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Abstract: A Roman dominating function (RDF) on a graph G = (V,E) is a labeling
f : V → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The

weight of f is the value f(V ) = Σv∈V f(v) The Roman domination number, γR(G), of

G is the minimum weight of an RDF on G. An RDF of minimum weight is called a
γR-function. A graph G is said to be γR-excellent if for each vertex x ∈ V there is a

γR-function hx on G with hx(x) 6= 0. We present a constructive characterization of γR-

excellent trees using labelings. A graph G is said to be in class UV R if γ(G−v) = γ(G)
for each v ∈ V , where γ(G) is the domination number of G. We show that each tree in

UV R is γR-excellent.
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1. Introduction and preliminaries

For basic notation and graph theory terminology not explicitly defined here, we in

general follow Haynes et al. [9]. Specifically, let G be a simple graph with vertex

set V (G) and edge set E(G). A spanning subgraph for G is a subgraph of G which

contains every vertex of G. In a graph G, for a subset S ⊆ V (G) the subgraph induced

by S is the graph 〈S〉 with vertex set S and edge set {xy ∈ E(G) | x, y ∈ S}. The

complement G of G is the graph whose vertex set is V (G) and whose edges are the

pairs of nonadjacent vertices of G. We write Kn for the complete graph of order n and

Pn for the path on n vertices. Let Cm denote the cycle of length m. For any vertex x

of a graph G, NG(x) denotes the set of all neighbors of x in G, NG[x] = NG(x)∪ {x}
and the degree of x is degG(x) = |NG(x)|. The minimum and maximum degrees of a

graph G are denoted by δ(G) and ∆(G), respectively. For a subset S of vertices, let
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NG[S] = ∪v∈SNG[v]. The external private neighborhood epn(v, S) of v ∈ S is defined

by epn(v, S) = {u ∈ V (G) − S | NG(u) ∩ S = {v}}. A leaf is a vertex of degree one

and a support vertex is a vertex adjacent to a leaf. If F and H are disjoint graphs,

vF ∈ V (F ) and vH ∈ V (H), then the coalescence (F ·H)(vF , vH : v) of F and H via

vF and vH , is the graph obtained from the union of F and H by identifying vF and

vH in a vertex labeled v. If F and H are graphs with exactly one vertex in common,

say x, then the coalescence (F ·H)(x) of F and H via x is the union of F and H.

Let Y be a finite set of integers which has positive as well as non-positive elements.

Denote by P (Y) the collection of all subsets of Y. Given a graph G, for a Y-valued

function f : V (G)→ Y and a subset S of V (G) we define f(S) = Σv∈Sf(v). The weight

of f is f(V (G)). A Y-valued Roman dominating function on a graph G is a function

f : V (G)→ Y satisfying the conditions: (a) f(NG[v]) ≥ 1 for each v ∈ V (G), and (b)

if v ∈ V (G) and f(v) ≤ 0, then there is uv ∈ NG(v) with f(uv) = max{k | k ∈ Y}. For

a Y-valued Roman dominating function f on a graph G, where Y = {r1, r2, . . . , rk}
and r1 < r2 < · · · < rk, let V fri = {v ∈ V (G) | f(v) = ri} for i = 1, .., k. Since

these k sets determine f , we can equivalently write f = (V fr1 ;V fr2 ; . . . ;V frk). If f

is Y-valued Roman dominating function on a graph G and H is a subgraph of G,

then we denote the restriction of f on H by f |H . The Y-Roman domination number

of a graph G, denoted γYR(G), is defined to be the minimum weight of a Y-valued

dominating function on G. As examples, let us mention: (a) the domination number

γ(G) ≡ γ{0,1}R(G), (b) the minus domination number [6], where Y = {−1, 0, 1}, (c)

the signed domination number [5], where Y = {−1, 1}, (d) the Roman domination

number γR(G) ≡ γ{0,1,2}R(G) [4], and (e) the signed Roman domination number [1],

where Y = {−1, 1, 2}. A Y-valued Roman dominating function f on G with weight

γYR(G) is called a γYR-function on G.

Now we introduce a new partition of a vertex set of a graph, which plays a key role in

the paper. In determining this partition, all γYR-functions of a graph are necessary.

For each X ∈ P (Y) we define the set V X(G) as consisting of all v ∈ V (G) with

{f(v) | f is a γYR-function on G} = X. Then all members of the family (V X(G))X∈P (Y)

clearly form a partition of V (G). We call this partition the γYR-partition of G.

Fricke et al. [7] in 2002 began the study of graphs, which are excellent with respect

to various graph parameters. Let us concentrate here on the parameter γYR. A vertex

v ∈ V (G) is said to be (a) γYR-good, if h(v) ≥ 1 for some γYR-function h on G, and

(b) γYR-bad otherwise. A graph G is said to be γYR-excellent if all vertices of G are

γYR-good. Any vertex-transitive graph is γYR-excellent. Note that when γYR ≡ γ, the

set of all γ-good and the set of all γ-bad vertices of a graph G form the γ-partition

of G. For further results on this topic see e.g. [2, 10–15].

In this paper we begin an investigation of γYR-excellent graphs in the case when

Y = {0, 1, 2}. In what follows we shall write γR instead of γ{0,1,2}R, and we shall

abbreviate a {0, 1, 2}-valued Roman dominating function to an RD-function. Let us

describe all members of the γR-partition of any graph G (we write V i(G), V ij(G) and

V ijk(G) instead of V {i}(G), V {i,j}(G) and V {i,j,k}(G), respectively).

(i) V i(G) = {x ∈ V (G) | f(x) = i for each γR-function f on G}, i = 1, 2, 3;
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(ii) V 012(G) = {x ∈ V (G) | there are γR-functions fx, gx, hx on G with

fx(x) = 0, gx(x) = 1 and hx(x) = 2};

(iii) V ij(G) = {x ∈ V (G)− V 012(G) | there are γR-functions fx and gx on G

with fx(x) = i and gx(x) = j}, 0 ≤ i < j ≤ 2.

Clearly a graph G is γR-excellent if and only if V 0(G) = ∅.
It is often of interest to known how the value of a graph parameter is affected when

a small change is made in a graph. In this connection, Hansberg, Jafari Rad and

Volkmann studied in [8] changing and unchanging of the Roman domination number

of a graph when a vertex is deleted, or an edge is added.

Lemma 1. ([8]) Let v be a vertex of a graph G. Then γR(G− v) < γR(G) if and only if
there is a γR-function f = (V f

0 ;V f
1 ;V f

2 ) on G such that v ∈ V f
1 . If γR(G− v) < γR(G) then

γR(G− v) = γR(G)− 1.

Lemma 1 implies that V 1(G), V 01(G), V 12(G), V 012(G) form a partition of V −(G) =

{x ∈ V (G) | γR(G− x) + 1 = γ(G)}.

Lemma 2. ([8]) Let x and y be non-adjacent vertices of a graph G. Then γR(G) ≥
γR(G + xy) ≥ γR(G) − 1. Moreover, γR(G + xy) = γR(G) − 1 if and only if there is a
γR-function f on G such that {f(x), f(y)} = {1, 2}.

The same authors defined the following two classes of graphs:

(i) RCV R is the class of graphs G such that γR(G− v) < γR(G) for all v ∈ V (G).

(ii) RCEA is the class of graphs G such that γR(G+ e) < γR(G) for all e ∈ E(G).

Remark 1. By Lemmas 1 and 2 it easy follows that:

(i) each graph in RCV R ∪RCEA is γR-excellent,

(ii) if G is a γR-excellent graph, e ∈ E(G) and γR(G) = γR(G + e), then G + e is γR-
excellent,

(iii) each graph (in particular each γR-excellent graph) is a spanning subgraph of a graph
in RCEA with the same Roman domination number.

Denote by Gn,k the family of all mutually non-isomorphic n-order γR-excellent con-

nected graphs having the Roman domination number equal to k. With the family

Gn,k, we associate the poset REn,k = (Gn,k,≺) with the order ≺ given by H1 ≺ H2

if and only if H2 has a spanning subgraph which is isomorphic to H1 (see [16] for

terminology on posets). Remark 1 shows that all maximal elements of REn,k are in

RCEA. Here we concentrate on the set of all minimal elements of REn,k. Clearly a

graph H ∈ Gn,k is a minimal element of REn,k if and only if for each e ∈ E(H) at
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least one of the following holds: (a) H − e is not connected, (b) γR(H) 6= γR(H − e),
and (c) H − e is not γR-excellent. All trees in Gn,k are obviously minimal elements of

REn,k.

The remainder of this paper is organized as follows. In Section 2, we formulate our

main result, namely, a constructive characterization of γR-excellent trees. We present

a proof of this result in Sections 3 and 4. Applications of our main result are given

in Sections 5 and 6. We conclude in Section 7 with some open problems.

We end this section with the following useful result.

Lemma 3. ([4]) Let f = (V f
0 ;V f

1 ;V f
2 ) be any γR-function on a graph G. Then each

component of a graph
〈
V f
1

〉
has order at most 2 and no edge of G joins V f

1 and V f
2 .

