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Abstract: A Roman dominating function (RDF) on a graph G = (V, E) is a labeling
f:V —{0,1,2} such that every vertex with label 0 has a neighbor with label 2. The
weight of f is the value f(V) = X,cv f(v) The Roman domination number, yr(G), of
G is the minimum weight of an RDF on G. An RDF of minimum weight is called a
ygr-function. A graph G is said to be ygr-excellent if for each vertex x € V there is a
~yr-function h; on G with hy(z) # 0. We present a constructive characterization of yg-
excellent trees using labelings. A graph G is said to be in class UV R if v(G —v) = v(G)
for each v € V, where (G) is the domination number of G. We show that each tree in
UV R is ygr-excellent.
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1. Introduction and preliminaries

For basic notation and graph theory terminology not explicitly defined here, we in
general follow Haynes et al. [9]. Specifically, let G be a simple graph with vertex
set V(G) and edge set E(G). A spanning subgraph for G is a subgraph of G which
contains every vertex of G. In a graph G, for a subset S C V(G) the subgraph induced
by S is the graph (S) with vertex set S and edge set {zy € E(G) | x,y € S}. The
complement G of G is the graph whose vertex set is V(G) and whose edges are the
pairs of nonadjacent vertices of G. We write K, for the complete graph of order n and
P, for the path on n vertices. Let C), denote the cycle of length m. For any vertex z
of a graph G, N¢(z) denotes the set of all neighbors of z in G, Ng[z] = Ng(x) U {z}
and the degree of z is degg(z) = |Ng(z)|. The minimum and mazimum degrees of a
graph G are denoted by §(G) and A(G), respectively. For a subset S of vertices, let
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N¢[S] = UyesNg[v]. The external private neighborhood epn(v, S) of v € S is defined
by epn(v,S) = {u € V(G) = S| Ng(u)NS = {v}}. A leafis a vertex of degree one
and a support vertex is a vertex adjacent to a leaf. If F and H are disjoint graphs,
vp € V(F) and vy € V(H), then the coalescence (F - H)(vp,vg : v) of F and H via
vp and vy, is the graph obtained from the union of F' and H by identifying vp and
vy in a vertex labeled v. If F and H are graphs with exactly one vertex in common,
say x, then the coalescence (F' - H)(z) of F and H via x is the union of F and H.
Let Y be a finite set of integers which has positive as well as non-positive elements.
Denote by P(Y) the collection of all subsets of Y. Given a graph G, for a Y-valued
function f : V(G) — Y and a subset S of V(G) we define f(S) = X,esf(v). The weight
of fis f(V(G)). A Y-valued Roman dominating function on a graph G is a function
f:V(G) = Y satisfying the conditions: (a) f(Ng[v]) > 1 for each v € V(G), and (b)
ifv € V(G) and f(v) < 0, then there is u, € Ng(v) with f(u,) = max{k | k € Y}. For
a Y-valued Roman dominating function f on a graph G, where Y = {ry,r9,...,7r;}
and ry < ry < --- <71y, let VI ={v e V(G) | f(v) = r;} for i = 1,..,k. Since
these k sets determine f, we can equivalently write f = (V,/; V.0, . ;V./). If f
is Y-valued Roman dominating function on a graph G and H is a subgraph of G,
then we denote the restriction of f on H by f|g. The Y-Roman domination number
of a graph G, denoted yr(G), is defined to be the minimum weight of a Y-valued
dominating function on G. As examples, let us mention: (a) the domination number
Y(G) = v40,13r(G), (b) the minus domination number [6], where Y = {—1,0,1}, (c)
the signed domination number [5], where Y = {—1,1}, (d) the Roman domination
number Yr(G) = 770,1,2yr(G) [4], and (e) the signed Roman domination number [1],
where Y = {—1,1,2}. A Y-valued Roman dominating function f on G with weight
wr(G) is called a ~yg-function on G.

Now we introduce a new partition of a vertex set of a graph, which plays a key role in
the paper. In determining this partition, all 4yg-functions of a graph are necessary.
For each X € P(Y) we define the set V*(G) as consisting of all v € V(G) with
{f(v) | f is a yyg-function on G} = X. Then all members of the family (V*(G))xep(v)
clearly form a partition of V(G). We call this partition the ~yg-partition of G.
Fricke et al. [7] in 2002 began the study of graphs, which are excellent with respect
to various graph parameters. Let us concentrate here on the parameter yyr. A vertex
v € V(G) is said to be (a) yyr-good, if h(v) > 1 for some ~yg-function h on G, and
(b) Ywr-bad otherwise. A graph G is said to be ~yg-excellent if all vertices of G are
Ywr-good. Any vertex-transitive graph is «yg-excellent. Note that when vyp = -, the
set of all y-good and the set of all -bad vertices of a graph G form the y-partition
of G. For further results on this topic see e.g. [2, 10-15].

In this paper we begin an investigation of ~yg-excellent graphs in the case when
Y = {0,1,2}. In what follows we shall write v instead of {012}z, and we shall
abbreviate a {0, 1, 2}-valued Roman dominating function to an RD-function. Let us
describe all members of the yx-partition of any graph G (we write V¢(G), V¥ (G) and
Vik(@) instead of VIH(@G), V14 (@) and V143K (G), respectively).

(i) VH(G) = {z € V(GQ) | f(x) =i for each yg-function f on G},i =1,2,3;
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(i) VO'2(G) = {z € V(Q) | there are yr-functions fs, gs, h, on G with
fz(x) =0,g.(x) =1 and h,(z) = 2};

(iii) V¥ (G) = {x € V(G) — V?2(G) | there are yp-functions f, and g, on G
with f(z) =4 and g.(z) =j},0<i<j <2

Clearly a graph G is yg-excellent if and only if VO(G) = 0.

It is often of interest to known how the value of a graph parameter is affected when
a small change is made in a graph. In this connection, Hansberg, Jafari Rad and
Volkmann studied in [8] changing and unchanging of the Roman domination number
of a graph when a vertex is deleted, or an edge is added.

Lemma 1. ([8]) Let v be a vertex of a graph G. Then yr(G —v) < vr(G) if and only if
there is a yr-function f = (V{; VI V) on G such that v e V. If yr(G —v) < vr(G) then
Yr(G —v) =r(G) — 1.

Lemma 1 implies that V}(G), VO(G), VI2(G), VO1%(G) form a partition of V= (G) =
{z e V(G) [r(G —2)+1=7(G)}.

Lemma 2. ([8]) Let  and y be non-adjacent vertices of a graph G. Then yr(G) >
Yr(G + zy) > vr(G) — 1. Moreover, yr(G + xy) = Yr(G) — 1 if and only if there is a
Yr-function f on G such that {f(z), f(y)} = {1, 2}.

The same authors defined the following two classes of graphs:

(i) Rovr is the class of graphs G such that yr(G —v) < yr(G) for all v € V(G).

(ii) Repa is the class of graphs G such that yr(G + €) < yr(G) for all e € E(G).

Remark 1. By Lemmas 1 and 2 it easy follows that:
(i) each graph in Revr U RcEa is yr-excellent,

(i) if G is a yr-excellent graph, e € E(G) and yr(G) = yr(G + ), then G + e is yr-
excellent,

(iii) each graph (in particular each ygr-excellent graph) is a spanning subgraph of a graph
in Rcea with the same Roman domination number.

Denote by Gy, ; the family of all mutually non-isomorphic n-order yg-excellent con-
nected graphs having the Roman domination number equal to k. With the family
Gp,k, We associate the poset RE,, = (Gy, x, <) with the order < given by Hy; < Hy
if and only if Hy has a spanning subgraph which is isomorphic to H; (see [16] for
terminology on posets). Remark 1 shows that all maximal elements of RE,, ; are in
Rcea. Here we concentrate on the set of all minimal elements of RE,, ;. Clearly a
graph H € Gy, j is a minimal element of RE,, j if and only if for each e € E(H) at
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least one of the following holds: (a) H — e is not connected, (b) ygr(H) # yr(H —e),
and (c) H — e is not yr-excellent. All trees in G, j are obviously minimal elements of
RE,, k.

The remainder of this paper is organized as follows. In Section 2, we formulate our
main result, namely, a constructive characterization of «yg-excellent trees. We present
a proof of this result in Sections 3 and 4. Applications of our main result are given
in Sections 5 and 6. We conclude in Section 7 with some open problems.

We end this section with the following useful result.

