Roman domination excellent graphs: trees

Vladimir Samodivkin ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Architecture, Civil Engineering and Geodesy Sofia, Bulgaria
vl.samodivkin@gmail.com

Received: 2 October 2016; Accepted: 8 October 2017
Published Online: 24 October 2017
Communicated by Ismael González Yero

Abstract

A Roman dominating function (RDF) on a graph $G=(V, E)$ is a labeling $f: V \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The weight of f is the value $f(V)=\Sigma_{v \in V} f(v)$ The Roman domination number, $\gamma_{R}(G)$, of G is the minimum weight of an RDF on G. An RDF of minimum weight is called a γ_{R}-function. A graph G is said to be γ_{R}-excellent if for each vertex $x \in V$ there is a $\gamma_{R^{-}}$function h_{x} on G with $h_{x}(x) \neq 0$. We present a constructive characterization of $\gamma_{R^{-}}$ excellent trees using labelings. A graph G is said to be in class $U V R$ if $\gamma(G-v)=\gamma(G)$ for each $v \in V$, where $\gamma(G)$ is the domination number of G. We show that each tree in $U V R$ is γ_{R}-excellent.

Keywords: Roman domination number, excellent tree, coalescence
AMS Subject classification: 05C69, 05C05

1. Introduction and preliminaries

For basic notation and graph theory terminology not explicitly defined here, we in general follow Haynes et al. [9]. Specifically, let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A spanning subgraph for G is a subgraph of G which contains every vertex of G. In a graph G, for a subset $S \subseteq V(G)$ the subgraph induced by S is the graph $\langle S\rangle$ with vertex set S and edge set $\{x y \in E(G) \mid x, y \in S\}$. The complement \bar{G} of G is the graph whose vertex set is $V(G)$ and whose edges are the pairs of nonadjacent vertices of G. We write K_{n} for the complete graph of order n and P_{n} for the path on n vertices. Let C_{m} denote the cycle of length m. For any vertex x of a graph $G, N_{G}(x)$ denotes the set of all neighbors of x in $G, N_{G}[x]=N_{G}(x) \cup\{x\}$ and the degree of x is $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. The minimum and maximum degrees of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset S of vertices, let
$N_{G}[S]=\cup_{v \in S} N_{G}[v]$. The external private neighborhood epn (v, S) of $v \in S$ is defined by $\operatorname{epn}(v, S)=\left\{u \in V(G)-S \mid N_{G}(u) \cap S=\{v\}\right\}$. A leaf is a vertex of degree one and a support vertex is a vertex adjacent to a leaf. If F and H are disjoint graphs, $v_{F} \in V(F)$ and $v_{H} \in V(H)$, then the coalescence $(F \cdot H)\left(v_{F}, v_{H}: v\right)$ of F and H via v_{F} and v_{H}, is the graph obtained from the union of F and H by identifying v_{F} and v_{H} in a vertex labeled v. If F and H are graphs with exactly one vertex in common, say x, then the coalescence $(F \cdot H)(x)$ of F and H via x is the union of F and H.