In most cases Lemmas 1, 2 and 3 will be used in the sequel without specific reference.

2. The main result

In this section, we present a constructive characterization of γR-excellent trees using

labelings. We define a labeling of a tree T as a function S : V (T ) → {A,B,C,D}.
A labeled tree is denoted by a pair (T, S). The label of a vertex v is also called

its status, denoted staT (v : S) or staT (v) if the labeling S is clear from context.

We denote the sets of vertices of status A,B,C and D by SA(T ), SB(T ), SC(T ) and

SD(T ), respectively. In all figures in this paper we use • for a vertex of status A, H

for a vertex of status B, � for a vertex of status C, and ◦ for a vertex of status D. If

H is a subgraph of T , then we denote the restriction of S on H by S|H .

Figure 1. All trees with |LB ∪ LC | ≤ 2.

To state a characterization of γR-excellent trees, we introduce four types of oper-

ations. Let T be the family of labeled trees (T, S) that can be obtained from a
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sequence of labeled trees τ : (T 1, S1), . . . , (T j , Sj), (j ≥ 1), such that (T 1, S1) is in

{(H1, I
1), .., (H5, I

5)} (see Figure 1) and (T, S) = (T j , Sj), and, if j ≥ 2, (T i+1, Si+1)

can be obtained recursively from (T i, Si) by one of the operations O1, O2, O3 and O4

listed below; in this case τ is said to be a T -sequence of T . When the context is clear

we shall write T ∈ T instead of (T, S) ∈ T .

Figure 2. (F, J)-graphs

Operation O1. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (F, J) ∈
{(F1, J

1), (F2, J
2), (F3, J

3)} (see Figure 2) by adding the edge ux, where u ∈ V (Ti),

x ∈ V (F ) and staT i(u) = staF (x) = C.

Operation O2. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (F4, J
4)

(see Figure 2) by adding the edge ux, where u ∈ V (T i), x ∈ V (F4), staT i(u) = D,

and staF4(x) = C.

Operation O3. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (Hk, I
k),

k ∈ {2, 3, . . . , 7} (see Figure 1), in such a way that T i+1 = (T i ·Hk)(u, v : u), where

staT i(u) = staHk
(v) = A, and staT i+1(u) = A.

Operation O4. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (Hk, I
k),

k ∈ {3, 4, 6} (see Figure 1), in such a way that T i+1 = (T i · Hk)(u, v : u), where

staT i(u) = D, staHk
(v) = A, and staT i+1(u) = D.

Remark that if y ∈ V (T i) and i ≤ k ≤ j, then staT i(y) = staTk(y). Now we are

prepared to state the main result.

Theorem 1. Let T be a tree of order at least 2. Then T is γR-excellent if and only if there
is a labeling S : V (T ) → {A,B,C,D} such that (T, S) is in T . Moreover, if (T, S) ∈ T
then

(P1) SB(T ) = {x ∈ V 02(T ) | deg(x) = 2 and |N(x) ∩ V 02(T )| = 1}, SA(T ) = V 01(T ),
SD(T ) = V 012(T ), and SC(T ) = V 02(T )− SB(T ).

3. Preparation for the proof of Theorem 1

3.1. Coalescence

We shall concentrate on the coalescence of two graphs via a vertex in V 01 and derive

the properties which will be needed for the proof of our main result.
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Proposition 1. Let G = (G1 · G2)(x) be a connected graph and x ∈ V 01(G). Then the
following holds.

(i) If f is a γR-function on G and f(x) = 1, then f |Gi is a γR-function on Gi, and f |Gi−x

is a γR-function on Gi − x, i = 1, 2.

(ii) γR(G) = γR(G1) + γR(G2)− 1.

(iii) If h is a γR-function on G and h(x) = 0, then exactly one of the following holds:

(iii.1) h|G1 is a γR-function on G1, h|G2−x is a γR-function on G2− x, and h|G2 is no
RD-function on G2;

(iii.2) h|G1−x is a γR-function on G1 − x, h|G1 is no RD-function on G1, and h|G2 is
a γR-function on G2.

(iv) Either {x} = V 01(G1) ∩ V 01(G2) or {x} = V 01(Gi) ∩ V 1(Gj), where {i, j} = {1, 2}.

Proof. (i) and (ii): Since f(x) = 1, f |Gi is an RD-function on Gi, and f |Gi−x
is an RD-function on Gi − x, i = 1, 2. Assume g1 is a γR-function on G1 with

g1(V (G1)) < f |G1
(V (G1)). Define an RD-function f ′ as follows: f ′(u) = g1(u) for all

u ∈ V (G1) and f ′(u) = f(u) when u ∈ V (G2 − x). Then f ′(V (G)) = g1(V (G1)) +

f |G2−x(V (G2 − x)) < f(V (G)), a contradiction. Thus, f |Gi
is a γR-function on Gi,

i = 1, 2. Now, Lemma 1 implies that f |Gi−x is a γR-function on Gi − x, i = 1, 2.

Hence γR(G) = f |G1
(V (G1)) + f |G2

(V (G2))− f(x) = γR(G1) + γR(G2)− 1.

(iii) First note that h(x) = 0 implies h|Gi is an RD-function on Gi for some i ∈ {1, 2},
say i = 1. If h|G2

is an RD-function on G2 then γR(G) = h(V (G)) ≥ γR(G1)+γR(G2),

a contradiction with (ii). Thus, h|G2−x is an RD-function on G2 − x. Now we have

γR(G1) + γR(G2) − 1 = γR(G) = h(V (G)) = h|G1
(V (G1)) + h|G2−x(V (G2 − x)) ≥

γR(G1)+(γR(G2)−1). Hence h|G1
is a γR-function on G1 and h|G2−x is a γR-function

on G2 − x.

(iv) Let f1 be a γR-function on G1. Assume first that f1(x) = 2. Define an RD-

function g on G as follows: g(u) = f1(u) when u ∈ V (G1) and g(u) = f(u) when

u ∈ V (G2 − x), where f is defined as in (i). The weight of g is γR(G1) + (γR(G2) +

1) − 2 = γR(G). But g(x) = 2 and x ∈ V 01(G), a contradiction. Thus f1(x) 6= 2.

Now by (i) we have x ∈ V 1(Gi) ∪ V 01(Gi), i = 1, 2, and by (iii), x ∈ V 01(Gj) for

some j ∈ {1, 2}.

Proposition 2. Let G = (G1 · G2)(x), where G1 and G2 are connected graphs and
{x} = V 01(G1) ∩ V 01(G2).

(i) If fi is a γR-function on Gi with fi(x) = 1, i = 1, 2, then the function f : V (G) →
{0, 1, 2} with f |Gi = fi, i = 1, 2, is a γR-function on G.

(ii) γR(G) = γR(G1) + γR(G2)− 1.

(iii) Let VR = {V 0, V 1, V 2, V 01, V 02, V 12, V 012}. Then for any A ∈ VR, A(G1) ∪ A(G2) =
A(G).
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Proof. (i) and (ii): Note that f is an RD-function on G and γR(G) ≤ f(V (G)) =

f1(V (G1)) +f2(V (G2))−f(x) = γR(G1) +γR(G2)−1. Now let h be any γR-function

on G.

Case 1: h(x) ≥ 1. Then h|Gi is an RD-function on Gi, i = 1, 2. If h(x) = 2 then

since x ∈ V 01(G1) ∩ V 01(G2), h|Gi
is no γR-function on Gi, i = 1, 2. Hence γR(G) ≥

(γR(G1) + 1) + (γR(G2) + 1)− h(x) = γR(G1) + γR(G2), a contradiction. If h(x) = 1

then γR(G) = h(V (G)) = h(V (G1)) +h(V (G2))−h(x) ≥ γR(G1) +γR(G2)−1. Thus

h(x) = 1, γR(G) = γR(G1) + γR(G2)− 1 and f is a γR-function on G.

Case 2: h(x) = 0. Then at least one of h|G1 and h|G2 is an RD-function, say the first.

If h|G2
is an RD-function on G2 then h(V (G)) ≥ γR(G1) + γR(G2), a contradiction.

Hence h|G2−x is a γR-function on G2 − x. But then γR(G) = h(V (G)) ≥ γR(G1) +

γR(G2 − x) ≥ γR(G1) + γR(G2)− 1 ≥ γR(G).

Thus, (i) and (ii) hold.

(iii): Let g1 be a γR-function on G1 with g1(x) = 0, and g2 a γR-function on G2 − x.

Then the RD-function g on G for which g|G1
= g1 and g|G2−x = g2 has weight

g1(V (G1)) + g2(V (G2−x)) = γR(G1) + γR(G2−x) = γR(G1) + γR(G2)− 1 = γR(G).

Hence by (i), x ∈ V 01(G) ∪ V 012(G). However, by Case 1 it follows that h(x) 6= 2 for

any γR-function h on G. Thus x ∈ V 01(G).

Let y ∈ V (G1−x), l1 a γR-function on G1, and h a γR-function on G. We shall prove

that the following holds.

Claim 4.1 There are a γR-function l on G, and a γR-function h1 on G1 such that

l(y) = l1(y) and h1(y) = h(y).