Lemma 3. ([4]) Let f = (V{;V{; V) be any yr-function on a graph G. Then each

component of a graph Vl‘f has order at most 2 and no edge of G joins Vlf and V2f.

In most cases Lemmas 1, 2 and 3 will be used in the sequel without specific reference.

2. The main result

In this section, we present a constructive characterization of yg-excellent trees using
labelings. We define a labeling of a tree T as a function S : V(T) — {A, B,C, D}.
A labeled tree is denoted by a pair (7,5). The label of a vertex v is also called
its status, denoted star(v : S) or star(v) if the labeling S is clear from context.
We denote the sets of vertices of status A, B,C and D by S4(T),Sg(T),Sc(T) and
Sp(T), respectively. In all figures in this paper we use e for a vertex of status A, v
for a vertex of status B, e for a vertex of status C, and o for a vertex of status D. If
H is a subgraph of T, then we denote the restriction of S on H by S|g.

. AHAAHZH

(Hh ) ]‘I)7 H3 |3 (1’147 )
(Hs, I®) (Hg, I° (H., I7)
o0—o0 I o0—o0 O o I 0—7 I I
o—o o—o0 I O0—o0 I —F—o0 4
(Hs, I%) (Hy, I%) (Hio,1') (Hyp, 1)

Figure 1. All trees with |[Lp U Lc| < 2.

To state a characterization of ygr-excellent trees, we introduce four types of oper-
ations. Let .7 be the family of labeled trees (T,S) that can be obtained from a
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sequence of labeled trees 7 : (T, S1),...,(T7,87), (j > 1), such that (T*,S?) is in
{(Hy, 1Y), .., (Hs, I?)} (see Figure 1) and (T, S) = (T7,87), and, if j > 2, (T*+!, Si*1)
can be obtained recursively from (7%, S%) by one of the operations Oy, Oy, O3 and Oy
listed below; in this case 7 is said to be a 7 -sequence of T. When the context is clear
we shall write T € 7 instead of (T,S) € 7.

N LN

(Flvjl) (F27JZ F45J4
Figure 2. (F,J)-graphs

Operation O;. The labeled tree (1!, S*1) is obtained from (7%, S%) and (F,J) €
{(Fy,JY), (Fy, J?), (F3,J3)} (see Figure 2) by adding the edge ux, where u € V(T;),
x € V(F) and stagi(u) = stap(z) = C.

Operation O,. The labeled tree (T°+!, S*+1) is obtained from (7%, S%) and (Fy, J*)
(see Figure 2) by adding the edge ux, where u € V(T?), x € V(Fy), stagpi(u) = D,
and stag, (z) = C.

Operation Oz. The labeled tree (T°*!, S*+1) is obtained from (T, S?) and (Hy, I*),
k€ {2,3,...,7} (see Figure 1), in such a way that 7T = (T% - Hy,)(u,v : u), where
stapi(u) = stay, (v) = A, and stapi+1 (u) = A.

Operation O4. The labeled tree (7!, S*+1) is obtained from (T, S?) and (Hy, I*),
k € {3,4,6} (see Figure 1), in such a way that T°"! = (T . Hy)(u,v : u), where
stapi(u) = D, stag, (v) = A, and stapi+i(u) = D.

Remark that if y € V(T%) and i < k < j, then stapi(y) = starx(y). Now we are

prepared to state the main result.

Theorem 1. LetT be a tree of order at least 2. Then T is yr-excellent if and only if there
is a labeling S : V(T) — {A, B,C,D} such that (T,S) is in . Moreover, if (T,S) € T
then

(P1) Sg(T) = {x € VO*(T) | deg(z) = 2 and |N(z) N VO*(T)| = 1}, Sa(T) = VOI(T),
Sp(T) = VO'3(T), and Sc(T) = V°*(T) — Sg(T).

3. Preparation for the proof of Theorem 1

3.1. Coalescence

We shall concentrate on the coalescence of two graphs via a vertex in Vo' and derive
the properties which will be needed for the proof of our main result.
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Proposition 1. Let G = (G1 - G2)(x) be a connected graph and x € V°X(G). Then the
following holds.

(i) If f is a yr-function on G and f(x) =
is a yr-function on Gy —x, i = 1,2.

(i1) vr(G) = vr(G1) + vr(G2) — 1.

1, then f|a, is a yr-function on G;, and f|c, -«

(i5i) If h is a yr-function on G and h(x) = 0, then exactly one of the following holds:

(ii1.1) hle, is a yr-function on G1, h|G,—= is a Yr-function on G2 —x, and h|g, is no
RD-function on Ga;

(i4.2) hlc, -« is a yr-function on G1 — z, hle, is no RD-function on G1, and h|c, is
a Yr-function on Ga.

(iv) Either {x} = V°(G1) NVH(G2) or {z} = VO (G:) N VH(Gy), where {i,7} = {1,2}.

Proof. (i) and (ii): Since f(x) = 1, flg, is an RD-function on G;, and flg,—s
is an RD-function on G; — z, ¢ = 1,2. Assume g; is a yg-function on G; with
91(V(G1)) < fle,(V(G1)). Define an RD-function f’ as follows: f'(u) = g1 (u) for all
u € V(Gy) and f'(u) = f(u) when u € V(G2 — z). Then f(V(G)) = 1(V(G1)) +
flas—=(V(G2 — 2)) < f(V(@Q)), a contradiction. Thus, fl|g, is a yg-function on Gj,
i = 1,2. Now, Lemma 1 implies that f|g,_. is a yg-function on G; — z, i = 1,2.
Hence vr(G) = fla, (V(G1)) + fla,(V(G2)) = f(2) = 7r(G1) + vr(Ga) — 1.

(iii) First note that h(x) = 0 implies h|g, is an RD-function on G; for some i € {1, 2},
say 1 = 1. If h|g, is an RD-function on G5 then yg(G) = A(V(Q)) > vr(G1)+7r(G2),
a contradiction with (ii). Thus, h|g,—s is an RD-function on Gy — x. Now we have
Yr(G1) +7r(G2) — 1 = &r(G) = M(V(G)) = hla,(V(G1)) + hla,—2(V(G2 — x)) =
Yr(G1)+(vr(G2)—1). Hence h|g, is a yr-function on Gy and h|g,—_, is a yr-function
on Gy — x.

(iv) Let f1 be a yg-function on G;. Assume first that fi(x) = 2. Define an RD-
function g on G as follows: ¢g(u) = fi(u) when u € V(G1) and g(u) = f(u) when
u € V(G3 — x), where f is defined as in (i). The weight of g is yr(G1) + (yr(G2) +
1) — 2 = yg(G). But g(z) = 2 and z € V°(G), a contradiction. Thus f(z) # 2.
Now by (i) we have x € V1(G;) UV (G;), i = 1,2, and by (iii), z € VO(G;) for
some j € {1,2}. O

Proposition 2. Let G = (G1 - G2)(z), where G1 and G2 are connected graphs and
{m} = VOl(Gl) N VOl(Gz).

(i) If fi is a yr-function on G; with fi(x) =1, i = 1,2, then the function f : V(G) —
{0,1,2} with f|a, = fi, i = 1,2, is a yr-function on G.

(i) vr(G) = Yr(G1) +vr(G2) — 1.

(1) Let Vg = {V°, V1 V2 VO vO02 12 yOI21 - Then for any A € Vg, A(G1) U A(G2) =
A(G).
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Proof. (i) and (ii): Note that f is an RD-function on G and vr(G) < f(V(G)) =
[1(V(G1)) + f2(V(G2)) — f(2) = vr(G1) +7r(G2) — 1. Now let i be any yg-function
on G.

Case 1: h(z) > 1. Then h|g, is an RD-function on G;, i = 1,2. If h(z) = 2 then
since z € VO(G1) N VO(Gy), h|g, is no yr-function on G;, i = 1,2. Hence yr(G) >
(vr(G1) +1) + (vr(G2) + 1) — h(z) = yr(G1) + vr(G2), a contradiction. If h(z) =1
then 1r(G) = h(V(G)) = h(V(G1)) + h(V(G2)) — h(x) > 1r(Gr) +7r(Ga) — 1. Thus
hz) =1, vr(G) = yr(G1) + 7r(G2) — 1 and f is a yr-function on G.

Case 2: h(xz) = 0. Then at least one of h|g, and h|g, is an RD-function, say the first.
If h|g, is an RD-function on Gy then h(V(G)) > vr(G1) + 7r(G2), a contradiction.
Hence h|g,— is a yg-function on Gy — . But then v5(G) = h(V(G)) > vr(G1) +
Yr(G2 — ) > vr(G1) + vr(G2) — 1 > vr(G).