Let Y be a finite set of integers which has positive as well as non-positive elements. Denote by $P(\mathrm{Y})$ the collection of all subsets of Y. Given a graph G, for a Y -valued function $f: V(G) \rightarrow \mathrm{Y}$ and a subset S of $V(G)$ we define $f(S)=\Sigma_{v \in S} f(v)$. The weight of f is $f(V(G))$. A Y-valued Roman dominating function on a graph G is a function $f: V(G) \rightarrow \mathrm{Y}$ satisfying the conditions: (a) $f\left(N_{G}[v]\right) \geq 1$ for each $v \in V(G)$, and (b) if $v \in V(G)$ and $f(v) \leq 0$, then there is $u_{v} \in N_{G}(v)$ with $f\left(u_{v}\right)=\max \{k \mid k \in \mathrm{Y}\}$. For a Y -valued Roman dominating function f on a graph G, where $\mathrm{Y}=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ and $r_{1}<r_{2}<\cdots<r_{k}$, let $V_{r_{i}}^{f}=\left\{v \in V(G) \mid f(v)=r_{i}\right\}$ for $i=1, . ., k$. Since these k sets determine f, we can equivalently write $f=\left(V_{r_{1}}^{f} ; V_{r_{2}}^{f} ; \ldots ; V_{r_{k}}^{f}\right)$. If f is Y-valued Roman dominating function on a graph G and H is a subgraph of G, then we denote the restriction of f on H by $\left.f\right|_{H}$. The Y-Roman domination number of a graph G, denoted $\gamma_{\mathrm{Y} R}(G)$, is defined to be the minimum weight of a Y-valued dominating function on G. As examples, let us mention: (a) the domination number $\gamma(G) \equiv \gamma_{\{0,1\} R}(G)$, (b) the minus domination number [6], where $\mathrm{Y}=\{-1,0,1\}$, (c) the signed domination number [5], where $\mathrm{Y}=\{-1,1\}$, (d) the Roman domination number $\gamma_{R}(G) \equiv \gamma_{\{0,1,2\} R}(G)$ [4], and (e) the signed Roman domination number [1], where $\mathrm{Y}=\{-1,1,2\}$. A Y -valued Roman dominating function f on G with weight $\gamma_{\mathrm{Y} R}(G)$ is called a $\gamma_{\mathrm{Y} R^{-}}$-function on G.
Now we introduce a new partition of a vertex set of a graph, which plays a key role in the paper. In determining this partition, all $\gamma_{\mathrm{Y} R}$-functions of a graph are necessary. For each $\mathrm{X} \in P(\mathrm{Y})$ we define the set $V^{\mathrm{X}}(G)$ as consisting of all $v \in V(G)$ with $\left\{f(v) \mid f\right.$ is a $\gamma_{\mathrm{Y} R}$-function on $\left.G\right\}=\mathrm{X}$. Then all members of the family $\left(V^{\mathrm{X}}(G)\right)_{\mathrm{x} \in P(\mathrm{Y})}$ clearly form a partition of $V(G)$. We call this partition the $\gamma_{\mathrm{Y} R^{-}}$partition of G.
Fricke et al. [7] in 2002 began the study of graphs, which are excellent with respect to various graph parameters. Let us concentrate here on the parameter $\gamma_{\mathrm{Y} R}$. A vertex $v \in V(G)$ is said to be (a) $\gamma_{\mathrm{Y} R^{-}}$good, if $h(v) \geq 1$ for some $\gamma_{\mathrm{Y} R^{-}}$-function h on G, and (b) $\gamma_{\mathrm{Y} R^{-}}$bad otherwise. A graph G is said to be $\gamma_{\mathrm{Y} R^{-}}$excellent if all vertices of G are $\gamma_{\mathrm{Y} R^{-}}$-good. Any vertex-transitive graph is $\gamma_{\mathrm{Y} R}$-excellent. Note that when $\gamma_{\mathrm{Y} R} \equiv \gamma$, the set of all γ-good and the set of all γ-bad vertices of a graph G form the γ-partition of G. For further results on this topic see e.g. [2, 10-15].
In this paper we begin an investigation of $\gamma_{\mathrm{Y} R}$-excellent graphs in the case when $\mathrm{Y}=\{0,1,2\}$. In what follows we shall write γ_{R} instead of $\gamma_{\{0,1,2\} R}$, and we shall abbreviate a $\{0,1,2\}$-valued Roman dominating function to an RD-function. Let us describe all members of the γ_{R}-partition of any graph G (we write $V^{i}(G), V^{i j}(G)$ and $V^{i j k}(G)$ instead of $V^{\{i\}}(G), V^{\{i, j\}}(G)$ and $V^{\{i, j, k\}}(G)$, respectively).
(i) $V^{i}(G)=\left\{x \in V(G) \mid f(x)=i\right.$ for each γ_{R}-function f on $\left.G\right\}, i=1,2,3$;
(ii) $V^{012}(G)=\left\{x \in V(G) \mid\right.$ there are γ_{R}-functions f_{x}, g_{x}, h_{x} on G with

