330 responses to our online survey from late January to early April of 2017.
We excluded participants who started the survey but did not answer questions beyond the
demographic section, resulting in 215 participants in our final dataset. Though themajority
of our participants indicated that they were from academia (Table 1), we did not exclude
any participant due to institution type because of the possibility that participants could be
affiliated with an academic or research program while conducting work in another sector.
Institution names and disciplines were canonicalized (e.g., ‘UCB’ and ‘uc berkeley’ were
mapped to UC Berkeley).

Because computer science had the highest representation in our sample and our
assumptions that researchers in computer science would be the most likely to receive
formal training in software related practices, between-group comparison were made
between researchers from computer science and those from other disciplines.
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PARTICIPANT DEMOGRAPHICS
We asked participants about their age, professional degrees, professional title (or role)
and institutional affiliation, institution type, and the sources of funding. The majority of
these questions were multiple choice with an option for an open response upon selecting
‘‘Other’’.

The mean and median age of our participants were 35.8 and 33, respectively. Reflecting
the ubiquity of software within the research enterprise, participants were drawn from awide
variety of research disciplines, institution types, and roles. As shown in Table 1, the most
represented disciplines in our sample were computer science, biology, and psychology.
The majority of our participants were drawn from 129 different research-focused academic
institutions (including 12% out of 215 researchers from UC Berkeley). Table 1 also
shows that participants had a range of degrees and roles, with the most common being
doctorate (51.9%,N = 215) and graduate student (31.5%,N = 215), respectively. In terms
of funding, the most common responses were the National Science Foundation (NSF)
(16.7%, N = 215) and the National Institutes of Health (7.0%, N = 215).

CHARACTERISTICS AND USE OF RESEARCH SOFTWARE
In this section, we describe responses to questions related to the creation and use of source
code and executables.

Source code and executables
We asked participants about the generation and use of source code and executables: do you
write source code? Do you use source code written by others? Do you create executables?
Do you use executables created by others? We found that 84.2% out of 215 responding
participants write source code and 89.8% out of 215 use source code written by others
while 53.7% out of 214 create executables and 80.4% out of 214 use executables written by
others.

Figure 1 shows that participants from computer science were significantly more
likely to write source code [χ22, (N = 213) = 8.93, p< 0 .05], create executables [χ2,
(2,N = 211)= 22.67, p< 0.00001], and use executables created by others [χ22, (N = 212)
= 6.66, p< 0 .05] than participants from other disciplines. Comparisons related to the use
of others’ source code did not reach statistical significance [χ22, (N = 213) = 1.21, p= 0
.55].

We also asked participants about the type of software they use: do you use commercial
software in the course of your research? Do you use open source software in the course of
your research? As shown in Fig. 2 more participants indicated that they use open source
software (94.9%, N = 213) than commercial software (72.8%, N = 212).

Programming languages
In order to quantify the breadth of programming languages used in a research setting,
we asked participants about the languages they use when writing their own code. We
presented participants with 13 languages and also provided ‘‘other’’ and ‘‘not applicable’’
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Figure 1 Significantly more participants from computer science stated that they write source code,
create executables, and use executables created by others than participants from other disciplines. (A)
Do you write source code? (B) Do you use source code written by others? (C) Do you create executables?
(D) Do you use executables created by others?

Full-size DOI: 10.7717/peerjcs.163/fig-1

as options. The 3.7% of responding participants who chose the ‘‘not applicable’’ option
were excluded from subsequent analysis. Reflecting the complexity of defining software,
our results include a mix of programming, markup, and query languages.

Table 2 shows the top ten languages, which together account for 92.6% of languages
selected. The top used languages in our sample were Python, R, Javascript, C++, MATLAB,
Java, C, PHP, and Perl. Python and R were the most used languages, selected by 67.0%
and 59.2% of 206 participants, respectively. For the most part, these results are in line with
previous findings by (Hucka & Graham, 2018) and also match those of a recent study from
Stack Overflow (Stack Overflow, 2017).

In total, 52 different languages were chosen, with the most common responses outside of
the top ten being Ruby, C#, ASP, SAS, XML, XQuery, and Julia. Quantitatively measuring
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Table 2 The top 10 programming languages used by the researchers in our sample. A total of 206 participants answered this question. Together
these languages represent 92.6% of the languages selected. Note that participants could choose more than one language.