Thus, (i) and (ii) hold.

(iii): Let g1 be a yr-function on Gy with g1(z) = 0, and go a yr-function on Gy — .
Then the RD-function g on G for which g|lg, = ¢1 and g|lg,—» = g2 has weight
g1 (V(G1)) + 92(V(G2 — 2)) = 7r(G1) + (G2 — z) = Yr(G1) +7r(G2) — 1 = 7r(G).
Hence by (i), z € VO(G) UV 2(G). However, by Case 1 it follows that h(x) # 2 for
any yg-function h on G. Thus z € V(G).

Let y € V(G1 —x), l; a yg-function on G1, and h a yg-function on G. We shall prove
that the following holds.

Claim 4.1 There are a yg-function [ on G, and a ygr-function h; on G such that
U(y) = lLi(y) and h(y) = h(y).

Define an RD-function [ on G as l|g, = {1 and l|g,—» = l2, where l5 is a yg-function
on Gy — z. Since [(V(G)) = vr(G1) + vr(G2 — z) = vr(G), 1 is a yr-function on G
and I(y) = l1(y).

Assume now that there is no yg-function hy on Gy with hy(y) = h(y). Proposition 1
implies that, h|g,—» is a yr-function on G; — 2. But then the function ' : V(G;) —
{0,1,2} defined as h'(u) = 1 when u = z and h/(u) = h|g, (u) otherwise, is a yg-
function on G; with h/(y) = h|g, (v), a contradiction.

By Claim 4.1 and since x € V(G), A(G1) = A(G) N V(G;) for any A € Vpg.
By symmetry, A(G2) = A(G) NV (G2). Therefore A(G1) U A(G2) = A(G) for any
A€ Vg O

Lemma 4. Let G = (G:1 - G2)(z), where G1 and G2 are connected graphs and {z} =
VO2(G1) N VO (G2). Then vr(G) = Yr(G1) + Yr(G2) — 1 and z € VO'3(G).

Proof. Let f; be a yg-function on G; with f;(x) = 1, ¢ = 1,2. Then the function f
defined as f|g, = fi is an RD-function on G;, i = 1,2. Hence vg(G) < f(V(G)) =
Yr(G1) + vr(G2) — 1. Let now h be any yg-function on G.

Case 1: h(z) =
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Since x € V92(G1)NV(G2), hlg, is a yr-function on Gy and h|g, is an RD-function
on Gg of weight more than vr(G2). Hence yr(G) = h(V(G)) > yr(G1) + (vr(G2) +
1) = h(z). Thus 7r(G) = Yr(G1) +1r(G2) — 1.

Case 2: h(z) = 1.

Then obviously h|g, and h|g, are yg-functions. Hence vr(G) = vr(G1) +vr(G2) —1.
Case 3: h(z) =0.

Hence at least one of h|g, and h|g, is a yr-function. If both h|g, and h|g, are
~r-functions, then yr(G) = vr(G1) + Yr(G2), a contradiction. Hence either h|g,
and h|g,—, are yg-functions, or h|g,—, and h|g, are yg-functions. Since {x} =
VO2(G1) N VYY(Gy), in both cases we have vgr(G) = yr(G1) + Yr(G2) — 1.

Thus, 7r(G) = Yr(G1) +vr(G2) — 1 and z € VO12(G). O

3.2. Three lemmas for trees

Lemma 5. Let T be a yr-excellent tree of order at least 2. Then V(T) = V°(T) U
VOR(T)yu VO(T).

Proof. Let x € V(T), y € N(x) and f a yg-function on T. Suppose z € V(T). If
f(y) =1, then the RD-function g on T defined as g(z) = 2, g(y) = 0 and g(u) = f(u)
for all u € V(T') — {z,y} is a yr-function on 7', a contradiction. But then N(z) C
VO(T), which is impossible.

Suppose now x € VZ(T) U V12(T). Hence z is not a leaf. Choose a yg-function h on
T such that (a) h(z) = 2, and (b) k = |epn[z, V]| to be as small as possible. Let
epnlx, V3 = {y1,y2,...,yx} and denote by T; the connected component of T — z,
which contains y;. Hence h(y;) = 0 for all ¢« < k. Since T is yp-excellent, there is
a ygr-function f on T with fi(yx) # 0. Since x € VA(T) U V3(T), fr(z) # 0. If
fr(yx) = 1 then fi(z) = 1, which easily implies € V°*2(T), a contradiction. Hence
fe(yr) = fe(z) = 2. Define a yg-function ! on T as l|1, = fi|r, and l(u) = h(u)
for all u € V(T) — V(T}). But |epn[z, V4]| < k, a contradiction with the choice of h.
Thus VY(T) U V2(T) U V12(T) is empty, and the required follows. O

Lemma 6. Let T be a tree and V™~ (T) is not empty. Then each component of (V~(T))
1s either K1 or Ko.

Proof. Assume that P : 1,29, 23 is a path in T and 21, 29,23 € V~(T). Then there
is a yg-function f; on T' with f;(z;) = 1, ¢ = 1,2,3 (by Lemma 1). Denote by T}
the connected component of T' — xox; that contains x;, j = 1,3. Then fo|r, and
[jlr, are yr-functions on Tj, j = 1,3. Now define a yr-function h on 7" such that
hlr, = filr;, j = 1,3, and h(u) = f2(u) when v € V(T') — (V(T1) U V(T3)). But
h(z1) = h(z2) = h(xz3) = 1, a contradiction. O

Lemma 7. Let T be a yr-excellent tree of order at least 2.
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(i) If x € VO'2(T), then x is adjacent to exactly one vertex in V™~ (T), say y1, and y1 €
VOH(T).

(ii) Let x € VO2(T). If deg(x) > 3 then = has exactly 2 neighbors in V™~ (T). If deg(z) = 2
then either Nr(x) C VP*2(T) or there is a path u,x,y, z in T such that u,z € V°(T),
y € VO(T) and deg(y) = 2.

(iii) VOL(T) is either empty or independent.

Proof. Let z € VO2(T) U VY(T) and N(z) = {y1,v2,...,yr}. If z is a leaf, then
clearly z,y; € V°2(T). So, let » > 2. Denote by T; the connected component
of T — x which contains y;, ¢ > 1. Choose a yr-function A on T such that (a)
h(z) = 2, and (b) k = |epn[z, V]| to be as small as possible. Let without loss
of generality epn[z, V)] = {y1,v2,...,yr}. By the definition of A it immediately
follows that (c) h|r, is a yg-function on T for all j > k4 1, (d) for each i €
{1, ...k}, h|r, is no RD-function on T;, and (e) h|r,—,, is a yg-function on T; — y;,
i € {1,...,k}. Hence yr(T3) < yr(T; —y;) + 1 for all ¢ € {1,...,k}. Assume
that the equality does not hold for some i < k. Define an RD-function h; on T as
follows: h;(u) = h(u) when v € V(T) — V(T;) and h;|r, = b}, where h] is some vg-
function on T;. But then either h; has weight less than yg(T") or h; is a yg-function

on T with epn[z, V3] = epn[z, V] — {y:}. In both cases we have a contradiction.
Thus Yr(T;) = yr(T; — yi) + 1 for all ¢ € {1,..,k}. Therefore yr(T) = h(V(T)) =
24+ 25 (R(T) = 1) + 25 1 r(T)) = 2 =k + X vr(Ti) = 2 = k +yr(T — ).
Thus vg(T) =2 — k +yr(T — ).

(i) Since yr(T' —x) + 1 = yr(T), k = 1. We already know that h|r; is a yr-function
on Tj, j > 2. Assume that y; € VO2(T) U VO(T) for some j > 2. Then there
is a yp-function | on T with I(y;) = 1. Clearly |7, is a yg-function on T;. Now
define a yg-function h” on T as follows: h”(u) = h(u) when u € V(T') — V(T}) and
h"|r, = l|r;. But then h"(x) = 2,h"(y;) = 1 and zy; € E(G), which is impossible.
Thus, y2,¥3, .-,y € VO?(T). Define now yp-functions hy and hy on T as follows:
hi(u) = hao(u) = h(u) for all w € V(T) — {z,y1}, h1(z) = hi(y1) = 1, ha(z) = 0 and
ha(y1) = 2. Thus y; € VO12(T).