$$
\left.f_{x}(x)=0, g_{x}(x)=1 \text { and } h_{x}(x)=2\right\}
$$

(iii) $V^{i j}(G)=\left\{x \in V(G)-V^{012}(G) \mid\right.$ there are γ_{R}-functions f_{x} and g_{x} on G

$$
\text { with } \left.f_{x}(x)=i \text { and } g_{x}(x)=j\right\}, 0 \leq i<j \leq 2 .
$$

Clearly a graph G is γ_{R}-excellent if and only if $V^{0}(G)=\emptyset$.
It is often of interest to known how the value of a graph parameter is affected when a small change is made in a graph. In this connection, Hansberg, Jafari Rad and Volkmann studied in [8] changing and unchanging of the Roman domination number of a graph when a vertex is deleted, or an edge is added.

Lemma 1. ([8]) Let v be a vertex of a graph G. Then $\gamma_{R}(G-v)<\gamma_{R}(G)$ if and only if there is a γ_{R}-function $f=\left(V_{0}^{f} ; V_{1}^{f} ; V_{2}^{f}\right)$ on G such that $v \in V_{1}^{f}$. If $\gamma_{R}(G-v)<\gamma_{R}(G)$ then $\gamma_{R}(G-v)=\gamma_{R}(G)-1$.

Lemma 1 implies that $V^{1}(G), V^{01}(G), V^{12}(G), V^{012}(G)$ form a partition of $V^{-}(G)=$ $\left\{x \in V(G) \mid \gamma_{R}(G-x)+1=\gamma(G)\right\}$.

Lemma 2. ([8]) Let x and y be non-adjacent vertices of a graph G. Then $\gamma_{R}(G) \geq$ $\gamma_{R}(G+x y) \geq \gamma_{R}(G)-1$. Moreover, $\gamma_{R}(G+x y)=\gamma_{R}(G)-1$ if and only if there is a γ_{R}-function f on G such that $\{f(x), f(y)\}=\{1,2\}$.

The same authors defined the following two classes of graphs:
(i) $\mathcal{R}_{C V R}$ is the class of graphs G such that $\gamma_{R}(G-v)<\gamma_{R}(G)$ for all $v \in V(G)$.
(ii) $\mathcal{R}_{C E A}$ is the class of graphs G such that $\gamma_{R}(G+e)<\gamma_{R}(G)$ for all $e \in E(\bar{G})$.

Remark 1. By Lemmas 1 and 2 it easy follows that:
(i) each graph in $\mathcal{R}_{C V R} \cup \mathcal{R}_{C E A}$ is γ_{R}-excellent,
(ii) if G is a $\gamma_{R^{-}}$-excellent graph, $e \in E(\bar{G})$ and $\gamma_{R}(G)=\gamma_{R}(G+e)$, then $G+e$ is $\gamma_{R^{-}}$ excellent,
(iii) each graph (in particular each γ_{R}-excellent graph) is a spanning subgraph of a graph in $\mathcal{R}_{C E A}$ with the same Roman domination number.