Language Python R SQL Javascript C++ MATLAB Java C PHP PERL

Selection 138 122 60 57 54 45 35 25 25 21
Percentage 67.0% 59.2% 29.1% 27.7% 26.2% 21.8% 17.0% 12.1% 12.1% 10.2%

the use programming languages in academic research is difficult due to the variability
of reporting practices (Howison & Bullard, 2015a), but our results are largely in line the
rapid ascent of R and Python as tools for data science. When participants indicated that
they use multiple programming languages, the most common combinations were Python
and R. Python and R were chosen together by 3.9% of 206 participants, and they are
chosen together with other languages by 34.0% of participants. The second most common
combinations were C++ and Python (2.9% of 206 participants) and Matlab, Python and R
(2.9%, N = 206).

Use of research software
Previous scholarship (e.g., Borgman, Wallis & Mayernik, 2012) has indicated that
researchers use software for a wide variety of purposes. To examine the purposes of research
software, we asked participants about how they use their code or software. This question
allowed them to choose multiple answers from a suggested list or input other answers.
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software?

Full-size DOI: 10.7717/peerjcs.163/fig-3

Figure 3A shows that our participants use software primarily to analyze data, visualize
data, clean and organize data, automate their work, and collect data. A total of 118
participants (55.7% out of 211 participants) responded that they use software for all five
purposes. ‘‘Other’’ responses included running simulations, building models, researching
algorithms, testing methods, writing compilers, and sharing and publishing data.

In addition to examining their use of code, we also inquired about how our participants
repurpose research software. The majority (82%, N = 207) indicated that they repurpose
code (i.e., using it for purposes other than the one for which it was originally created),
see Fig. 3A. Though previous work on the reuse of research software has often, though
certainly not exclusively, been focused on issues such licensing, review of code, and user
awareness (e.g., Joppa et al., 2013; Morin, Urban & Sliz, 2012). These results demonstrate
the need for the establishment of best practices (or good enough practices—e.g.,Wilson et
al., 2017) for code similar to those related to research data. After all, even a researcher who
is reusing their own code, may need to refer back to relevant comments or documentation.
Furthermore, though 53.3% (N = 199) of our participants stated that they write code
collaboratively (Fig. 4A), only 33% (N = 200) indicated that everyone in their lab uses
the same programming languages (Fig. 4B). Thus, the establishment of best practices is
necessary to ensure that different team members can properly use and build upon code
written in different languages for different purposes.

In an open response question, we asked participants to describe, in their own words,
how they use software or code. Here, again, participants indicated that they use software
for a wide variety of purposes. One participant summed the relationship between software
and their research succinctly as ‘‘I use software for stimulus presentation, data acquisition,
and data analysis and visualization—basically my entire research is run via computers (and
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Figure 4 Consistency of programming languages within research groups. (A) Do you write code col-
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language(s)?

Full-size DOI: 10.7717/peerjcs.163/fig-4

thus code).’’ Similarly, another participant described the application of software within
the field of computer science: ‘‘As a computer scientist, almost every aspect of my research
from grant proposal to collecting data to analyzing data to writing up my results involves
software. I write software. I use software my collaborators or students write as well as open
source and commercial software.’’

REPRODUCIBILITY-RELATED PRACTICES
To understand how the practices of our participants align with those related to
computational reproducibility, we asked a number of questions about adding comments to
source code, generating documentation, communicating information about dependencies,
and using ‘‘notebook’’ applications such as Jupyter. We also asked about awareness of
coding conventions and best practices. The results of these questions are shown in Figs. 5
and 6.

In line with previous research (Hannay et al., 2009; Joppa et al., 2013; Prabhu et al.,
2011), only 53.4% (N = 214) of our participants indicated that they have received
formal training in coding conventions or best practices. At the same time, we found
that many participants actually employ practices that are commonly cited for establishing
computational reproducibility. For example, when asked ‘‘Do you include comments in
your code?’’ and ‘‘When you share your code or software, do you provide information about
dependencies?’’ the majority of participants (98.0%, N = 202, 72.2%, N = 167) indicated
that they include comments and provide information about dependencies, respectively.
However, substantially fewer participants indicated that they employ other practices such
as generating documentation (60.0%, N = 205). While electronic lab notebooks have been
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cited as a tool for ensuring reproducibility (Kluyver et al., 2016), only 43.6% (N = 206) of
our participants indicated that they use them to write code.