(ii) Since ygr(T' — x) = yr(T), k = 2. Recall that h|r, is a yr-function on T}, j > 3,
and Yr(T; — yi) = vr(T;) — 1 for i = 1,2. Hence there is a yr-function f; on T; with
filyi) =1,1=1,2.

Suppose first that 7 > 3. As in the proof of (i), we obtain ys, ..,y € V°?(T). Hence
there is a yg-function g on 7" such that g(ys) = 2. By the choice of h, g(z) = 0. Then
glT, is a yr-function on T}, i = 1,2. Define now a yg-function ¢’ on T as ¢'|1, = fi,
i=1,2,and ¢'(u) = g(u) when u € V(T)—(V(T1)UV (T3)). Since ¢'(y1) = ¢'(y2) = 1,
y1,y2 € V(T).

So, let r = 2 and let f be a yg-function on T with f(x) = 0. Then there is ys such that
f(ys) =2, say s = 2. Hence y» € VO*(T) U V(T) and f|r, is a yg-function on 7.
Define the yg-function ! on T as l|r, = f1 and l(u) = f(u) when u € V(T) — V(T1).
Since I(y1) = 1, y1 € VOU(T) U VOIZ(T).
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Assume first that y; € VO12(T). Then there is a yg-function f’ on T with f/(y;) = 2.
Since x € VO*(T) and deg(x) = 2, f'(z) = 0. Hence f’|r, is a a yg-function on 7.
But then we can choose f’ so that f’|, = fa. Thus yo € VO2(T).

So let y; € VOY(T) and suppose y2 € VO'2(T). Then there is a yg-function f” on
T with f”(y2) = 1. Since x € V9(T), f”(z) = 0 and f”(y1) = 2, a contradiction.
Thus, if y; € V(T then yo € VO(T).

Finally, let us consider a path yy,, 2, z in T, where y; € VOXY(T), z,y2 € V%(T) and
deg(xz) = 2. Assume to the contrary that N(y2) = {z1,29,...,25 = a2} with s > 3.
Denote by T, the connected component of 7' — y that contains z,, p = 1,2,..,s. By
applying results proved above for x € V°2(T) with deg(x) > 3 to y2, we obtain that (a)
y2 has exactly 2 neighbors in V'~ (T'), say, without loss of generality, z1,29 € V—(T),
and (b) Yr(T%, — 2z) = Yr(T%,) — 1, where i = 1,2. Recall now that: h(z) = 2, h|r,
is no RD-function on T; and hl|r,_,, is a ygr-function on T; — y;, ¢ = 1,2. Hence
h(y1) = h(y2) = 0 and h|sz is a yg-function on T, j < s — 1. Since Yr(T%, — z;) =
vr(T:,) — 1, i = 1,2, additionally we can choose h so that h(z1) = h(z2) = 1. But
then the function hy defined as hy(u) = h(u) when u € V(T) — {y1, %, y2, 21, 22} and
hi(y1) = hi(z) = 1, hi(y2) = 2, hi1(z1) = h(z2) = 0 is a yr-function on T. Now
hi(x) =1, h1(y2) = 2 and 2y, € E(G) lead to a contradiction. Thus, N(ys) = {z, z}.
Suppose z € VOY(T). Then there is a yg-function hy on T with hy(z) = 2. If
ha(y2) = 2, then hy(z) = 0 and the function hs on T defined as hs(x) = hs(y2) =1
and hs(u) = hq(u) otherwise, is a yp-function on T, a contradiction. Hence hy(y2) =0
and since y; € VOU(T), hy(x) = 2 and hy(y;) = 0. But then the function hg on T'
defined as hg(x) = hg(y1) = 1 and hg(u) = hy(u) otherwise, is a yp-function on 7', a
contradiction. Therefore z € V% (T'), and we are done.

(iii) Assume that uq,us € VO(T) are adjacent. Let T, be the component of T'—uusz
that contains u;, ¢ = 1,2. Let g; be a yg-function on T with ¢;(u;) = 1, i = 1,2.
Hence g;(Ty,) is a yg-function on T, 4, j = 1,2. Thus yr(T) = Yr(Tw,) + Yr(Tu,)-
Define now a yp-function gs on T as gs|r, = ¢i|r,, i = 1,2. But then a function g4
defined as g4(u) = g3(u) when u € V(T) — {uy,us}, ga(u1) = 2 and ga(uz) =0 is a
yr-function on T, contradicting u; € V(7). Thus V°}(T) is independent. O

4. Proof of the main result

Proof of Theorem 1. Let T be a yg-excellent tree. First, we shall prove the fol-
lowing statement.

(P2) Thereis alabeling L : V(T) — {A, B,C, D} such that (a) L4(T) is either empty
or independent, (b) each component of (Lp(T)) and (Lp(T)) is isomorphic
to Ko, (¢) each element of Lp(T) has degree 2 and it is adjacent to exactly
one vertex in L4(T), (d) each vertex v in Lo (T) has exactly 2 neighbors in
L4(T)U Lp(T), and if deg(v) = 2 then both neighbors of v are in Lp(T).

By Lemma 5 we know that V(T') = VOY(T) U VO2(T) U V'3(T). Define a labeling
L :V(T) — {A,B,C,D} by La(T) = VOUT), Lp(T) = VO'2(T), Ly(T) = {z €
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VO(T) | deg(x) = 2 and |N(z) N VO%(T)| = 1}, and Lo(T) = VO*(T) — L(T). The
validity of (Ps) immediately follows by Lemma 7.

Denote by 77 the family of all labeled, as in (Pz), trees T. We shall show that if
(T,L) € & then (T,L) € 7.

(I) Proof of (T,L) e 51 = (T,L) e 7.
Let (T,L) € Z. The following claim is immediate.
Claim 1.1

(i) Each leaf of T is in L, (T) U Lp(T).
(ii) If v is a support vertex of T, then v is adjacent to at most 2 leaves.
(iii) If u; and ug are leaves adjacent to the same support vertex, then uy,us € L (T).

We now proceed by induction on k = |[LgUL¢|. The base case, k < 2, is an immediate
consequence of the following easy claim, the proof of which is omitted.

Claim 1.2 (see Fig.1)
(i) If k =0 then (T, L) = (Hy,I").

(ii) If £ = 1 then (7, L) is obtained from (Hi,I;) by operation Oy, i.e. (T,L) =
(Hyqp, IMY).

(iii) If k = 2 then either (T, L) is (H,,I") with r € {2,3,4,5}, or (T, L) is obtained
from (Hii,I'') by operation O; or by operation Oy (see the graphs (H,, I°)
where s € {6,7,8,9,10}.

Let k& > 3 and suppose that each tree (H, L") € % with |L'y(H)UL(H)| < kisin 7.
Let now (T, L) € % and k = |Lp(T)ULc(T)|. To prove the required result, it suffices
to show that T has a subtree, say U, such that (U, L|y) € 1, and (T, L) is obtained
from (U, L|yy) by one of operations Oy, 03,03 and Oy4. Consider any diametral path
P:xy,29,...,2, in T. Clearly z; is a leaf. Denote by x},z2, .. all neighbors of z;,
which do not belong to P, 2 <i<n—1.

Case 1: sta(z1) = A and sta(zy) = B.
Then deg(x1) = 1, deg(xa) = deg(x3) = 2, sta(xs) = B and sta(xy) = A. Thus T is
obtained from T — {z1,z2, 23} € J1 and a copy of Hy by operation Oz (via z4). O

Case 2: sta(z1) = A and sta(zs) = C.

Hence deg(x3) > 3. By the choice of P, deg(z2) = 3, 3 is a leaf, sta(zl) = A, and
sta(z3) = C. If deg(xs) > 4 then T is obtained from T — {z3, 21,72} € 7 and a copy
of Iy by operation O;. So, let deg(zs) = 3. Assume first that sta(xs) = A. Then
either z3 is a leaf of status A or x} is a support vertex, deg(z3) = 2, and both zi and
its leaf-neighbor have status D. Thus, T is obtained from T'—(N[z2]UN|[z1]) € Z; and
a copy of Hz or Hy, respectively, by operation O3 (via x4). Finally let sta(z4) = D.
By the choice of P, either x1 is a leaf of status A and then T is obtained from



12 Roman domination excellent graphs: trees

T — (N[z2)U{zi}) € Z1 and a copy of Hj by operation Oy, or z} is a support vertex
of degree 2 and both z1 and its leaf-neighbor have status D, and then T is obtained
from T — {x, 11,22} € Z1 and a copy of F} by operation Oj. i

In what follows, let sta(x1) = D. Hence deg(x2) = 2, sta(z2) = D and sta(xs) = C.
If deg(z3) = 2 then T is obtained from T — N[z3] € 71 and a copy of Fy by operation
Os.