Denote by $\mathrm{G}_{n, k}$ the family of all mutually non-isomorphic n-order γ_{R}-excellent connected graphs having the Roman domination number equal to k. With the family $\mathrm{G}_{n, k}$, we associate the poset $\mathbb{R E}_{n, k}=\left(\mathrm{G}_{n, k}, \prec\right)$ with the order \prec given by $H_{1} \prec H_{2}$ if and only if H_{2} has a spanning subgraph which is isomorphic to H_{1} (see [16] for terminology on posets). Remark 1 shows that all maximal elements of $\mathbb{R}_{n, k}$ are in $\mathcal{R}_{C E A}$. Here we concentrate on the set of all minimal elements of $\mathbb{R E}_{n, k}$. Clearly a graph $H \in \mathrm{G}_{n, k}$ is a minimal element of $\mathbb{R E}_{n, k}$ if and only if for each $e \in E(H)$ at
least one of the following holds: (a) $H-e$ is not connected, (b) $\gamma_{R}(H) \neq \gamma_{R}(H-e)$, and (c) $H-e$ is not γ_{R}-excellent. All trees in $\mathrm{G}_{n, k}$ are obviously minimal elements of $\mathbb{R E}_{n, k}$.
The remainder of this paper is organized as follows. In Section 2, we formulate our main result, namely, a constructive characterization of γ_{R}-excellent trees. We present a proof of this result in Sections 3 and 4. Applications of our main result are given in Sections 5 and 6. We conclude in Section 7 with some open problems.
We end this section with the following useful result.
Lemma 3. ([4]) Let $f=\left(V_{0}^{f} ; V_{1}^{f} ; V_{2}^{f}\right)$ be any γ_{R}-function on a graph G. Then each component of a graph $\left\langle V_{1}^{f}\right\rangle$ has order at most 2 and no edge of G joins V_{1}^{f} and V_{2}^{f}.

In most cases Lemmas 1, 2 and 3 will be used in the sequel without specific reference.

2. The main result

In this section, we present a constructive characterization of γ_{R}-excellent trees using labelings. We define a labeling of a tree T as a function $S: V(T) \rightarrow\{A, B, C, D\}$. A labeled tree is denoted by a pair (T, S). The label of a vertex v is also called its status, denoted $s t a_{T}(v: S)$ or $s t a_{T}(v)$ if the labeling S is clear from context. We denote the sets of vertices of status A, B, C and D by $S_{A}(T), S_{B}(T), S_{C}(T)$ and $S_{D}(T)$, respectively. In all figures in this paper we use \bullet for a vertex of status A, for a vertex of status B, \not for a vertex of status C, and \circ for a vertex of status D. If H is a subgraph of T, then we denote the restriction of S on H by $\left.S\right|_{H}$.

$\left(H_{5}, I^{5}\right)$

Figure 1. All trees with $\left|L_{B} \cup L_{C}\right| \leq 2$.

To state a characterization of γ_{R}-excellent trees, we introduce four types of operations. Let \mathscr{T} be the family of labeled trees (T, S) that can be obtained from a
sequence of labeled trees $\tau:\left(T^{1}, S^{1}\right), \ldots,\left(T^{j}, S^{j}\right),(j \geq 1)$, such that $\left(T^{1}, S^{1}\right)$ is in $\left\{\left(H_{1}, I^{1}\right), . .,\left(H_{5}, I^{5}\right)\right\}$ (see Figure 1) and $(T, S)=\left(T^{j}, S^{j}\right)$, and, if $j \geq 2,\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ by one of the operations O_{1}, O_{2}, O_{3} and O_{4} listed below; in this case τ is said to be a \mathscr{T}-sequence of T. When the context is clear we shall write $T \in \mathscr{T}$ instead of $(T, S) \in \mathscr{T}$.

Figure 2. (F, J)-graphs

Operation O_{1}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $(F, J) \in$ $\left\{\left(F_{1}, J^{1}\right),\left(F_{2}, J^{2}\right),\left(F_{3}, J^{3}\right)\right\}$ (see Figure 2) by adding the edge $u x$, where $u \in V\left(T_{i}\right)$, $x \in V(F)$ and $\operatorname{sta}_{T^{i}}(u)=\operatorname{sta}(x)=C$.