Define an RD-function l on G as l|G1
= l1 and l|G2−x = l2, where l2 is a γR-function

on G2 − x. Since l(V (G)) = γR(G1) + γR(G2 − x) = γR(G), l is a γR-function on G

and l(y) = l1(y).

Assume now that there is no γR-function h1 on G1 with h1(y) = h(y). Proposition 1

implies that, h|G1−x is a γR-function on G1 − x. But then the function h′ : V (G1)→
{0, 1, 2} defined as h′(u) = 1 when u = x and h′(u) = h|G1(u) otherwise, is a γR-

function on G1 with h′(y) = h|G1
(y), a contradiction.

By Claim 4.1 and since x ∈ V 01(G), A(G1) = A(G) ∩ V (G1) for any A ∈ VR.

By symmetry, A(G2) = A(G) ∩ V (G2). Therefore A(G1) ∪ A(G2) = A(G) for any

A ∈ VR.

Lemma 4. Let G = (G1 · G2)(x), where G1 and G2 are connected graphs and {x} =
V 012(G1) ∩ V 01(G2). Then γR(G) = γR(G1) + γR(G2)− 1 and x ∈ V 012(G).

Proof. Let fi be a γR-function on Gi with fi(x) = 1, i = 1, 2. Then the function f

defined as f |Gi
= fi is an RD-function on Gi, i = 1, 2. Hence γR(G) ≤ f(V (G)) =

γR(G1) + γR(G2)− 1. Let now h be any γR-function on G.

Case 1: h(x) = 2.
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Since x ∈ V 012(G1)∩V 01(G2), h|G1
is a γR-function on G1 and h|G2

is an RD-function

on G2 of weight more than γR(G2). Hence γR(G) = h(V (G)) ≥ γR(G1) + (γR(G2) +

1)− h(x). Thus γR(G) = γR(G1) + γR(G2)− 1.

Case 2: h(x) = 1.

Then obviously h|G1 and h|G2 are γR-functions. Hence γR(G) = γR(G1)+γR(G2)−1.

Case 3: h(x) = 0.

Hence at least one of h|G1
and h|G2

is a γR-function. If both h|G1
and h|G2

are

γR-functions, then γR(G) = γR(G1) + γR(G2), a contradiction. Hence either h|G1

and h|G2−x are γR-functions, or h|G1−x and h|G2
are γR-functions. Since {x} =

V 012(G1) ∩ V 01(G2), in both cases we have γR(G) = γR(G1) + γR(G2)− 1.

Thus, γR(G) = γR(G1) + γR(G2)− 1 and x ∈ V 012(G).

3.2. Three lemmas for trees

Lemma 5. Let T be a γR-excellent tree of order at least 2. Then V (T ) = V 01(T ) ∪
V 012(T ) ∪ V 02(T ).

Proof. Let x ∈ V (T ), y ∈ N(x) and f a γR-function on T . Suppose x ∈ V 1(T ). If

f(y) = 1, then the RD-function g on T defined as g(x) = 2, g(y) = 0 and g(u) = f(u)

for all u ∈ V (T ) − {x, y} is a γR-function on T , a contradiction. But then N(x) ⊆
V 0(T ), which is impossible.

Suppose now x ∈ V 2(T ) ∪ V 12(T ). Hence x is not a leaf. Choose a γR-function h on

T such that (a) h(x) = 2, and (b) k = |epn[x, V h2 ]| to be as small as possible. Let

epn[x, V h2 ] = {y1, y2, . . . , yk} and denote by Ti the connected component of T − x,

which contains yi. Hence h(yi) = 0 for all i ≤ k. Since T is γR-excellent, there is

a γR-function fk on T with fk(yk) 6= 0. Since x ∈ V 2(T ) ∪ V 12(T ), fk(x) 6= 0. If

fk(yk) = 1 then fk(x) = 1, which easily implies x ∈ V 012(T ), a contradiction. Hence

fk(yk) = fk(x) = 2. Define a γR-function l on T as l|Tk
= fk|Tk

and l(u) = h(u)

for all u ∈ V (T )− V (Tk). But |epn[x, V l2 ]| < k, a contradiction with the choice of h.

Thus V 1(T ) ∪ V 2(T ) ∪ V 12(T ) is empty, and the required follows.

Lemma 6. Let T be a tree and V −(T ) is not empty. Then each component of
〈
V −(T )

〉
is either K1 or K2.

Proof. Assume that P : x1, x2, x3 is a path in T and x1, x2, x3 ∈ V −(T ). Then there

is a γR-function fi on T with fi(xi) = 1, i = 1, 2, 3 (by Lemma 1). Denote by Tj
the connected component of T − x2xj that contains xj , j = 1, 3. Then f2|Tj

and

fj |Tj
are γR-functions on Tj , j = 1, 3. Now define a γR-function h on T such that

h|Tj
= fj |Tj

, j = 1, 3, and h(u) = f2(u) when u ∈ V (T ) − (V (T1) ∪ V (T3)). But

h(x1) = h(x2) = h(x3) = 1, a contradiction.

Lemma 7. Let T be a γR-excellent tree of order at least 2.
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(i) If x ∈ V 012(T ), then x is adjacent to exactly one vertex in V −(T ), say y1, and y1 ∈
V 012(T ).

(ii) Let x ∈ V 02(T ). If deg(x) ≥ 3 then x has exactly 2 neighbors in V −(T ). If deg(x) = 2
then either NT (x) ⊆ V 012(T ) or there is a path u, x, y, z in T such that u, z ∈ V 01(T ),
y ∈ V 02(T ) and deg(y) = 2.

(iii) V 01(T ) is either empty or independent.

Proof. Let x ∈ V 012(T ) ∪ V 02(T ) and N(x) = {y1, y2, . . . , yr}. If x is a leaf, then

clearly x, y1 ∈ V 012(T ). So, let r ≥ 2. Denote by Ti the connected component

of T − x which contains yi, i ≥ 1. Choose a γR-function h on T such that (a)

h(x) = 2, and (b) k = |epn[x, V h2 ]| to be as small as possible. Let without loss

of generality epn[x, V h2 ] = {y1, y2, . . . , yk}. By the definition of h it immediately

follows that (c) h|Tj is a γR-function on Tj for all j ≥ k + 1, (d) for each i ∈
{1, .., k}, h|Ti

is no RD-function on Ti, and (e) h|Ti−yi is a γR-function on Ti − yi,
i ∈ {1, . . . , k}. Hence γR(Ti) ≤ γR(Ti − yi) + 1 for all i ∈ {1, . . . , k}. Assume

that the equality does not hold for some i ≤ k. Define an RD-function hi on T as

follows: hi(u) = h(u) when u ∈ V (T ) − V (Ti) and hi|Ti = h′i, where h′i is some γR-

function on Ti. But then either hi has weight less than γR(T ) or hi is a γR-function

on T with epn[x, V hi
2 ] = epn[x, V h2 ] − {yi}. In both cases we have a contradiction.

Thus γR(Ti) = γR(Ti − yi) + 1 for all i ∈ {1, .., k}. Therefore γR(T ) = h(V (T )) =

2 + Σki=1(γR(Ti) − 1) + Σrj=k+1γR(Tj) = 2 − k + Σri=1γR(Ti) = 2 − k + γR(T − x).

Thus γR(T ) = 2− k + γR(T − x).

(i) Since γR(T − x) + 1 = γR(T ), k = 1. We already know that h|Tj is a γR-function

on Tj , j ≥ 2. Assume that yj ∈ V 012(T ) ∪ V 01(T ) for some j ≥ 2. Then there

is a γR-function l on T with l(yj) = 1. Clearly l|Tj is a γR-function on Tj . Now

define a γR-function h′′ on T as follows: h′′(u) = h(u) when u ∈ V (T ) − V (Tj) and

h′′|Tj
= l|Tj

. But then h′′(x) = 2, h′′(yj) = 1 and xyj ∈ E(G), which is impossible.

Thus, y2, y3, . . . , yr ∈ V 02(T ). Define now γR-functions h1 and h2 on T as follows:

h1(u) = h2(u) = h(u) for all u ∈ V (T )− {x, y1}, h1(x) = h1(y1) = 1, h2(x) = 0 and

h2(y1) = 2. Thus y1 ∈ V 012(T ).

(ii) Since γR(T − x) = γR(T ), k = 2. Recall that h|Tj is a γR-function on Tj , j ≥ 3,

and γR(Ti − yi) = γR(Ti)− 1 for i = 1, 2. Hence there is a γR-function fi on Ti with

fi(yi) = 1, i = 1, 2.

Suppose first that r ≥ 3. As in the proof of (i), we obtain y3, .., yr ∈ V 02(T ). Hence

there is a γR-function g on T such that g(y3) = 2. By the choice of h, g(x) = 0. Then

g|Ti
is a γR-function on Ti, i = 1, 2. Define now a γR-function g′ on T as g′|Ti

= fi,

i = 1, 2, and g′(u) = g(u) when u ∈ V (T )−(V (T1)∪V (T2)). Since g′(y1) = g′(y2) = 1,

y1, y2 ∈ V −(T ).