Case 3: deg(x3) = 3 and sta(z4) € {A, D}.

In this case sta(xi) = C, 23 is a support vertex, deg(x3) = 3, and the leaf neighbors of
23 have status A. Now (a) if sta(z4) = A then T is obtained from T— (N [z2]UN[23]) €
1 and a copy of Hy by operation Oz (via x4), and (b) if sta(z4) = D then T is
obtained from T — (N[z2] U N[z3]) € 23 and a copy of Hy by operation Oy (via
l‘4). O

Case 4: deg(z3) = 3, sta(xy) = C and sta(xl) = A.

Hence x} is a leaf. If deg(z4) = 3 and sta(xs) = sta(z}) = D, or deg(w4) > 4, then
T is obtained from T — {1, xg,xg,xé} € 7 and a copy of Fy by operation O;. So,
let deg(z4) = 3 and the status of at least one of x5 and x} is A. Assume first that
sta(z}) = A. Hence z} is a leaf (by the choice of P). If sta(xs) = A then T is obtained
from a copy of Hy and a tree in .7; by operation Oz (via x5). If sta(zs) = D then T
is obtained from a copy of Hy and a tree in J; by operation Oy (via x5). Second, let
sta(z}) = D. Hence sta(xs) = A, deg(z}) = 2 and the status of the leaf-neighbor of
xl is D. But then T is obtained from a copy of Hs and a tree in .7; by operation O3
(via x5). i

Case 5: deg(z3) = 3, sta(xy) = C and sta(x}) = D.

Hence deg(x}) = 2, 21 is a support vertex, and the leaf-neighbor of 2} has status D. If
deg(z4) > 4 or sta(zs) = sta(x}) = D, then T is obtained from T — N[{xq,23}] € 7
and a copy of F3 by operation Op. So, let deg(z4) = 3 and at least one of x5 and
x} has status A. Assume sta(x}) = A. Hence z} is a leaf. If sta(zs) = A then T is
obtained from T — N[{z2,z},7}}] € 71 and a copy of Hg by operation O3z (via z5).
If sta(zs) = D then T is obtained from T — N[{zq,z3,21}] € Z1 and a copy of Hg
by operation Oy (via z5). Now let sta(x}) = D. Hence sta(zs) = A and then T is
obtained from a copy of H; and a tree in .73 by operation Oz (via x5). i

Case 6: deg(x3) > 4.

Hence z3 has a neighbor, say y, such that y # x4 and sta(y) = C. By the choice
of P, y is a support vertex which is adjacent to exactly 2 leaves, say z; and zo, and
sta(z1) = sta(ze) = A. But then T is obtained from T — {y, z1, 22} € 1 and a copy
of F by operation O;.

By Claim 2.1, there are no other possibilities. m|
(I1) (1,8) € 7 = (T,S5) € 7. Obvious. O
It remains the following.

(III) Proof of (T,S) € F = T is yr-excellent and (P1) holds.
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Let (T,S5) € 7. We know that (T,S) € 7. We now proceed by induction on
k =1SpUS¢|. First let k < 2. By Claim 1.2, T € 5 = {H,,.., H11}. It is easy to
see that all elements of % are yp-excellent graphs and (P;) holds for each T € J7.

Let k£ > 3 and suppose that if (H,S") € .7 and |S5(H) U S (H)| < k, then H is yg-
excellent and (P;) holds with (7, .S) replaced by (H,S"). So, let (T,S) € J and k =
|S(T) U Sc(T)|. Then there is a F-sequence 7 : (T*,SY), ... (T7=1, 57=1) (T, S).
By induction hypothesis, 77~ is yg-excellent and (P;) holds with (7, S) replaced by
(T7=1,59=1). We consider four possibilities depending on whether T is obtained from
T3~! by operation O, 02,03 or Oy.

Case 7: T is obtained from 7~! € 7 and F, by operation O, a € {1,2,3}.
Hence T is obtained after adding the edge uz to the union of 79~! and F,, where
stapi—1(u) = stap, () = C (see Fig. 2). First note that yg(F,) = a+ 1, and F» and
F3 are yg-excellent graphs. Since yr(F, — x) = yr(F,) and u € VO?(T771), Lemma
2 implies Yg(T) = Yr(T? 1) +vr(F,). Hence for any «yz-function g on T, the weight
of g|F, is not more than yr(F,). But then g(z) # 1 and either g|r, is a yr-function
on F, or g|g, . is a yg-function on F, — z. By inspection of all yg-functions on Fy,
and F, — x, we obtain

(a1) SA(T)NV(F,) =VOUT)NV(F,), Sp(T)NV(F,

a):® {x} C(T)mv(Fa):
VO2(TY AV (E,), and Sp(T) NV (E,) = VOI2(T) AV (

a)-

By the definition of operation O; it immediately follows

(az) Sx(T)NV(Ti~Y) = 8% (T91), for all X € {A, B,C, D}.

Let f; be a yg-function on 79~! and f, a yg-function on F,. Then the RD-function
f on T defined as f|pi-1 = f1 and f|p, = f2 is a yg-function on T. Since f; was
chosen arbitrarily, we have

(az) VOL(TI=1) C VOUT) U VOI2(T), VO2((Ti-Y) C V(T) u VO2(T), and
V012(Tj71) g VOIQ(T).

By (a1) and («3) we conclude that T is yg-excellent.

Now we shall prove that

(aq) VOUT)NV(TI=Y) = VOYTI=Y), VOUT)NV(TI 1) = VO2(T71) and VO12(T)N
V(Tj—l) _ VOlQ(Tj_l).

Assume there is a vertex z € VO2(T7=1) N VO12(T). By Lemma 7, 2 is adjacent to at
most 2 elements of V= (77~1). Now by (a3) and since A((V~(T))) < 1 (by Lemma
6), z is adjacent to exactly one element of V~(77~1). But then Lemma 7 implies
that there is a path z1,2,29,23 in 791 such that degri-1(z) = degri-1(22) = 2,
2,29 € VO2(TI=1) and 21,23 € VOL(TI71). Since (Py) is true for T971, stap;—1(z) =
stapi-1(z3) = A, and stapi-1(z) = stapi-1(z2) = B. Clearly, at least one of z; and
z3 is a cut-vertex. Denote by @ the graph ({z1, z, 22, 23}) and let the vertices of @
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are labeled as in 7771, Let Us be the connected component of T' — {z, 22}, which
contains z,, s =1, 3.

Assume first that 7" is a subtree of U € {Uy,Us}. Then there is i such that T% is
obtained from T°~! and @ by operation O3. Hence T°~! is a subtree of U. Recall
that if y € V(T") and r < s < j — 1, then star-(y) = stars(y). Using this fact, we
can choose 7 so, that T~ = U. Therefore U is in .7. Suppose that neither z; nor z3
is a leaf of TV~1. Define R® = T — (V(T" 1) U{z, 22}), s = 1,2,...,j— 1 —i. Since
clearly R! is in {Ha, Hs, ..., Hr}, the sequence R', R% ... RI=17% is a J-sequence
of U’, where {U,U’} = {Uy,Us}. Thus, both Uy and Us are in 7, and stay, (21) = A.
By the induction hypothesis, z; € V(Uy).

Suppose now that u € V(Us). Consider the sequence of trees Us, Uy, Us, where Uy is
obtained from Us and @ by operation O3 (via z3), and Uy is obtained from Uy and Fy,
by operation Op. Clearly Us is in .7, stay,(z1) = A and by the induction hypothesis,
z1 € VOL(Us). Since T'= (Us - U1)(21) and {z1} = VO(U;) N VO (Us), by Proposition
2 we have z; € VO(T). But then Lemma 7 implies zo € V2(T), a contradiction.
Now let u € V(U;y). Denote by Us the graph obtained from U; and F, by operation
Osz. Then Us is in 7, stay,(z1) = A, and by induction hypothesis, 2z € V1 (Uy).
Define also the graph Ug as obtained from Us and @ by operation Os, i.e. Ug = (Us -
Q)(z3). Then U is in 7, stay,(z1) = A and by induction hypothesis, 21 € V' (Us).
Now by Proposition 2, z; € V}(T), which leads to z2 € V%(T) (by Lemma 7), a
contradiction.