Operation O_{2}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(F_{4}, J^{4}\right)$ (see Figure 2) by adding the edge $u x$, where $u \in V\left(T^{i}\right), x \in V\left(F_{4}\right)$, sta $a_{T^{i}}(u)=D$, and $s t a_{F_{4}}(x)=C$.
Operation O_{3}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(H_{k}, I^{k}\right)$, $k \in\{2,3, \ldots, 7\}$ (see Figure 1), in such a way that $T^{i+1}=\left(T^{i} \cdot H_{k}\right)(u, v: u)$, where $s t a_{T^{i}}(u)=s t a_{H_{k}}(v)=A$, and $s t a_{T^{i+1}}(u)=A$.

Operation O_{4}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(H_{k}, I^{k}\right)$, $k \in\{3,4,6\}$ (see Figure 1), in such a way that $T^{i+1}=\left(T^{i} \cdot H_{k}\right)(u, v: u)$, where $s t a_{T^{i}}(u)=D, s t a_{H_{k}}(v)=A$, and $s t a_{T^{i+1}}(u)=D$.

Remark that if $y \in V\left(T^{i}\right)$ and $i \leq k \leq j$, then $\operatorname{sta}_{T^{i}}(y)=s t a_{T^{k}}(y)$. Now we are prepared to state the main result.

Theorem 1. Let T be a tree of order at least 2. Then T is γ_{R}-excellent if and only if there is a labeling $S: V(T) \rightarrow\{A, B, C, D\}$ such that (T, S) is in \mathscr{T}. Moreover, if $(T, S) \in \mathscr{T}$ then
$\left(\mathcal{P}_{1}\right) S_{B}(T)=\left\{x \in V^{02}(T) \mid \operatorname{deg}(x)=2\right.$ and $\left.\left|N(x) \cap V^{02}(T)\right|=1\right\}, S_{A}(T)=V^{01}(T)$, $S_{D}(T)=V^{012}(T)$, and $S_{C}(T)=V^{02}(T)-S_{B}(T)$.

3. Preparation for the proof of Theorem 1

3.1. Coalescence

We shall concentrate on the coalescence of two graphs via a vertex in V^{01} and derive the properties which will be needed for the proof of our main result.

Proposition 1. Let $G=\left(G_{1} \cdot G_{2}\right)(x)$ be a connected graph and $x \in V^{01}(G)$. Then the following holds.
(i) If f is a γ_{R}-function on G and $f(x)=1$, then $\left.f\right|_{G_{i}}$ is a γ_{R}-function on G_{i}, and $\left.f\right|_{G_{i}-x}$ is a γ_{R}-function on $G_{i}-x, i=1,2$.
(ii) $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
(iii) If h is a γ_{R}-function on G and $h(x)=0$, then exactly one of the following holds:
(iii.1) $\left.h\right|_{G_{1}}$ is a γ_{R}-function on $G_{1},\left.h\right|_{G_{2}-x}$ is a γ_{R}-function on $G_{2}-x$, and $\left.h\right|_{G_{2}}$ is no $R D$-function on G_{2};
(iii.2) $\left.h\right|_{G_{1}-x}$ is a γ_{R}-function on $G_{1}-x,\left.h\right|_{G_{1}}$ is no RD-function on G_{1}, and $\left.h\right|_{G_{2}}$ is a γ_{R}-function on G_{2}.
(iv) Either $\{x\}=V^{01}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right)$ or $\{x\}=V^{01}\left(G_{i}\right) \cap V^{1}\left(G_{j}\right)$, where $\{i, j\}=\{1,2\}$.