So, let r = 2 and let f be a γR-function on T with f(x) = 0. Then there is ys such that

f(ys) = 2, say s = 2. Hence y2 ∈ V 02(T ) ∪ V 012(T ) and f |T1 is a γR-function on T1.

Define the γR-function l on T as l|T1
= f1 and l(u) = f(u) when u ∈ V (T )− V (T1).

Since l(y1) = 1, y1 ∈ V 01(T ) ∪ V 012(T ).
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Assume first that y1 ∈ V 012(T ). Then there is a γR-function f ′ on T with f ′(y1) = 2.

Since x ∈ V 02(T ) and deg(x) = 2, f ′(x) = 0. Hence f ′|T2 is a a γR-function on T2.

But then we can choose f ′ so that f ′|T2
= f2. Thus y2 ∈ V 012(T ).

So let y1 ∈ V 01(T ) and suppose y2 ∈ V 012(T ). Then there is a γR-function f ′′ on

T with f ′′(y2) = 1. Since x ∈ V 02(T ), f ′′(x) = 0 and f ′′(y1) = 2, a contradiction.

Thus, if y1 ∈ V 01(T ) then y2 ∈ V 02(T ).

Finally, let us consider a path y1, x, y2, z in T , where y1 ∈ V 01(T ), x, y2 ∈ V 02(T ) and

deg(x) = 2. Assume to the contrary that N(y2) = {z1, z2, . . . , zs = x} with s ≥ 3.

Denote by Tzp the connected component of T − y2 that contains zp, p = 1, 2, .., s. By

applying results proved above for x ∈ V 02(T ) with deg(x) ≥ 3 to y2, we obtain that (a)

y2 has exactly 2 neighbors in V −(T ), say, without loss of generality, z1, z2 ∈ V −(T ),

and (b) γR(Tzi − zi) = γR(Tzi) − 1, where i = 1, 2. Recall now that: h(x) = 2, h|Ti

is no RD-function on Ti and h|Ti−yi is a γR-function on Ti − yi, i = 1, 2. Hence

h(y1) = h(y2) = 0 and h|Tzj
is a γR-function on Tzj , j ≤ s− 1. Since γR(Tzi − zi) =

γR(Tzi) − 1, i = 1, 2, additionally we can choose h so that h(z1) = h(z2) = 1. But

then the function h1 defined as h1(u) = h(u) when u ∈ V (T )− {y1, x, y2, z1, z2} and

h1(y1) = h1(x) = 1, h1(y2) = 2, h1(z1) = h(z2) = 0 is a γR-function on T . Now

h1(x) = 1, h1(y2) = 2 and xy2 ∈ E(G) lead to a contradiction. Thus, N(y2) = {x, z}.
Suppose z 6∈ V 01(T ). Then there is a γR-function h4 on T with h4(z) = 2. If

h4(y2) = 2, then h4(x) = 0 and the function h5 on T defined as h5(x) = h5(y2) = 1

and h5(u) = h4(u) otherwise, is a γR-function on T , a contradiction. Hence h4(y2) = 0

and since y1 ∈ V 01(T ), h4(x) = 2 and h4(y1) = 0. But then the function h6 on T

defined as h6(x) = h6(y1) = 1 and h6(u) = h4(u) otherwise, is a γR-function on T , a

contradiction. Therefore z ∈ V 01(T ), and we are done.

(iii) Assume that u1, u2 ∈ V 01(T ) are adjacent. Let Tui
be the component of T −u1u2

that contains ui, i = 1, 2. Let gi be a γR-function on T with gi(ui) = 1, i = 1, 2.

Hence gi(Tuj
) is a γR-function on Tuj

, i, j = 1, 2. Thus γR(T ) = γR(Tu1
) + γR(Tu2

).

Define now a γR-function g3 on T as g3|Ti = gi|Ti , i = 1, 2. But then a function g4
defined as g4(u) = g3(u) when u ∈ V (T ) − {u1, u2}, g4(u1) = 2 and g4(u2) = 0 is a

γR-function on T , contradicting u1 ∈ V 01(T ). Thus V 01(T ) is independent.

4. Proof of the main result

Proof of Theorem 1. Let T be a γR-excellent tree. First, we shall prove the fol-

lowing statement.

(P2) There is a labeling L : V (T )→ {A,B,C,D} such that (a) LA(T ) is either empty

or independent, (b) each component of 〈LB(T )〉 and 〈LD(T )〉 is isomorphic

to K2, (c) each element of LB(T ) has degree 2 and it is adjacent to exactly

one vertex in LA(T ), (d) each vertex v in LC(T ) has exactly 2 neighbors in

LA(T ) ∪ LD(T ), and if deg(v) = 2 then both neighbors of v are in LD(T ).

By Lemma 5 we know that V (T ) = V 01(T ) ∪ V 012(T ) ∪ V 02(T ). Define a labeling

L : V (T ) → {A,B,C,D} by LA(T ) = V 01(T ), LD(T ) = V 012(T ), LB(T ) = {x ∈
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V 02(T ) | deg(x) = 2 and |N(x) ∩ V 02(T )| = 1}, and LC(T ) = V 02(T )− LB(T ). The

validity of (P2) immediately follows by Lemma 7.

Denote by T1 the family of all labeled, as in (P2), trees T . We shall show that if

(T, L) ∈ T1 then (T, L) ∈ T .

(I) Proof of (T, L) ∈ T1 ⇒ (T, L) ∈ T .

Let (T, L) ∈ T1. The following claim is immediate.

Claim 1.1

(i) Each leaf of T is in LA(T ) ∪ LD(T ).

(ii) If v is a support vertex of T , then v is adjacent to at most 2 leaves.

(iii) If u1 and u2 are leaves adjacent to the same support vertex, then u1, u2 ∈ LA(T ).

We now proceed by induction on k = |LB∪LC |. The base case, k ≤ 2, is an immediate

consequence of the following easy claim, the proof of which is omitted.

Claim 1.2 (see Fig.1)

(i) If k = 0 then (T, L) = (H1, I
1).

(ii) If k = 1 then (T, L) is obtained from (H1, I1) by operation O2, i.e. (T, L) =

(H11, I
11).

(iii) If k = 2 then either (T, L) is (Hr, I
r) with r ∈ {2, 3, 4, 5}, or (T, L) is obtained

from (H11, I
11) by operation O1 or by operation O2 (see the graphs (Hs, I

s)

where s ∈ {6, 7, 8, 9, 10}.

Let k ≥ 3 and suppose that each tree (H,L′) ∈ T1 with |L′B(H)∪L′C(H)| < k is in T .

Let now (T, L) ∈ T1 and k = |LB(T )∪LC(T )|. To prove the required result, it suffices

to show that T has a subtree, say U , such that (U,L|U ) ∈ T1, and (T, L) is obtained

from (U,L|U ) by one of operations O1, O2, O3 and O4. Consider any diametral path

P : x1, x2, . . . , xn in T . Clearly x1 is a leaf. Denote by x1i , x
2
i , .. all neighbors of xi,

which do not belong to P , 2 ≤ i ≤ n− 1.

Case 1: sta(x1) = A and sta(x2) = B.

Then deg(x1) = 1, deg(x2) = deg(x3) = 2, sta(x3) = B and sta(x4) = A. Thus T is

obtained from T − {x1, x2, x3} ∈ T1 and a copy of H2 by operation O3 (via x4).

Case 2: sta(x1) = A and sta(x2) = C.

Hence deg(x2) ≥ 3. By the choice of P , deg(x2) = 3, x12 is a leaf, sta(x12) = A, and

sta(x3) = C. If deg(x3) ≥ 4 then T is obtained from T −{x12, x1, x2} ∈ T1 and a copy

of F1 by operation O1. So, let deg(x3) = 3. Assume first that sta(x4) = A. Then

either x13 is a leaf of status A or x13 is a support vertex, deg(x13) = 2, and both x13 and

its leaf-neighbor have status D. Thus, T is obtained from T−(N [x2]∪N [x13]) ∈ T1 and

a copy of H3 or H4, respectively, by operation O3 (via x4). Finally let sta(x4) = D.

By the choice of P , either x13 is a leaf of status A and then T is obtained from
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T − (N [x2]∪ {x13}) ∈ T1 and a copy of H3 by operation O4, or x13 is a support vertex

of degree 2 and both x13 and its leaf-neighbor have status D, and then T is obtained

from T − {x12, x1, x2} ∈ T1 and a copy of F1 by operation O1.

In what follows, let sta(x1) = D. Hence deg(x2) = 2, sta(x2) = D and sta(x3) = C.

If deg(x3) = 2 then T is obtained from T −N [x2] ∈ T1 and a copy of F4 by operation

O2.

Case 3: deg(x3) = 3 and sta(x4) ∈ {A,D}.
In this case sta(x13) = C, x13 is a support vertex, deg(x13) = 3, and the leaf neighbors of

x13 have status A. Now (a) if sta(x4) = A then T is obtained from T−(N [x2]∪N [x13]) ∈
T1 and a copy of H4 by operation O3 (via x4), and (b) if sta(x4) = D then T is

obtained from T − (N [x2] ∪ N [x13]) ∈ T1 and a copy of H4 by operation O4 (via

x4).