Thus, in all cases we have a contradiction. Therefore V2(77~1) C VY2(T) when both
z1 and z3 are cut-vertices. If z; or z3 is a leaf, then, by similar arguments, we can
obtain the same result.

Let now T' = Q. Then T? is obtained from 7' and Hj, by operation Os. Consider
the sequence of trees 7 : T} = Hy, T, T3,...,Ti71. Clearly 7, is a 7-sequence
of T9=1 and T # Q. Therefore we are in the previous case. Thus, VO3(T7-1) =
V(T7=YH N VY(T).

Assume now that there is a vertex w € VO(T7=1) N VO1%(T). By Lemma 7(i) w has
a neighbor in T, say w’, such that w' € V2(T). Since w # u, w’ € V(T?~!). But
all neighbors of w in 7971 are in V??(77~!) (by Lemma 7 applied to 7771 and w).
Since VO3(T7=1) = V(T7=1) N V°%(T'), we obtain a contradiction.

Thus (a4) is true.
Now we are prepared to prove that (P;) is valid. Using, in the chain of equalities
below, consecutively (as), the induction hypothesis, (1) and (a4), we obtain

Sa(T) = S (TP H U (SA(T) NV (E,)) = VT U (VOUT) NV (E,)) = VOUT),
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and similarly, Sp(T') = V?12(T). Since u ¢ Sp(T) and Sp(T) NV (F,) = 0, we have

Sp(T) = Sp(T) NV (TI=1) (%) gt (i)
= {t e VOU(TI71) | degri—1(t) = 2 and [Npi—1(t) N VO2(TI71)| =1}

W 1 e VOUTY A V(T | degr(t) = 2 and [Np(t) N VOX(T)| = 1}
= {t € VO¥(T) | degr(t) = 2 and |Np(t) N VO(T)| = 1}.

The last equality follows from degr(z) > 2 and {z} = VO*(T) NV (F,) (see (a1)).
Now the equality Sc(T) = VY2(T) — Sp(T) is obvious. Thus, (P;) holds and we are
done.

Case 8: T is obtained from 77! € .7 by operation O,.

Clearly, Yr(F1) = Yr(Fy—x) = 2. By Lemma 2, Yr(T) = yr(T’ ") +yr(Ha). Let fi
be a yg-function on 77! and f» a yg-function on F,;. Then the function f defined as
flri-1 = f1 and f|r, = fa is a yr-function on T. Therefore VO12(T7=1) C VO12(T),
VOL(TI=1) C VOL(T) U VOI2(T), and VO2(T9—1) C VO(T) U VOI2(T).

Assume that there is y € VO(T7-1) N VO2(T), s € {1,2}, and let f’ be a yg-
function on T with f'(y) = r € {0,s}. If f/|ps-1 is an RD-function on 77~! then
i (V(TI7Y)) > yr(T971) and f'|r,(V(Fy)) > 2. This leads to f/(V(T)) >
yr(T), a contradiction. Hence f’|p;-1 is no RD-function on 771 and f/|pi-1_,, is
a yg-function on 79! — u. Define now an RD-function f” on 791 as f"|pj-1_, =
f'lri-1_y and f"”(u) = 1. Since u € V= (T771), f" is a ygr-function on 77~1 with
f"(y) =r & {0, s}, a contradiction with y € VO (T7=1). Thus

(a5) VOR(TI-Y) = VOR(T) 0 V(TI-Y), VOUTI-Y) = VOYT) N V(TV~!), and
VOX(Ti=1) = VOX(T) O V(T

Let =, 21,72 be a path in Fy, h; a yg-function on 771 with hy(u) = 2, and hy a
~vr-function on 77~! — . Define yg-functions g1, .., g4 on T as follows:

® gilri-1 = hi, g1(z) = g1(z2) = 0 and g1 (z1) =2
® g2|ri-1 = hy, g2(x) = 0 and ga(21) = ga(22) = 1;
® g3|lri-1 = hi, g3(z) = g3(x1) = 0 and g3(w2) = 2;
® galri-1_y = h2, ga(u) = ga(x1) =0, g(z) = 2 and ga(x2) = 1.

This, (as) and Lemma 6 allows us to conclude that T is ygr-excellent, x1, 22 € VO12(T)
and z € VO%(T).

By induction hypothesis, (P;) holds with (T',.S) replaced by (77—, S7~1). Then Since
u ¢ Sp(T) and Sp(T) NV (Fy) = 0, we have

Sp(T) =S (1771
={t e VO(T77") | degrs-1(t) = 2 and [Nps-2 (t) N V(177 1) = 1}
={t € V(1) | degr(t) = 2 and |N7(t) N VO*(T)| = 1}.
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The last equality follows from degr(z) > 2 and {z} = V°*(T) N V(Fy). Now the
equality So(T) = V%(T) — Sp(T) is obvious. Thus, (P;) is true.

Case 9: T is obtained from 77! € .7 by operation Os.

Let T = (T97' - Hy)(u,v : u), where stap;-1(u) = stag, (v) = star(u) = A and
k€ {2,.,7}. Hence Sx(T) = S% (T9~") U I%(Hy), for any X € {A, B,C,D}.
We know that (P;) holds with (7, 9) replaced by any of (77=1,57~1) and (Hj, I*¥).
Hence Sa(T) = 8% N (T7=1) U I§(Hy) = VOU(T7=1) U VO (H,). Now, by Proposition
2, applied to T~ and Hy, Sa(T) = VO(T). Similarly we obtain Sp(T) = V2(T).
We also have

Sp(T) = 8% (T971) U I (Hy)
= {t € VOX(TI71) | degrj-1(t) = 2 and |Npi—1 () N VO2(TI1)| = 1}
@] {t S VOQ(Hk) ‘ deng(t) =2 and |NHk(t) N VOQ(Hk)| = 1}
= {t e V(T ") UV ?(Hy) | degr(t) = 2 and |Np(t) N VO*(T)| = 1},

as required, because VO2(T7=1) U VO2(H,) = V%(T) (by Proposition 2). Now the
equality So(T) = VO%(T) — Sp(T) is obvious.

Case 10: T is obtained from 77! € F and Hy € 7, k € {3,4,6}, by operation Oy.
By induction hypothesis and Lemma 4, we have vg(T) = yr(T7~1) + yr(H) — 1
and u € VO2(T). Let f; be a yg-function on 771 and fo a yg-function on Hy — v.
Then the function f defined as f|pi—1 = f1 and f|g,—» = f2 is a yg-function on 7.
Therefore VO'2(T9-1) C VOI2(T), VOL(T9-1) C VOUT) U VOIX(T), and VOX(T9-1) C
VO2(T) U VO2(T). Assume that there is y € VO(T9-1) N VO2(T), s € {1,2}, and
let f’ be a yg-function on T with f/(y) = r ¢ {0,s}. But then f’|p;—1 is no RD-
function on T7=1, f'(u) = 0, f'|7i-1_, is a yr-function on T9=1 — vy and f’|g, is a
yr-function on Hy. Define now an RD-function g; on T9~! as g1|pi-1_y = f'|1i-1_u
and g1 (u) = 1. Since g1 (V(T771)) = yr(T77 L —u)+1 = yg(T771), g1 is a yg-function
on 7771 But g1(y) = r ¢ {0, s}, a contradiction. Thus

(ag) VOR2(TI=1) = VOI2(T) 0 V(T¥-L), VOLTITY) = VOUT) A V(Ti~1), and
VO2(Ti=1) = VOX(T) A V(Ti-1).

The next claim is obvious.

Claim 1.3 Let x be the neighbor of v in Hy, k € {3,4,6}.Then yr(H3) = 4, yr(H,) =
5, Yyr(Hg) = 6, vyr(Hy — v) = yr(H — {v,z}) = vr(Hy), and I(z) = 0 for any yr-
function [ on Hy — v.

Let h be a yg-function on T. We know that u € VO%(T), v € VOZ(TI71) v €
VO (Hy), and vg(T) = yr(T771) + yr(Hi) — 1. Then by Claim 1.3 we clearly have:
(al) If A(u) = 2 then at least one of the following holds:
al.l) h|g,—, is a ygp-function on Hy — v, and
1

(
(al.2) h|g, —{v,z} is a yr-function on Hy — {v,z}.
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(a2) If h(u) = 1 then h|g, _, is a yp-function on Hy — v.

(a3) If h(u) = 0 then either h|py, is a yg-function on Hy, or h|g, —, is a yg-function
on Hy —wv.