Proof. (i) and (ii): Since $f(x)=1,\left.f\right|_{G_{i}}$ is an RD-function on G_{i}, and $\left.f\right|_{G_{i}-x}$ is an RD-function on $G_{i}-x, i=1,2$. Assume g_{1} is a γ_{R}-function on G_{1} with $g_{1}\left(V\left(G_{1}\right)\right)<\left.f\right|_{G_{1}}\left(V\left(G_{1}\right)\right)$. Define an RD-function f^{\prime} as follows: $f^{\prime}(u)=g_{1}(u)$ for all $u \in V\left(G_{1}\right)$ and $f^{\prime}(u)=f(u)$ when $u \in V\left(G_{2}-x\right)$. Then $f^{\prime}(V(G))=g_{1}\left(V\left(G_{1}\right)\right)+$ $\left.f\right|_{G_{2}-x}\left(V\left(G_{2}-x\right)\right)<f(V(G))$, a contradiction. Thus, $\left.f\right|_{G_{i}}$ is a $\gamma_{R^{\prime}}$-function on G_{i}, $i=1,2$. Now, Lemma 1 implies that $\left.f\right|_{G_{i}-x}$ is a γ_{R}-function on $G_{i}-x, i=1,2$. Hence $\gamma_{R}(G)=\left.f\right|_{G_{1}}\left(V\left(G_{1}\right)\right)+\left.f\right|_{G_{2}}\left(V\left(G_{2}\right)\right)-f(x)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
(iii) First note that $h(x)=0$ implies $\left.h\right|_{G_{i}}$ is an RD-function on G_{i} for some $i \in\{1,2\}$, say $i=1$. If $\left.h\right|_{G_{2}}$ is an RD-function on G_{2} then $\gamma_{R}(G)=h(V(G)) \geq \gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)$, a contradiction with (ii). Thus, $\left.h\right|_{G_{2}-x}$ is an RD-function on $G_{2}-x$. Now we have $\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1=\gamma_{R}(G)=h(V(G))=\left.h\right|_{G_{1}}\left(V\left(G_{1}\right)\right)+\left.h\right|_{G_{2}-x}\left(V\left(G_{2}-x\right)\right) \geq$ $\gamma_{R}\left(G_{1}\right)+\left(\gamma_{R}\left(G_{2}\right)-1\right)$. Hence $\left.h\right|_{G_{1}}$ is a γ_{R}-function on G_{1} and $\left.h\right|_{G_{2}-x}$ is a γ_{R}-function on $G_{2}-x$.
(iv) Let f_{1} be a γ_{R}-function on G_{1}. Assume first that $f_{1}(x)=2$. Define an RDfunction g on G as follows: $g(u)=f_{1}(u)$ when $u \in V\left(G_{1}\right)$ and $g(u)=f(u)$ when $u \in V\left(G_{2}-x\right)$, where f is defined as in (i). The weight of g is $\gamma_{R}\left(G_{1}\right)+\left(\gamma_{R}\left(G_{2}\right)+\right.$ 1) $-2=\gamma_{R}(G)$. But $g(x)=2$ and $x \in V^{01}(G)$, a contradiction. Thus $f_{1}(x) \neq 2$. Now by (i) we have $x \in V^{1}\left(G_{i}\right) \cup V^{01}\left(G_{i}\right), i=1,2$, and by (iii), $x \in V^{01}\left(G_{j}\right)$ for some $j \in\{1,2\}$.

Proposition 2. Let $G=\left(G_{1} \cdot G_{2}\right)(x)$, where G_{1} and G_{2} are connected graphs and $\{x\}=V^{01}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right)$.
(i) If f_{i} is a γ_{R}-function on G_{i} with $f_{i}(x)=1, i=1,2$, then the function $f: V(G) \rightarrow$ $\{0,1,2\}$ with $\left.f\right|_{G_{i}}=f_{i}, i=1,2$, is a γ_{R}-function on G.
(ii) $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
(iii) Let $V_{R}=\left\{V^{0}, V^{1}, V^{2}, V^{01}, V^{02}, V^{12}, V^{012}\right\}$. Then for any $A \in V_{R}, A\left(G_{1}\right) \cup A\left(G_{2}\right)=$ $A(G)$.