Case 4: deg(x3) = 3, sta(x4) = C and sta(x13) = A.

Hence x13 is a leaf. If deg(x4) = 3 and sta(x5) = sta(x14) = D, or deg(x4) ≥ 4, then

T is obtained from T − {x1, x2, x3, x13} ∈ T1 and a copy of F2 by operation O1. So,

let deg(x4) = 3 and the status of at least one of x5 and x14 is A. Assume first that

sta(x14) = A. Hence x14 is a leaf (by the choice of P ). If sta(x5) = A then T is obtained

from a copy of H4 and a tree in T1 by operation O3 (via x5). If sta(x5) = D then T

is obtained from a copy of H4 and a tree in T1 by operation O4 (via x5). Second, let

sta(x14) = D. Hence sta(x5) = A, deg(x14) = 2 and the status of the leaf-neighbor of

x14 is D. But then T is obtained from a copy of H5 and a tree in T1 by operation O3

(via x5).

Case 5: deg(x3) = 3, sta(x4) = C and sta(x13) = D.

Hence deg(x13) = 2, x13 is a support vertex, and the leaf-neighbor of x13 has status D. If

deg(x4) ≥ 4 or sta(x5) = sta(x14) = D, then T is obtained from T −N [{x2, x13}] ∈ T1

and a copy of F3 by operation O1. So, let deg(x4) = 3 and at least one of x5 and

x14 has status A. Assume sta(x14) = A. Hence x14 is a leaf. If sta(x5) = A then T is

obtained from T −N [{x2, x13, x14}] ∈ T1 and a copy of H6 by operation O3 (via x5).

If sta(x5) = D then T is obtained from T − N [{x2, x13, x14}] ∈ T1 and a copy of H6

by operation O4 (via x5). Now let sta(x14) = D. Hence sta(x5) = A and then T is

obtained from a copy of H7 and a tree in T1 by operation O3 (via x5).

Case 6: deg(x3) ≥ 4.

Hence x3 has a neighbor, say y, such that y 6= x4 and sta(y) = C. By the choice

of P , y is a support vertex which is adjacent to exactly 2 leaves, say z1 and z2, and

sta(z1) = sta(z2) = A. But then T is obtained from T − {y, z1, z2} ∈ T1 and a copy

of F1 by operation O1.

By Claim 2.1, there are no other possibilities.

(II) (T, S) ∈ T ⇒ (T, S) ∈ T1. Obvious.

It remains the following.

(III) Proof of (T, S) ∈ T ⇒ T is γR-excellent and (P1) holds.
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Let (T, S) ∈ T . We know that (T, S) ∈ T1. We now proceed by induction on

k = |SB ∪ SC |. First let k ≤ 2. By Claim 1.2, T ∈ H = {H1, ..,H11}. It is easy to

see that all elements of H are γR-excellent graphs and (P1) holds for each T ∈H .

Let k ≥ 3 and suppose that if (H,S′) ∈ T and |S′B(H) ∪ S′C(H)| < k, then H is γR-

excellent and (P1) holds with (T, S) replaced by (H,S′). So, let (T, S) ∈ T and k =

|SB(T ) ∪ SC(T )|. Then there is a T -sequence τ : (T 1, S1), . . . , (T j−1, Sj−1), (T, S).

By induction hypothesis, T j−1 is γR-excellent and (P1) holds with (T, S) replaced by

(T j−1, Sj−1). We consider four possibilities depending on whether T is obtained from

T j−1 by operation O1, O2, O3 or O4.

Case 7: T is obtained from T j−1 ∈ T and Fa by operation O1, a ∈ {1, 2, 3}.
Hence T is obtained after adding the edge ux to the union of T j−1 and Fa, where

staT j−1(u) = staFa(x) = C (see Fig. 2). First note that γR(Fa) = a+ 1, and F2 and

F3 are γR-excellent graphs. Since γR(Fa − x) = γR(Fa) and u ∈ V 02(T j−1), Lemma

2 implies γR(T ) = γR(T j−1) + γR(Fa). Hence for any γR-function g on T , the weight

of g|Fa is not more than γR(Fa). But then g(x) 6= 1 and either g|Fa is a γR-function

on Fa or g|Fa−x is a γR-function on Fa − x. By inspection of all γR-functions on Fa
and Fa − x, we obtain

(α1) SA(T )∩V (Fa) = V 01(T )∩V (Fa), SB(T )∩V (Fa) = ∅, {x} = SC(T )∩V (Fa) =

V 02(T ) ∩ V (Fa), and SD(T ) ∩ V (Fa) = V 012(T ) ∩ V (Fa).

By the definition of operation O1 it immediately follows

(α2) SX(T ) ∩ V (T j−1) = Sj−1X (T j−1), for all X ∈ {A,B,C,D}.

Let f1 be a γR-function on T j−1 and f2 a γR-function on Fa. Then the RD-function

f on T defined as f |T j−1 = f1 and f |Fa = f2 is a γR-function on T . Since f1 was

chosen arbitrarily, we have

(α3) V 01(T j−1) ⊆ V 01(T ) ∪ V 012(T ), V 02(T j−1) ⊆ V 02(T ) ∪ V 012(T ), and

V 012(T j−1) ⊆ V 012(T ).

By (α1) and (α3) we conclude that T is γR-excellent.

Now we shall prove that

(α4) V 01(T )∩V (T j−1) = V 01(T j−1), V 02(T )∩V (T j−1) = V 02(T j−1), and V 012(T )∩
V (T j−1) = V 012(T j−1).

Assume there is a vertex z ∈ V 02(T j−1) ∩ V 012(T ). By Lemma 7, z is adjacent to at

most 2 elements of V −(T j−1). Now by (α3) and since ∆(〈V −(T )〉) ≤ 1 (by Lemma

6), z is adjacent to exactly one element of V −(T j−1). But then Lemma 7 implies

that there is a path z1, z, z2, z3 in T j−1 such that degT j−1(z) = degT j−1(z2) = 2,

z, z2 ∈ V 02(T j−1) and z1, z3 ∈ V 01(T j−1). Since (P1) is true for T j−1, staT j−1(z1) =

staT j−1(z3) = A, and staT j−1(z) = staT j−1(z2) = B. Clearly, at least one of z1 and

z3 is a cut-vertex. Denote by Q the graph 〈{z1, z, z2, z3}〉 and let the vertices of Q
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are labeled as in T j−1. Let Us be the connected component of T − {z, z2}, which

contains zs, s = 1, 3.

Assume first that T 1 is a subtree of U ∈ {U1, U3}. Then there is i such that T i is

obtained from T i−1 and Q by operation O3. Hence T i−1 is a subtree of U . Recall

that if y ∈ V (T r) and r ≤ s ≤ j − 1, then staT r (y) = staT s(y). Using this fact, we

can choose τ so, that T i−1 = U . Therefore U is in T . Suppose that neither z1 nor z3
is a leaf of T j−1. Define Rs = T i+s− (V (T i−1)∪{z, z2}), s = 1, 2, . . . , j−1− i. Since

clearly R1 is in {H2, H3, . . . ,H7}, the sequence R1, R2, . . . , Rj−1−i is a T -sequence

of U ′, where {U,U ′} = {U1, U2}. Thus, both U1 and U3 are in T , and staU1(z1) = A.

By the induction hypothesis, z1 ∈ V 01(U1).

Suppose now that u ∈ V (U3). Consider the sequence of trees U3, U4, U5, where U4 is

obtained from U3 and Q by operation O3 (via z3), and U5 is obtained from U4 and Fa
by operation O1. Clearly U5 is in T , staU5

(z1) = A and by the induction hypothesis,

z1 ∈ V 01(U5). Since T = (U5 ·U1)(z1) and {z1} = V 01(U1)∩V 01(U5), by Proposition

2 we have z1 ∈ V 01(T ). But then Lemma 7 implies z2 ∈ V 02(T ), a contradiction.

Now let u ∈ V (U1). Denote by U2 the graph obtained from U1 and Fa by operation

O3. Then U2 is in T , staU2
(z1) = A, and by induction hypothesis, z1 ∈ V 01(U2).

Define also the graph U6 as obtained from U3 and Q by operation O3, i.e. U6 = (U3 ·
Q)(z3). Then U6 is in T , staU6

(z1) = A and by induction hypothesis, z1 ∈ V 01(U6).

Now by Proposition 2, z1 ∈ V 01(T ), which leads to z2 ∈ V 02(T ) (by Lemma 7), a

contradiction.

Thus, in all cases we have a contradiction. Therefore V 02(T j−1) ⊆ V 02(T ) when both

z1 and z3 are cut-vertices. If z1 or z3 is a leaf, then, by similar arguments, we can

obtain the same result.

Let now T 1 ≡ Q. Then T 2 is obtained from T 1 and Hk by operation O3. Consider

the sequence of trees τ1 : T 1
1 = Hk, T

2, T 3, . . . , T j−1. Clearly τ1 is a T -sequence

of T j−1 and T 1
1 6= Q. Therefore we are in the previous case. Thus, V 02(T j−1) =

V (T j−1) ∩ V 02(T ).