Comparisons of responses by discipline or location were insignificant even, surprisingly,
on questions related to receiving training in coding conventions or coding best practices;
computer science researchers versus others (Figs. 5 and 6): [χ21, (N = 213) = 1.58, p= 0
.21], UC Berkeley researchers versus others: [χ22, (N = 200) = 0.00, p= 1 .00]. The
lone exception was in providing information about dependencies (Fig. 6B). Significantly
more respondents from computer science reported that they include information about
dependencies when they share their code than participants from other disciplines [χ22,
(N = 167) = 17.755, p< 0 .001].
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SHARING AND PRESERVATION OF THE RESEARCH
SOFTWARE
Making materials available for others to evaluate, use, and build upon is an essential
component of ensuring reproducibility. Much of the previous work examining the sharing
of research software has focused on the degree to which software is cited and described
irregularly in the scholarly literature (Howison & Bullard, 2015a; Smith, Katz & Niemeyer,
2016) and the relationship between code sharing and research impact (Vandewalle, 2012).
In order to gain a greater understanding of how sharing practices relate to reproducibility,
we asked our participants a variety of questions about how they share, find, and preserve
software.

Sharing research software
Sharing practices
While only half (50.5%, N = 198) of our participants indicated that they were aware of
related community standards of software sharing in their field or discipline, the majority
indicated that they share software as part of the research process (computer science: 84.9%,
other disciplines: 81.1% for N = 186) (Fig. 7). Of 188 participants, 31% indicated that
there were reasons their software could not be shared Fig. 7B. The most commonly cited
restrictions on sharing were the inclusion of sensitive data, intellectual property concerns,
and the time needed to prepare code for sharing. These results are similar to those of
commonly found when researchers are asked why they cannot share data (Tenopir et al.,
2011). Comparisons between computer science and other disciplines on the sharing of
code were not statistically significant [χ2(2,N = 186)= 1.5842, p> 0 .4529].
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We checked if participants share new versions of their code and found that 87.8%
(N = 155) do so. We also asked participants ‘‘Do you use a version control system (e.g.,
Git, SVN)?’’ and found that 81.1% (N = 184) indicated that they use version control
system. A between-group comparison related to the sharing of new versions was not
statistically significant [CS vs non-CS: χ2(2,N = 155)= 2.2, p> 0 .05] (Fig. 7C), however
significantly more participants from computer science indicated that they share their code
via a version control system than those from other disciplines [χ2(2,N = 184= 16.4),
p< 0 .05] (Fig. 7D).

AlNoamany and Borghi (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.163 14/25

https://peerj.com
https://doi.org/10.7717/peerjcs.163/fig-7
http://dx.doi.org/10.7717/peerj-cs.163


Source Code Executable code Both

%

0

20

40

60

80 75.29

7.65

17.06

A

N = 170

Directly via e−mail

In a scholarly
publication

Through posts on my
website/lab website

Through social media

In a Software or Data
paper

Through online
communities

Other

%

0 20 40 60 80

74.54

64.24

50.3

43.64

20

17.58

15.76

B

N = 165

Figure 8 Methods and formats for sharing software.Note that the second question could be answered
with more than one response. (A) In what format do you typically share your code? (B) How do you tell
people about the code or software you’ve shared?

Full-size DOI: 10.7717/peerjcs.163/fig-8

Sharing format and platform
We asked our participants about how they share their code and found that 75.3% of 170
participants share their software in the form of source code, 7.6% share executables only,
and 17.1% share both formats (Fig. 8A).

As shown in Fig. 8B, participants indicated that they share their software through a
variety of channels, with the most common being direct communication (e.g., e-mail),
which was selected by 74.5% of the participants. The figure shows that 64.2% of the
time our participants make their code available through scholarly publications, 50.3%
through posts on my website/lab website, and 43.6% through social media platforms. The
participants who indicated that they use methods other than those listed in our survey
generally responded that they do so using platforms such as GitHub or the Open Science
Framework. A few researchers mentioned that they save their code along with the dataset
in their institutional repository, while four participants indicated that they publicize their
code via conferences.