Proof. (i) and (ii): Note that f is an RD-function on G and $\gamma_{R}(G) \leq f(V(G))=$ $f_{1}\left(V\left(G_{1}\right)\right)+f_{2}\left(V\left(G_{2}\right)\right)-f(x)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$. Now let h be any γ_{R}-function on G.
Case 1: $h(x) \geq 1$. Then $\left.h\right|_{G_{i}}$ is an RD-function on $G_{i}, i=1,2$. If $h(x)=2$ then since $x \in V^{01}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right),\left.h\right|_{G_{i}}$ is no γ_{R}-function on $G_{i}, i=1,2$. Hence $\gamma_{R}(G) \geq$ $\left(\gamma_{R}\left(G_{1}\right)+1\right)+\left(\gamma_{R}\left(G_{2}\right)+1\right)-h(x)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)$, a contradiction. If $h(x)=1$ then $\gamma_{R}(G)=h(V(G))=h\left(V\left(G_{1}\right)\right)+h\left(V\left(G_{2}\right)\right)-h(x) \geq \gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$. Thus $h(x)=1, \gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$ and f is a γ_{R}-function on G.
Case 2: $h(x)=0$. Then at least one of $\left.h\right|_{G_{1}}$ and $\left.h\right|_{G_{2}}$ is an RD-function, say the first. If $\left.h\right|_{G_{2}}$ is an RD-function on G_{2} then $h(V(G)) \geq \gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)$, a contradiction. Hence $\left.h\right|_{G_{2}-x}$ is a γ_{R}-function on $G_{2}-x$. But then $\gamma_{R}(G)=h(V(G)) \geq \gamma_{R}\left(G_{1}\right)+$ $\gamma_{R}\left(G_{2}-x\right) \geq \gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1 \geq \gamma_{R}(G)$.
Thus, (i) and (ii) hold.
(iii): Let g_{1} be a γ_{R}-function on G_{1} with $g_{1}(x)=0$, and g_{2} a γ_{R}-function on $G_{2}-x$. Then the RD-function g on G for which $\left.g\right|_{G_{1}}=g_{1}$ and $\left.g\right|_{G_{2}-x}=g_{2}$ has weight $g_{1}\left(V\left(G_{1}\right)\right)+g_{2}\left(V\left(G_{2}-x\right)\right)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}-x\right)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1=\gamma_{R}(G)$. Hence by (i), $x \in V^{01}(G) \cup V^{012}(G)$. However, by Case 1 it follows that $h(x) \neq 2$ for any γ_{R}-function h on G. Thus $x \in V^{01}(G)$.
Let $y \in V\left(G_{1}-x\right), l_{1}$ a γ_{R}-function on G_{1}, and h a γ_{R}-function on G. We shall prove that the following holds.

Claim 4.1 There are a γ_{R}-function l on G, and a γ_{R}-function h_{1} on G_{1} such that $l(y)=l_{1}(y)$ and $h_{1}(y)=h(y)$.
Define an RD-function l on G as $\left.l\right|_{G_{1}}=l_{1}$ and $\left.l\right|_{G_{2}-x}=l_{2}$, where l_{2} is a γ_{R}-function on $G_{2}-x$. Since $l(V(G))=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}-x\right)=\gamma_{R}(G), l$ is a γ_{R}-function on G and $l(y)=l_{1}(y)$.
Assume now that there is no γ_{R}-function h_{1} on G_{1} with $h_{1}(y)=h(y)$. Proposition 1 implies that, $\left.h\right|_{G_{1}-x}$ is a γ_{R}-function on $G_{1}-x$. But then the function $h^{\prime}: V\left(G_{1}\right) \rightarrow$ $\{0,1,2\}$ defined as $h^{\prime}(u)=1$ when $u=x$ and $h^{\prime}(u)=\left.h\right|_{G_{1}}(u)$ otherwise, is a $\gamma_{R^{-}}$ function on G_{1} with $h^{\prime}(y)=\left.h\right|_{G_{1}}(y)$, a contradiction.
By Claim 4.1 and since $x \in V^{01}(G), A\left(G_{1}\right)=A(G) \cap V\left(G_{1}\right)$ for any $A \in V_{R}$. By symmetry, $A\left(G_{2}\right)=A(G) \cap V\left(G_{2}\right)$. Therefore $A\left(G_{1}\right) \cup A\left(G_{2}\right)=A(G)$ for any $A \in V_{R}$.