Assume now that there is a vertex w ∈ V 01(T j−1) ∩ V 012(T ). By Lemma 7(i) w has

a neighbor in T , say w′, such that w′ ∈ V 012(T ). Since w 6≡ u, w′ ∈ V (T j−1). But

all neighbors of w in T j−1 are in V 02(T j−1) (by Lemma 7 applied to T j−1 and w).

Since V 02(T j−1) = V (T j−1) ∩ V 02(T ), we obtain a contradiction.

Thus (α4) is true.

Now we are prepared to prove that (P1) is valid. Using, in the chain of equalities

below, consecutively (α2), the induction hypothesis, (α1) and (α4), we obtain

SA(T ) = Sj−1A (T j−1)∪ (SA(T )∩ V (Fa)) = V 01(T j−1)∪ (V 01(T )∩ V (Fa)) = V 01(T ),
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and similarly, SD(T ) = V 012(T ). Since u 6∈ SB(T ) and SB(T ) ∩ V (Fa) = ∅, we have

SB(T ) = SB(T ) ∩ V (T j−1)
(α2)
= Sj−1B (T j−1)

= {t ∈ V 02(T j−1) | degT j−1(t) = 2 and |NT j−1(t) ∩ V 02(T j−1)| = 1}
(α4)
= {t ∈ V 02(T ) ∩ V (T j−1) | degT (t) = 2 and |NT (t) ∩ V 02(T )| = 1}

= {t ∈ V 02(T ) | degT (t) = 2 and |NT (t) ∩ V 02(T )| = 1}.

The last equality follows from degT (x) > 2 and {x} = V 02(T ) ∩ V (Fa) (see (α1)).

Now the equality SC(T ) = V 02(T )− SB(T ) is obvious. Thus, (P1) holds and we are

done.

Case 8: T is obtained from T j−1 ∈ T by operation O2.

Clearly, γR(F4) = γR(F4−x) = 2. By Lemma 2, γR(T ) = γR(T j−1)+γR(H4). Let f1
be a γR-function on T j−1 and f2 a γR-function on F4. Then the function f defined as

f |T j−1 = f1 and f |F4
= f2 is a γR-function on T . Therefore V 012(T j−1) ⊆ V 012(T ),

V 01(T j−1) ⊆ V 01(T ) ∪ V 012(T ), and V 02(T j−1) ⊆ V 02(T ) ∪ V 012(T ).

Assume that there is y ∈ V 0s(T j−1) ∩ V 012(T ), s ∈ {1, 2}, and let f ′ be a γR-

function on T with f ′(y) = r 6∈ {0, s}. If f ′|T j−1 is an RD-function on T j−1, then

f ′|T j−1(V (T j−1)) > γR(T j−1) and f ′|F4
(V (F4)) ≥ 2. This leads to f ′(V (T )) >

γR(T ), a contradiction. Hence f ′|T j−1 is no RD-function on T j−1 and f ′|T j−1−u is

a γR-function on T j−1 − u. Define now an RD-function f ′′ on T j−1 as f ′′|T j−1−u =

f ′|T j−1−u and f ′′(u) = 1. Since u ∈ V −(T j−1), f ′′ is a γR-function on T j−1 with

f ′′(y) = r 6∈ {0, s}, a contradiction with y ∈ V 0s(T j−1). Thus

(α5) V 012(T j−1) = V 012(T ) ∩ V (T j−1), V 01(T j−1) = V 01(T ) ∩ V (T j−1), and

V 02(T j−1) = V 02(T ) ∩ V (T j−1).

Let x, x1, x2 be a path in F4, h1 a γR-function on T j−1 with h1(u) = 2, and h2 a

γR-function on T j−1 − u. Define γR-functions g1, .., g4 on T as follows:

• g1|T j−1 = h1, g1(x) = g1(x2) = 0 and g1(x1) = 2;

• g2|T j−1 = h1, g2(x) = 0 and g2(x1) = g2(x2) = 1;

• g3|T j−1 = h1, g3(x) = g3(x1) = 0 and g3(x2) = 2;

• g4|T j−1−u = h2, g4(u) = g4(x1) = 0, g(x) = 2 and g4(x2) = 1.

This, (α5) and Lemma 6 allows us to conclude that T is γR-excellent, x1, x2 ∈ V 012(T )

and x ∈ V 02(T ).

By induction hypothesis, (P1) holds with (T, S) replaced by (T j−1, Sj−1). Then Since

u 6∈ SB(T ) and SB(T ) ∩ V (F4) = ∅, we have

SB(T ) = Sj−1B (T j−1)

= {t ∈ V 02(T j−1) | degT j−1(t) = 2 and |NT j−1(t) ∩ V 02(T j−1)| = 1}
= {t ∈ V 02(T ) | degT (t) = 2 and |NT (t) ∩ V 02(T )| = 1}.
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The last equality follows from degT (x) > 2 and {x} = V 02(T ) ∩ V (F4). Now the

equality SC(T ) = V 02(T )− SB(T ) is obvious. Thus, (P1) is true.

Case 9: T is obtained from T j−1 ∈ T by operation O3.

Let T = (T j−1 · Hk)(u, v : u), where staT j−1(u) = staHk
(v) = staT (u) = A and

k ∈ {2, .., 7}. Hence SX(T ) = Sj−1X (T j−1) ∪ IkX(Hk), for any X ∈ {A,B,C,D}.
We know that (P1) holds with (T, S) replaced by any of (T j−1, Sj−1) and (Hk, I

k).

Hence SA(T ) = Sj−1A (T j−1) ∪ IkA(Hk) = V 01(T j−1) ∪ V 01(Hk). Now, by Proposition

2, applied to T j−1 and Hk, SA(T ) = V 01(T ). Similarly we obtain SD(T ) = V 012(T ).

We also have

SB(T ) = Sj−1B (T j−1) ∪ IkB(Hk)

= {t ∈ V 02(T j−1) | degT j−1(t) = 2 and |NT j−1(t) ∩ V 02(T j−1)| = 1}
∪ {t ∈ V 02(Hk) | degHk

(t) = 2 and |NHk
(t) ∩ V 02(Hk)| = 1}

= {t ∈ V 02(T j−1) ∪ V 02(Hk) | degT (t) = 2 and |NT (t) ∩ V 02(T )| = 1},

as required, because V 02(T j−1) ∪ V 02(Hk) = V 02(T ) (by Proposition 2). Now the

equality SC(T ) = V 02(T )− SB(T ) is obvious.

Case 10: T is obtained from T j−1 ∈ T and Hk ∈ T , k ∈ {3, 4, 6}, by operation O4.

By induction hypothesis and Lemma 4, we have γR(T ) = γR(T j−1) + γR(Hk) − 1

and u ∈ V 012(T ). Let f1 be a γR-function on T j−1 and f2 a γR-function on Hk − v.

Then the function f defined as f |T j−1 = f1 and f |Hk−v = f2 is a γR-function on T .

Therefore V 012(T j−1) ⊆ V 012(T ), V 01(T j−1) ⊆ V 01(T ) ∪ V 012(T ), and V 02(T j−1) ⊆
V 02(T ) ∪ V 012(T ). Assume that there is y ∈ V 0s(T j−1) ∩ V 012(T ), s ∈ {1, 2}, and

let f ′ be a γR-function on T with f ′(y) = r 6∈ {0, s}. But then f ′|T j−1 is no RD-

function on T j−1, f ′(u) = 0, f ′|T j−1−u is a γR-function on T j−1 − u and f ′|Hk
is a

γR-function on Hk. Define now an RD-function g1 on T j−1 as g1|T j−1−u = f ′|T j−1−u
and g1(u) = 1. Since g1(V (T j−1)) = γR(T j−1−u)+1 = γR(T j−1), g1 is a γR-function

on T j−1. But g1(y) = r 6∈ {0, s}, a contradiction. Thus

(α6) V 012(T j−1) = V 012(T ) ∩ V (T j−1), V 01(T j−1) = V 01(T ) ∩ V (T j−1), and

V 02(T j−1) = V 02(T ) ∩ V (T j−1).

The next claim is obvious.

Claim 1.3 Let x be the neighbor of v in Hk, k ∈ {3, 4, 6}.Then γR(H3) = 4, γR(H4) =

5, γR(H6) = 6, γR(Hk − v) = γR(Hk − {v, x}) = γR(Hk), and l(x) = 0 for any γR-

function l on Hk − v.

Let h be a γR-function on T . We know that u ∈ V 012(T ), u ∈ V 012(T j−1), v ∈
V 01(Hk), and γR(T ) = γR(T j−1) + γR(Hk)− 1. Then by Claim 1.3 we clearly have:

(a1) If h(u) = 2 then at least one of the following holds:

(a1.1) h|Hk−v is a γR-function on Hk − v, and

(a1.2) h|Hk−{v,x} is a γR-function on Hk − {v, x}.
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(a2) If h(u) = 1 then h|Hk−v is a γR-function on Hk − v.