Preserving research software
Preserving and maintaining research software present multiple challenges for researchers
and institutions (Chassanoff et al., 2018). The complex nature of software makes it hard
to decide what to preserve to enable the re-use of software in the future (Rios, 2017). To
understand the preservation practices around research software, we asked a variety of
questions about preserving research software: Do you take any steps to ensure that your
code or software is preserved over the long term; how long do you typically save your code
or software; and where do you save your code or software so that it is preserved over the
long term?
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While research software is a building block for ensuring reproducibility, we found
that 39.9% of participants (N = 183) indicated that they do not prepare their code for
long-term preservation. We investigate how long and where researchers preserve their
research software in the following subsections.

How long do you typically save your code or software?
Figure 9A shows that 41.4% out of 162 participants indicated that they preserve their code
for more than eight years, but generally not in a way that maintains its use. In contrast,
7.4% (N = 162) of participants keep their code until it is described in a publication, poster,
or presentation. We found 10.5% out of 162 researchers tend to keep their codes for 3 years
or less and 19.8% tend to keep their codes for 4–8 year. Only 21.0% out of 162 researchers
tend to keep their codes for 8 years or more with maintaining their codes for future access
and use.

Where do you save your code or software so that it is preserved over the
long term?
In terms of where our participants preserve their code, Fig. 9B shows that code hosting
sites (e.g., GitHub) was the most popular approach (76.2%), followed by hard drives
or external storage (56.4%), then cloud-based facilities (38.1%). We found that 20.4%
of participants indicated they use their own website to preserve their code and only
12.7% of our participants indicated that they use archival repositories (e.g., figshare). The
participants who indicated ‘‘other’’ responses mentioned that they use a backup system of
their lab, organization archive (e.g., University server), their own PC, language package
registry (CRAN, PyPi or similar), Internal SVN repository, or project specific websites.
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We asked participants to define sharing and preserving in their own words ‘‘please
describe, in your own words, how you define ‘‘sharing’’ and ‘‘preserving’’ in the context of
your code or software.’’ Their responses generally indicated that they make a distinction
between the two concepts. For example, one participant stated succinctly, ‘‘sharing is
making code available to others, in a readily usable form. Preserving is ensuring to the
extent practical that the code will be usable as far into the future as possible.’’ However,
several responses indicated that participants did not necessarily regard preservation as
an active process that continues even after the conclusion of a particular project (e.g.,
‘‘sharing means giving access to my code to someone else. Preserving means placing my
code somewhere where it can remain and I will not delete it to save room or lose it when I
switch computers or suffer a hard drive failure.’’ In contrast, other responses indicated that
participants were aware that preservation is important for the purpose of reuse and had a
knowledge of preservation tools. For example, one researcher defined preserving software
as, ‘‘branching so that code remains compatible with different versions of overarching
libraries (in my case) or with new coding standards and compilers’’ and another stated
‘‘Preserving should be done via a system like LOCKSS (https://www.lockss.org/)... Sharing
can be done via the web, but must include a license so that recipients know about their
rights.’’

DISCUSSION
Scholars throughout the humanities and sciences depend on software for a wide variety
of purposes, including the collection, analysis, and visualization of data (Borgman, Wallis
& Mayernik, 2012; Hey, Tansley & Tolle, 2009). Though ubiquitous, software presents
significant challenges to efforts aimed at ensuring reproducibility. Our results demonstrate
that researchers not only create and use software for a wide variety of purposes, but also
that their software-related practices are often not completely in line with those associated
with reproducibility. In particular, our results demonstrate that, while scholars often save
their software for long periods of time, many do not actively preserve or maintain it. This
perspective is perhaps best encapsulated by one of our participants who, when completing
our open response question about the definition of sharing and preserving software, wrote
‘‘Sharing means making it publicly available on GitHub. Preserving means leaving it on
GitHub’’. We share this anecdote not to criticize our participants or their practices, but to
illustrate the outstanding need for support services related to software.

In the broader scholarly communications space, there are several prominent frameworks
that relate to the reproducibility of scholarly outputs. As part of an effort to advance data
as a ‘‘first class’’ research product, the FAIR (Findable, Accessible, Interoperable, and
Reusable) guidelines provide a measurable set of principles related to the management
and sharing of research data (Wilkinson et al., 2016). The FAIR principles are general
enough that they can, with some modification, also be applied to software (Jimenez et
al., 2017). At the level of scholarly publications, the TOP (Transparency and Openness
Promotion) guidelines (Nosek et al., 2015) address citation standards and the availability of
research materials including data and software. A supplement to TOP, the Reproducibility
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Enhancement Principles (REP) (Stodden et al., 2016) specifically targets disclosure issues
related to computation and software and recommends that researchers share not only the
data that underlies a set of findings, but also the software, workflows, and details related
to the computational environment that produced them. However, both the TOP and REP
address software are focused on scholarly publications and our results support previous
research indicating that software mostly exists outside of the publication-based reputation
economy of science. Therefore, while the disclosure of computational methods is important
for establishing reproducibility, education-based approaches that provide guidance about
software before the point it is cited in a scholarly publication are also necessary.