Let l1, lo, I3, l4 and I5 be yg-functions on Hy, Hy —v, Hy —{v, 2}, T""! —w and T7 71,
respectively, and let I5(u) = 2. Define the functions hq, ha, and hs on T as follows:
(1) h1|Tj—1 = 157 hl(x) =0 and h1|Hk—{v,x} = l3, (11) hQ‘Tj—l = l5 and h1|Hk—v = ZQ,
and (iii) hg|pi-1_, = l4 and hg|pg, = 1. Clearly hq, ho, and hs are yr-functions on
T. After inspection of all yg-functions of Hy, Hi, — v and Hy, — {v,z}, we conclude
that VOL(Hy) — {v} C VOUT), VO2(H,) C VO%(T), and VO*2(Hy) C VO'2(T). This
and (ag) imply

(o) VOR(T) = VO(Ti=1)y U VO2(Hy), VOXT) = VO3(T7=1) U V2(H}), and
VOLT) = VOUTI) U (VO (Hy,) — {v}).

Since (P;) holds with T replaced by Hj, or by T7~! (by induction hypothesis), using

(a7) we obtain that (Pp) is satisfied. O

5. Corollaries

The next three results immediately follow by Theorem 1.

Corollary 1. If(T,51),(T,S2) € F then S1 = S».

If (T,S) € .7 then we call S the J-labeling of T'.

Corollary 2. Let T be a yr-excellent tree of order n > 5, and S the J -labeling of T.
Then 2 < |VO(T)| < 2(n—1) and 2n > |V~ (T)| > (n +2). Moreover,
(i) & = |VO(T)| if and only if (T,S) has a T -sequence T : (T, 8Y),..., (17,87, such
that (Tl,Sl) = (F3,J%) and if j > 2, (T*T',8") can be obtained recursively from
(T4, SY) and (Fs,J*) by operation O.
(ii) [VO*(T)| < 3(n —1) if and only if (T, S) has a T -sequence 7 : (T",5"), .,
(17,87), such that.(T‘l,Sl) = (H2,I?) and if j > 2, (T""*, S"™) can be obtained
recursively from (T*,S") and (Ha,I?) by operation Os.

Corollary 3. Let G be an n-order yr-excellent connected graph of minimum size. Then
either G = K3 orn # 3 and G is a tree.

6. Special cases

Let G be a graph and {ai,..,ar} C {0,1,2,01,02,12,012}. We say that G is a
Ray....ap-graph if V(G) = UF_ V% (G) and all V4(G),.., V@ (G) are nonempty. Now
let T be a ygr-excellent tree of order at least 2. By Theorem 1, we immediately
conclude that T' € Rg12 U R01)02 @] R02’012 U R01,02,012- Moreover,
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(i) T € Rpi12 if and only if T'= K>, and

(ii) T € Ro1,02,012 if and only if none of S4(T), Sc(T) and Sp(T) is empty, where
S is the Z-labeling of T'.

In this section, we turn our attention to the classes Ro1,02 and Roz,012-

6.1. Ro1,02-graphs.

Here we give necessary and sufficient conditions for a tree to be in Rgq 2. We define
a subfamily J51 02 of 7 as follows. A labeled tree (T,.5) € 1,02 if and only if (T, S)
can be obtained from a sequence of labeled trees 7 : (T, S1),...,(77,87), (j > 1),
such that (T, S1) is in {(Ha,I?),(Hs,I%)} (see Figure 1) and (T,S) = (T7,87),
and, if j > 2, (T**1, S*"!) can be obtained recursively from (7%, S%) by one of the
operations Os and Og listed below; in this case 7 is said to be a 1 02-sequence of T'.

Operation O5. The labeled tree (T*+1, S't1) is obtained from (7%, S%) and (Fy, J*
(see Figure 2) by adding the edge ux, where v € V(T;), € V(F1) and stari(u) =
stap, () = C.

Operation Og. The labeled tree (7!, S*+1) is obtained from (7%, S*) and (Hy, I*),
k € {2,3} (see Figure 1), in such a way that Tt = (T% - Hy)(u,v : u), where
stapi (u) = stag, (v) = A, and stapi+1 (u) = A.

Remark that once a vertex is assigned a status, this status remains unchanged as the
labeled tree (T),S) is recursively constructed. By the above definitions we see that
Sp(T) is empty when (T,S) € Jp1,02. So, in this case, it is naturally to consider a
labeling S as S : V(T) — {A,B,C}. From Theorem 1 we immediately obtain the
following result.

Corollary 4. Let T be a tree of order at least 2. Then T € Ro1,02 if and only if there is
a labeling S : V(T) — {A, B,C} such that (T, S) is in Jo1,02. Moreover, if (T,S) € Jo1,02
then

(P3) Sp(T) = {x € V*(T) | deg(z) = 2 and |N(z) N V°3(T)| = 1}, Sa(T) = V°Y(T), and
Sc(T) = V*(T) — Sp(T).

As un immediate consequence of Corollary 1 we obtain:
Corollary 5. If (T, Sl), (T, Sg) S %1,02 then S1 = S>.

A graph G is called a 2-corona if each vertex of G is either a support vertex or a leaf,
and each support vertex of GG is adjacent to exactly 2 leaves. In a labeled 2-corona all
leaves have status A and all support vertices have status C.
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Proposition 3. FEvery connected n-order graph H, n > 2, is an induced subgraph of a
Ro1,02-graph with the domination number equals to 2|V (H)|.

Proof. Let a graph G be a 2-corona such that the induced subgraph by the set
of all support vertices of G is isomorphic to H. Let z be a support vertex of G
and y, z the leaf neighbors of z in G. Then clearly for any ygr-function f on G,
fl@)+ fly)+ f(2) > 2, fly) # 2 # f(2) and f(x) # 1. Define RD-functions h and
g on G as follows: (a) h(u) = 2 when u is a support vertex of G and h(u) = 0,
otherwise, and (b) g(v) = h(v) when v & {x,y,z}, and g(z) = 0, g(y) = g(z) = 1.
Therefore vg(G) = 2|V(H)| and G is in Ro1,02. O

Corollary 6. There does not exist a forbidden subgraph characterization of the class
of Ro1,02-graphs. There does not exist a forbidden subgraph characterization of the class of
Yr-ezcellent graphs.

Let 4 oo be the family of all labeled trees (7', L) that can be obtained from a se-
quence of labeled trees A : (T*, LY),... (17, L7), (j > 1), such that (T, L) = (17, L7),
(TY,L') is either (Ho,I?) (see Figure 1) or a labeled 2-corona tree, and, if j > 2,
(T*+1 Li*+1) can be obtained recursively from (7%, L) by one of the operations Oy
and Og listed below; in this case \ is said to be a T go-sequence of T'.

Operation O;. The labeled tree (T, L**1) is obtained from (T%, L) and (Ha, I?),
in such a way that T*t! = (T% - Hy)(u,v : u), where stapi(u) = stay,(v) = A, and
StCLTiJrl (u) = A.

Operation Og. The labeled tree (T°F1 LiT!) is obtained from (7%, L?) and a la-
beled 2-corona tree, say U;, in such a way that Tt = (T - U;)(u,v : u), where
stagi(u) = stay,(v) = A, and stagi+1(u) = A.

Again, once a vertex is assigned a status, this status remains unchanged as the 2-
labeled tree T is recursively constructed.

Theorem 2. For any tree T the following are equivalent.
(A1) T is in R01,02~
(A2) There is a labeling S : V(T') — {A, B,C} such that (T, S) is in Jo1,02.

(As) There is a labeling L : V(T) — {A, B,C} such that (T, L) is in Tp1,02-

Proof. (A;) < (Az): By Corollary 4.

(A3) = (A2):

Let a tree (T,L) € J go- It is clear that all Jf) gp-sequences of (7', L) have the
same number of elements. Denote this number by (7). We shall prove that (T, L) €
Tor.02 = (T, L) € Jo1,02- We proceed by induction on r(T). If 7(T) = 1 then either
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(T, L) is a labeled 2-corona tree, or (T, L) = (Ha,I?). In both cases (T, L) € Jp1 02
We need the following obvius claim.

Claim 2.1 If (T",L’) is a labeled 2-corona tree, w € V(T") and sta(w) = A, then
either (7", L) is (Hs, I?) or there is a J-sequence 7 : (T*,SY),..., (T, SY, (I > 2),
such that (T, S') = (Hs, I?), w € V(TY), (T',S") = (T',L'), and (T*+!, S"*+1) can
be obtained recursively from (7%, S%) and (F}, J') by operation Os.