(a3) If h(u) = 0 then either h|Hk
is a γR-function on Hk, or h|Hk−v is a γR-function

on Hk − v.

Let l1, l2, l3, l4 and l5 be γR-functions on Hk, Hk−v, Hk−{v, x}, T j−1−u and T j−1,

respectively, and let l5(u) = 2. Define the functions h1, h2, and h3 on T as follows:

(i) h1|T j−1 = l5, h1(x) = 0 and h1|Hk−{v,x} = l3, (ii) h2|T j−1 = l5 and h1|Hk−v = l2,

and (iii) h3|T j−1−u = l4 and h3|Hk
= l1. Clearly h1, h2, and h3 are γR-functions on

T . After inspection of all γR-functions of Hk, Hk − v and Hk − {v, x}, we conclude

that V 01(Hk) − {v} ⊆ V 01(T ), V 02(Hk) ⊆ V 02(T ), and V 012(Hk) ⊆ V 012(T ). This

and (α6) imply

(α7) V 012(T ) = V 012(T j−1) ∪ V 012(Hk), V 02(T ) = V 02(T j−1) ∪ V 02(Hk), and

V 01(T ) = V 01(T j−1) ∪ (V 01(Hk)− {v}).

Since (P1) holds with T replaced by Hk or by T j−1 (by induction hypothesis), using

(α7) we obtain that (P1) is satisfied.

5. Corollaries

The next three results immediately follow by Theorem 1.

Corollary 1. If (T, S1), (T, S2) ∈ T then S1 ≡ S2.

If (T, S) ∈ T then we call S the T -labeling of T .

Corollary 2. Let T be a γR-excellent tree of order n ≥ 5, and S the T -labeling of T .
Then n

5
≤ |V 02(T )| ≤ 2

3
(n− 1) and 4

5
n ≥ |V −(T )| ≥ 1

3
(n+ 2). Moreover,

(i) n
5

= |V 02(T )| if and only if (T, S) has a T -sequence τ : (T 1, S1), . . . , (T j , Sj), such
that (T 1, S1) = (F3, J

3) and if j ≥ 2, (T i+1, Si+1) can be obtained recursively from
(T i, Si) and (F3, J

3) by operation O1.

(ii) |V 02(T )| ≤ 2
3
(n− 1) if and only if (T, S) has a T -sequence τ : (T 1, S1), ..,

(T j , Sj), such that (T 1, S1) = (H2, I
2) and if j ≥ 2, (T i+1, Si+1) can be obtained

recursively from (T i, Si) and (H2, I
2) by operation O3.

Corollary 3. Let G be an n-order γR-excellent connected graph of minimum size. Then
either G = K3 or n 6= 3 and G is a tree.

6. Special cases

Let G be a graph and {a1, .., ak} ⊆ {0, 1, 2, 01, 02, 12, 012}. We say that G is a

Ra1,..,ak -graph if V (G) = ∪ki=1V
ai(G) and all V a1(G), .., V ak(G) are nonempty. Now

let T be a γR-excellent tree of order at least 2. By Theorem 1, we immediately

conclude that T ∈ R012 ∪R01,02 ∪R02,012 ∪R01,02,012. Moreover,
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(i) T ∈ R012 if and only if T = K2, and

(ii) T ∈ R01,02,012 if and only if none of SA(T ), SC(T ) and SD(T ) is empty, where

S is the T -labeling of T .

In this section, we turn our attention to the classes R01,02 and R02,012.

6.1. R01,02-graphs.

Here we give necessary and sufficient conditions for a tree to be in R01,02. We define

a subfamily T01,02 of T as follows. A labeled tree (T, S) ∈ T01,02 if and only if (T, S)

can be obtained from a sequence of labeled trees τ : (T 1, S1), . . . , (T j , Sj), (j ≥ 1),

such that (T 1, S1) is in {(H2, I
2), (H3, I

3)} (see Figure 1) and (T, S) = (T j , Sj),

and, if j ≥ 2, (T i+1, Si+1) can be obtained recursively from (T i, Si) by one of the

operations O5 and O6 listed below; in this case τ is said to be a T01,02-sequence of T .

Operation O5. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (F1, J
1)

(see Figure 2) by adding the edge ux, where u ∈ V (Ti), x ∈ V (F1) and staT i(u) =

staF1
(x) = C.

Operation O6. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (Hk, I
k),

k ∈ {2, 3} (see Figure 1), in such a way that T i+1 = (T i · Hk)(u, v : u), where

staT i(u) = staHk
(v) = A, and staT i+1(u) = A.

Remark that once a vertex is assigned a status, this status remains unchanged as the

labeled tree (T, S) is recursively constructed. By the above definitions we see that

SD(T ) is empty when (T, S) ∈ T01,02. So, in this case, it is naturally to consider a

labeling S as S : V (T ) → {A,B,C}. From Theorem 1 we immediately obtain the

following result.

Corollary 4. Let T be a tree of order at least 2. Then T ∈ R01,02 if and only if there is
a labeling S : V (T ) → {A,B,C} such that (T, S) is in T01,02. Moreover, if (T, S) ∈ T01,02

then

(P3) SB(T ) = {x ∈ V 02(T ) | deg(x) = 2 and |N(x) ∩ V 02(T )| = 1}, SA(T ) = V 01(T ), and
SC(T ) = V 02(T )− SB(T ).

As un immediate consequence of Corollary 1 we obtain:

Corollary 5. If (T, S1), (T, S2) ∈ T01,02 then S1 ≡ S2.

A graph G is called a 2-corona if each vertex of G is either a support vertex or a leaf,

and each support vertex of G is adjacent to exactly 2 leaves. In a labeled 2-corona all

leaves have status A and all support vertices have status C.



V. Samodivkin 19

Proposition 3. Every connected n-order graph H, n ≥ 2, is an induced subgraph of a
R01,02-graph with the domination number equals to 2|V (H)|.

Proof. Let a graph G be a 2-corona such that the induced subgraph by the set

of all support vertices of G is isomorphic to H. Let x be a support vertex of G

and y, z the leaf neighbors of x in G. Then clearly for any γR-function f on G,

f(x) + f(y) + f(z) ≥ 2, f(y) 6= 2 6= f(z) and f(x) 6= 1. Define RD-functions h and

g on G as follows: (a) h(u) = 2 when u is a support vertex of G and h(u) = 0,

otherwise, and (b) g(v) = h(v) when v 6∈ {x, y, z}, and g(x) = 0, g(y) = g(z) = 1.

Therefore γR(G) = 2|V (H)| and G is in R01,02.

Corollary 6. There does not exist a forbidden subgraph characterization of the class
of R01,02-graphs. There does not exist a forbidden subgraph characterization of the class of
γR-excellent graphs.

Let T ′01,02 be the family of all labeled trees (T, L) that can be obtained from a se-

quence of labeled trees λ : (T 1, L1), . . . , (T j , Lj), (j ≥ 1), such that (T, L) = (T j , Lj),

(T 1, L1) is either (H2, I
2) (see Figure 1) or a labeled 2-corona tree, and, if j ≥ 2,

(T i+1, Li+1) can be obtained recursively from (T i, Li) by one of the operations O7

and O8 listed below; in this case λ is said to be a T ′01,02-sequence of T .

Operation O7. The labeled tree (T i+1, Li+1) is obtained from (T i, Li) and (H2, I
2),

in such a way that T i+1 = (T i · H2)(u, v : u), where staT i(u) = staH2
(v) = A, and

staT i+1(u) = A.

Operation O8. The labeled tree (T i+1, Li+1) is obtained from (T i, Li) and a la-

beled 2-corona tree, say Ui, in such a way that T i+1 = (T i · Ui)(u, v : u), where

staT i(u) = staUi
(v) = A, and staT i+1(u) = A.

Again, once a vertex is assigned a status, this status remains unchanged as the 2-

labeled tree T is recursively constructed.

Theorem 2. For any tree T the following are equivalent.

(A1) T is in R01,02.

(A2) There is a labeling S : V (T )→ {A,B,C} such that (T, S) is in T01,02.

(A3) There is a labeling L : V (T )→ {A,B,C} such that (T,L) is in T ′01,02.

Proof. (A1) ⇔ (A2): By Corollary 4.

(A3) ⇒ (A2):

Let a tree (T, L) ∈ T ′01,02. It is clear that all T ′01,02-sequences of (T, L) have the

same number of elements. Denote this number by r(T ). We shall prove that (T, L) ∈
T ′01,02 ⇒ (T, L) ∈ T01,02. We proceed by induction on r(T ). If r(T ) = 1 then either
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(T, L) is a labeled 2-corona tree, or (T, L) = (H2, I
2). In both cases (T, L) ∈ T01,02.

We need the following obvius claim.

Claim 2.1 If (T ′, L′) is a labeled 2-corona tree, w ∈ V (T ′) and sta(w) = A, then

either (T ′, L′) is (H3, I
3) or there is a T -sequence τ : (T 1, S1), . . . , (T l, Sl), (l ≥ 2),

such that (T 1, S1) = (H3, I
3), w ∈ V (T 1), (T l, Sl) = (T ′, L′), and (T i+1, Si+1) can

be obtained recursively from (T i, Si) and (F1, J
1) by operation O5.