The majority of our participants indicated that they view code or software as a ‘‘first
class’’ research product, that should be assessed, valued, and shared in the same way as
a journal article. However, our results also indicate that there remains a significant gap
between this perception and actual practice. The fact that our participants indicated that
they create and use software in a wide variety of forms and for a wide variety of purposes
demonstrates the significant technical challenges inherent in ensuring computational
reproducibility. In contrast, the lack of active preservation and tendency to share software
outside traditional (and measurable) scholarly communications channels displayed by
our sample demonstrates the social and behavioral challenges. A significant difficulty in
ensuring computational reproducibility is that researchers oftentimes do not treat their
software as a ‘‘first class’’ research product. These findings reinforce the need for programs
to train researchers on how to maintain their code in the active phase of their research.

At present, there are a number of initiatives focused on addressing the preservation and
reproducibility of software. In the United States, the Software Preservation Network (SPN)
(Meyerson et al., 2017) represents an effort to coordinate efforts to ensure the long-term
access to software. The focus of SPN is generally on cultural heritage software rather than
research software, but their work delineating issues related to metadata, governance, and
technical infrastructure has substantial overlap with what is required for research software.
In the United Kingdom, the Software Sustainability Institute trains researchers on how
to develop better software and make better use of the supporting infrastructure (Crouch
et al., 2013). Befitting the necessity of training and preservation indicated by our study, a
similar effort, the US Software Sustainability Initiative was recently awarded funding by
the National Science Foundation (NSF Award #1743188). While it is likely not possible for
academic institutions to offer support services that cover the broad range of programming
languages and applications described in our survey results, collaborating with such groups
to create guidance and best practice recommendations could be a feasible first step in
engaging with researchers about their software and code in the same manner as many
research data management (RDM) initiatives now engage with them about their data.
While research stakeholders including academic institutions, publishers, and funders
have an interest in tackling issues of computational reproducibility in order to ensure the
integrity of the research process, our results demonstrate the complexity of doing so. One
participant summed up why their code could not be made re-usable: ‘‘Most of my coding is
project specific and not reusable between projects because the datasets I encounter are very
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variable. I typically only generate packages for tasks such as getting data from a database
(e.g., PubMed) and keeping RMarkdown templates in an orderly way.’’

CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the results of surveying researchers across different institutions
on software usage, sharing, and preservation. We also checked the practices used to manage
software for ensuring reproducibility and integrity of the scientific research. Our results
point to several interesting trends including the widespread of writing source code and
of using source code written by others, the variety of programming languages used and
the lack of consistency even within the same lab or research group, the use of open
source software over commercial software, and the adoption of some practices assure
computational reproducibility, such as adding comments and documentation to code, but
not others, specifically the general lack of active preservation. We hope our results and
our survey instrument will help service providers to assess and deliver the right materials,
tools, and systems to help researchers to manage their code and ensure computational
reproducibility.

The present study was designed to capture a broad picture of how researchers use and
share their software. For this reason, we were not able to provide a particularly granular
picture of how individual practices relate to reproducible science outcomes. For example,
while the majority of our participants responded that they include comments in their
source code and generate documentation for their software, we were not able to make
any judgment about whether or not the contents of these comments and documentation
are sufficient to ensure reproducibility. Follow up research is needed in order to gain a
more nuanced understanding of how processes related to the creation and use of research
software relate to reproducibility. Though our sample included participants from a range of
research areas and institutions, it is also likely that a more in-depth analysis of the activities
of researchers affiliated with individual disciplines and institutions would reveal trends that
would be informative for local research service providers. Therefore, we reiterate our hope
that future research will use or adapt our survey instrument and expand upon our findings.
Despite these limitations, our results indicate several potential directions for future library
services centered on helping researchers create, use, and share their software and assure
computational reproducibility.
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