Suppose now that each tree (H,Ly) € T4y 9o With r(H) < k is in Fp1 02, where
k > 2. Let A : (T, LY),...,(T* L*), be a .y go-sequence of a labeled tree
(T,L) € Ty02- By the induction hypothesis, (T*7',L*"1) is in Fp1,00. Let
o (UL, 8Y),..., (U™ S™) be a T-sequence of (T*~1 L*=1). Hence U™ = T*~!
and S™ = LF=L. If (T*, L*) is obtained from (T%~1, L*~1) and (Ha, I?) by operation
Oz, then (UY,SY),..., (U™, S™),(T* L*) = (T,L) is a F-sequence of (T,L). So,
let (T%,L*) is obtained from (7%~ L¥=1) and a labeled 2-corona tree, say (Q, L)
by operation Og. Hence T*~! and @ have exactly one vertex in comman, say w,
and stapr-1(w) = stag(w) = stapr(w) = A. By Claim 2.1, (@, Ly) € Jo1,02 and
it has a Jo1,02-sequence, say (Q',Ly),...,(Q° L) such that Q° = Q, L, = L,
and w € V(Q'). Denote W™ = (V(U™)UV(Q")) and let a labeling S™*
be such that S"™**|ym = S™ and S™%'|g: = L.. Then the sequence of labeled
trees (UL, S1), ..., (U™, ™), (WmHL gm+ly (Wmts §m+s) = (T, L) is a Jo1,02-
sequence of (T, L).

(A2) = (43):

Let a labeled tree (T,S5) € Toi02- Then (7,S) has a J-sequence T
(T, 8%),...,(19,87) = (T,S), where (T*,S") € {(Ha2,I?),(Hs,1%)} C F) g We
proceed by induction on p(T) = ¥.cc(rydegr(z), where C(T') is the set of all cut-
vertices of T that belong to Ss(T'). Assume first p(T) = 0. If j = 1 then we are
done. If j > 2 then (T%,S') = (Hs, I?) and (T, S**1) is obtained from (Fp,J%)
and (7%, S%) by operation Os. Thus, (T,S) is a labeled 2-corona tree, which allow us
to conclude that (7,.5) is in 7 go-

Suppose now that p(T) = k > 1 and for each labeled tree (H,Sy) € 1,02 with
p(H) < k is fulfilled (H, Sg) € 74 g2- Then there is a cut-vertex, say z, such that (a)
z € S4(T), (b) (T,S) is a coalescence of 2 graphs, say (1", S|r/) and (T, S|r), via
z, and (c) no vertex in S4(T)NV(T") is a cut-vertex of T". Hence (1", S|1/) € T4 oo
(by induction hypothesis) and (7", S|~) is either a labeled 2-corona tree or Hy. Thus
(T,8) is in T go- O

6.2. R027012-trees.

Our aim in this section is to present a characterization of Rz 012-trees. For this
purpose, we need the following definitions. Let J52,012 C 7 be such that (T,S5) €
Joz2,012 if and only if (T,S) can be obtained from a sequence of labeled trees 7 :
(T, SY),...,(17,89), (j > 1), such that (T*,S') = (F3,J3)} (see Figure 2) and
(T,S) = (T7,87), and, if j > 2, (T**!, S**1) can be obtained recursively from (T, S%)
by one of the operations Og and Oq¢ listed below.
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Operation Og. The labeled tree (T%*1, S*1) is obtained from (7%, S?) and (F3, J?)
by adding the edge ux, where u € V(T?), x € V(F3) and stari(u) = stap,(z) = C.

Operation Opg. The labeled tree (T*+!, S*+1) is obtained from (T, S%) and (Fy, J*)
(see Figure 2) by adding the edge ux, where u € V(T?), x € V(Fy), stagpi(u) = D,
and stag, (z) = C.

Note that once a vertex is assigned a status, this status remains unchanged as the
labeled tree (T,S) is recursively constructed. By the above definitions we see that
if (T,5) € Ro1,02, then S4(T) = Sp(T) = 0. Therefore it is naturally to consider a
labeling S as S : V(T) — {C, D}.

From Theorem 1 we immediately obtain the following result.

Corollary 7. A tree T is in Roz,012 if and only if there is a labeling S : V(T) — {C, D}
such that (T,S) is in Jo2,012. Moreover, if (T,S) € Jo2,012 then Sc(T) = V°*(T) and
Sp(T) = VO'3(T).

As an immediate consequence of Corollary 1 we obtain:
Corollary 8. If (T, 51)7 (T, Sz) S %27012 then S1 = Ss.

Theorem 3. [3] If G is a connected graph of order n > 3, then vr(G) < 4n/5. The
equality holds if and only if G is C5 or is obtained from ¢ Ps by adding a connected subgraph
on the set of centers of the components of T Ps.

As a consequence of Theorem 3 and Corollary 7 we have:

Corollary 9.  Let G be a connected n-vertexr graph with n > 6 and yr(G) = 4n/5.
Then G is in Ro2,012 and V012(G) consists of all leaves and all support vertices. Moreover,
if G is a tree, then G has a T -sequence T : (G*,SY),...,(G?,8%), (j > 1), such that
(G*,S) = (F3,J%) (see Figure 2) and if j > 2, then (G*T*, S™1) can be obtained recursively
from (G*, S") by operation Oy.

A graph G is said to be in class UV R if v(G — v) = v(G) for each v € V(G). Con-
structive characterizations of trees belonging to UV R are given in [14] by Samodivkin,
and independently in [11] by Haynes and Henning. We need the following result in
[14] (reformulated in our present terminology).

Theorem 4. [1/] A tree T of order at least 5 is in UV R if and only if there is a labeling
S:V(T) — {C, D} such that (T,S) is in Jo2,012. Moreover, if (T, S) € Jo2,012 then Sc(T)
and Sp(T) are the sets of all y-bad and all v-good vertices of T, respectively.

We end with our main result in this subsection.
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Theorem 5. For any tree T the following are equivalent:

(A4) T is in R02,012, (A5) T is in %2,012, (As) T is in UV R.

Proof. Corollary 7 and Theorem 4 together imply the required result. O

7. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further
research. Let first note that if n > 3 and G, j is not empty, then k¥ < 4n/5 (Theorem
3).

An element of RE,, ;, is said to be isolated, whenever it is both maximal and minimal.
In other words, a graph H € G, j, is isolated in RE,, ;, if and only if H € Rgga and
for each e € E(H) at least one of the following holds: (a) H — e is not connected, (b)
Yr(H) # vr(H —¢), (¢) H — e is not yg-excellent.

Example 1. (i) All ygr-excellent graphs with the Roman domination number equals
to 2 are K5 and K,, n > 2. If a graph G € Rega and vr(G) = 2, then G is complete.
K, is isolated in RE, 2, n > 2.

(ii) [8] K2, H7 and Hs (see Fig. 1) are the only trees in Ropa.
(iii) If RE, x has a tree T as an isolated element, then either (n,k) = (2,2) and T = K>,
or (n,k) =(9,7) and T = Hr, or (n,k) = (10,8) and T = Hs.

e Find results on the isolated elements of RE,, ;.

o What is the maximum number of edges m(Gy, ;) of a graph in G,, ;7 Note that
(a) m(Gp,2) =n(n —1)/2, (b) m(G,,3) =n(n—1)/2 — [n/2].

e Find results on those minimal elements of RE,, , that are not trees.

Example 2. (a) A cycle C,, is a minimal element of RE,, ; if and only if n =0 (mod 3)
and k = 2n/3. (b) A graph G obtained from the complete bipartite graph K, 4, p > q > 3,
by deleting an edge is a minimal element of RE,4¢ 4.

The height of a poset is the maximal number of elements of a chain.

e Find the height of RE, ;.

Example 3. (a) It is easy to check that any longest chain in RE¢ 4 has as the first
element Hjz (see Fig 1) and as the last element one of the two 3-regular 6-vertex
graphs. Therefore the height of RE¢ 4 is 5.
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(b) Let us consider the poset REsy 4r, 7 > 2. All its minimal elements are yr-excellent trees
(by Theorem 3 and Corollary 9), which are characterized in Corollary 9. Moreover,
the graph obtained from rPs by adding a complete graph on the set of centers of the
components of rPs is the largest element of REs, 4. Therefore the height of REs, 4,
is (r—1)(r—2)/2+ 1.

e Find results on ~yg-excellent graphs at least when Y is one of {—1,0,1}, {—1,1}
and {—1,1,2}.
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