Suppose now that each tree (H,LH) ∈ T ′01,02 with r(H) < k is in T01,02, where

k ≥ 2. Let λ : (T 1, L1), . . . , (T k, Lk), be a T ′01,02-sequence of a labeled tree

(T, L) ∈ T ′01,02. By the induction hypothesis, (T k−1, Lk−1) is in T01,02. Let

τ1 : (U1, S1), . . . , (Um, Sm) be a T -sequence of (T k−1, Lk−1). Hence Um = T k−1

and Sm = Lk−1. If (T k, Lk) is obtained from (T k−1, Lk−1) and (H2, I
2) by operation

O7, then (U1, S1), . . . , (Um, Sm), (T k, Lk) = (T, L) is a T -sequence of (T, L). So,

let (T k, Lk) is obtained from (T k−1, Lk−1) and a labeled 2-corona tree, say (Q,Lq)

by operation O8. Hence T k−1 and Q have exactly one vertex in comman, say w,

and staTk−1(w) = staQ(w) = staTk(w) = A. By Claim 2.1, (Q,Lq) ∈ T01,02 and

it has a T01,02-sequence, say (Q1, L1
q), . . . , (Q

s, Lsq) such that Qs = Q, Lq = Lsq,

and w ∈ V (Q1). Denote Wm+i =
〈
V (Um) ∪ V (Qi)

〉
and let a labeling Sm+i

be such that Sm+i|Um = Sm and Sm+i|Qi = Liq. Then the sequence of labeled

trees (U1, S1), . . . , (Um, Sm), (Wm+1, Sm+1), . . . , (Wm+s, Sm+s) = (T, L) is a T01,02-

sequence of (T, L).

(A2) ⇒ (A3):

Let a labeled tree (T, S) ∈ T01,02. Then (T, S) has a T -sequence τ :

(T 1, S1), . . . , (T j , Sj) = (T, S), where (T 1, S1) ∈ {(H2, I
2), (H3, I

3)} ⊂ T ′01,02. We

proceed by induction on p(T ) = Σz∈C(T )degT (z), where C(T ) is the set of all cut-

vertices of T that belong to SA(T ). Assume first p(T ) = 0. If j = 1 then we are

done. If j ≥ 2 then (T 1, S1) = (H3, I
3) and (T i+1, Si+1) is obtained from (F1, J

1)

and (T i, Si) by operation O5. Thus, (T, S) is a labeled 2-corona tree, which allow us

to conclude that (T, S) is in T ′01,02.

Suppose now that p(T ) = k ≥ 1 and for each labeled tree (H,SH) ∈ T01,02 with

p(H) < k is fulfilled (H,SH) ∈ T ′01,02. Then there is a cut-vertex, say z, such that (a)

z ∈ SA(T ), (b) (T, S) is a coalescence of 2 graphs, say (T ′, S|T ′) and (T ′′, S|T ′′), via

z, and (c) no vertex in SA(T )∩V (T ′′) is a cut-vertex of T ′′. Hence (T ′, S|T ′) ∈ T ′01,02
(by induction hypothesis) and (T ′′, S|T ′′) is either a labeled 2-corona tree or H2. Thus

(T, S) is in T ′01,02.

6.2. R02,012-trees.

Our aim in this section is to present a characterization of R02,012-trees. For this

purpose, we need the following definitions. Let T02,012 ⊂ T be such that (T, S) ∈
T02,012 if and only if (T, S) can be obtained from a sequence of labeled trees τ :

(T 1, S1), . . . , (T j , Sj), (j ≥ 1), such that (T 1, S1) = (F3, J
3)} (see Figure 2) and

(T, S) = (T j , Sj), and, if j ≥ 2, (T i+1, Si+1) can be obtained recursively from (T i, Si)

by one of the operations O9 and O10 listed below.
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Operation O9. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (F3, J
3)

by adding the edge ux, where u ∈ V (T i), x ∈ V (F3) and staT i(u) = staF3(x) = C.

Operation O10. The labeled tree (T i+1, Si+1) is obtained from (T i, Si) and (F4, J
4)

(see Figure 2) by adding the edge ux, where u ∈ V (T i), x ∈ V (F4), staT i(u) = D,

and staF4(x) = C.

Note that once a vertex is assigned a status, this status remains unchanged as the

labeled tree (T, S) is recursively constructed. By the above definitions we see that

if (T, S) ∈ R01,02, then SA(T ) = SB(T ) = ∅. Therefore it is naturally to consider a

labeling S as S : V (T )→ {C,D}.
From Theorem 1 we immediately obtain the following result.

Corollary 7. A tree T is in R02,012 if and only if there is a labeling S : V (T )→ {C,D}
such that (T, S) is in T02,012. Moreover, if (T, S) ∈ T02,012 then SC(T ) = V 02(T ) and
SD(T ) = V 012(T ).

As an immediate consequence of Corollary 1 we obtain:

Corollary 8. If (T, S1), (T, S2) ∈ T02,012 then S1 ≡ S2.

Theorem 3. [3] If G is a connected graph of order n ≥ 3, then γR(G) ≤ 4n/5. The
equality holds if and only if G is C5 or is obtained from n

5
P5 by adding a connected subgraph

on the set of centers of the components of n
5
P5.

As a consequence of Theorem 3 and Corollary 7 we have:

Corollary 9. Let G be a connected n-vertex graph with n ≥ 6 and γR(G) = 4n/5.
Then G is in R02,012 and V 012(G) consists of all leaves and all support vertices. Moreover,
if G is a tree, then G has a T -sequence τ : (G1, S1), . . . , (Gj , Sj), (j ≥ 1), such that
(G1, S1) = (F3, J

3) (see Figure 2) and if j ≥ 2, then (Gi+1, Si+1) can be obtained recursively
from (Gi, Si) by operation O9.

A graph G is said to be in class UV R if γ(G − v) = γ(G) for each v ∈ V (G). Con-

structive characterizations of trees belonging to UV R are given in [14] by Samodivkin,

and independently in [11] by Haynes and Henning. We need the following result in

[14] (reformulated in our present terminology).

Theorem 4. [14] A tree T of order at least 5 is in UV R if and only if there is a labeling
S : V (T )→ {C,D} such that (T, S) is in T02,012. Moreover, if (T, S) ∈ T02,012 then SC(T )
and SD(T ) are the sets of all γ-bad and all γ-good vertices of T , respectively.

We end with our main result in this subsection.
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Theorem 5. For any tree T the following are equivalent:

(A4) T is in R02,012, (A5) T is in T02,012, (A6) T is in UV R.

Proof. Corollary 7 and Theorem 4 together imply the required result.

7. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further

research. Let first note that if n ≥ 3 and Gn,k is not empty, then k ≤ 4n/5 (Theorem

3).

An element of REn,k is said to be isolated, whenever it is both maximal and minimal.

In other words, a graph H ∈ Gn,k is isolated in REn,k if and only if H ∈ RCEA and

for each e ∈ E(H) at least one of the following holds: (a) H − e is not connected, (b)

γR(H) 6= γR(H − e), (c) H − e is not γR-excellent.

Example 1. (i) All γR-excellent graphs with the Roman domination number equals
to 2 are K2 and Kn, n ≥ 2. If a graph G ∈ RCEA and γR(G) = 2, then G is complete.
Kn is isolated in REn,2, n ≥ 2.

(ii) [8] K2, H7 and H8 (see Fig. 1) are the only trees in RCEA.

(iii) If REn,k has a tree T as an isolated element, then either (n, k) = (2, 2) and T = K2,
or (n, k) = (9, 7) and T = H7, or (n, k) = (10, 8) and T = H8.

• Find results on the isolated elements of REn,k.

• What is the maximum number of edges m(Gn,k) of a graph in Gn,k? Note that

(a) m(Gn,2) = n(n− 1)/2, (b) m(Gn,3) = n(n− 1)/2− dn/2e.

• Find results on those minimal elements of REn,k that are not trees.

Example 2. (a) A cycle Cn is a minimal element of REn,k if and only if n ≡ 0 (mod 3)
and k = 2n/3. (b) A graph G obtained from the complete bipartite graph Kp,q, p ≥ q ≥ 3,
by deleting an edge is a minimal element of REp+q,4.

The height of a poset is the maximal number of elements of a chain.

• Find the height of REn,k.

Example 3. (a) It is easy to check that any longest chain in RE6,4 has as the first
element H3 (see Fig 1) and as the last element one of the two 3-regular 6-vertex
graphs. Therefore the height of RE6,4 is 5.
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(b) Let us consider the poset RE5r,4r, r ≥ 2. All its minimal elements are γR-excellent trees
(by Theorem 3 and Corollary 9), which are characterized in Corollary 9. Moreover,
the graph obtained from rP5 by adding a complete graph on the set of centers of the
components of rP5 is the largest element of RE5r,4r. Therefore the height of RE5r,4r

is (r − 1)(r − 2)/2 + 1.

• Find results on γYR-excellent graphs at least when Y is one of {−1, 0, 1}, {−1, 1}
and {−1, 1, 2}.
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