Lemma 4. Let $G=\left(G_{1} \cdot G_{2}\right)(x)$, where G_{1} and G_{2} are connected graphs and $\{x\}=$ $V^{012}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right)$. Then $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$ and $x \in V^{012}(G)$.

Proof. Let f_{i} be a γ_{R}-function on G_{i} with $f_{i}(x)=1, i=1,2$. Then the function f defined as $\left.f\right|_{G_{i}}=f_{i}$ is an RD-function on $G_{i}, i=1,2$. Hence $\gamma_{R}(G) \leq f(V(G))=$ $\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$. Let now h be any γ_{R}-function on G.
Case 1: $h(x)=2$.

Since $x \in V^{012}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right),\left.h\right|_{G_{1}}$ is a γ_{R}-function on G_{1} and $\left.h\right|_{G_{2}}$ is an RD-function on G_{2} of weight more than $\gamma_{R}\left(G_{2}\right)$. Hence $\gamma_{R}(G)=h(V(G)) \geq \gamma_{R}\left(G_{1}\right)+\left(\gamma_{R}\left(G_{2}\right)+\right.$ $1)-h(x)$. Thus $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
Case 2: $h(x)=1$.
Then obviously $\left.h\right|_{G_{1}}$ and $\left.h\right|_{G_{2}}$ are γ_{R}-functions. Hence $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
Case 3: $h(x)=0$.
Hence at least one of $\left.h\right|_{G_{1}}$ and $\left.h\right|_{G_{2}}$ is a $\gamma_{R^{\prime}}$-function. If both $\left.h\right|_{G_{1}}$ and $\left.h\right|_{G_{2}}$ are γ_{R}-functions, then $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)$, a contradiction. Hence either $\left.h\right|_{G_{1}}$ and $\left.h\right|_{G_{2}-x}$ are $\gamma_{R^{\prime}}$-functions, or $\left.h\right|_{G_{1}-x}$ and $\left.h\right|_{G_{2}}$ are $\gamma_{R^{\prime}}$-functions. Since $\{x\}=$ $V^{012}\left(G_{1}\right) \cap V^{01}\left(G_{2}\right)$, in both cases we have $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$.
Thus, $\gamma_{R}(G)=\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G_{2}\right)-1$ and $x \in V^{012}(G)$.

3.2. Three lemmas for trees

Lemma 5. Let T be a γ_{R}-excellent tree of order at least 2. Then $V(T)=V^{01}(T) \cup$ $V^{012}(T) \cup V^{02}(T)$.

Proof. Let $x \in V(T), y \in N(x)$ and f a γ_{R}-function on T. Suppose $x \in V^{1}(T)$. If $f(y)=1$, then the RD-function g on T defined as $g(x)=2, g(y)=0$ and $g(u)=f(u)$ for all $u \in V(T)-\{x, y\}$ is a γ_{R}-function on T, a contradiction. But then $N(x) \subseteq$ $V^{0}(T)$, which is impossible.
Suppose now $x \in V^{2}(T) \cup V^{12}(T)$. Hence x is not a leaf. Choose a γ_{R}-function h on T such that (a) $h(x)=2$, and (b) $k=\left|e p n\left[x, V_{2}^{h}\right]\right|$ to be as small as possible. Let epn $\left[x, V_{2}^{h}\right]=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ and denote by T_{i} the connected component of $T-x$, which contains y_{i}. Hence $h\left(y_{i}\right)=0$ for all $i \leq k$. Since T is γ_{R}-excellent, there is a γ_{R}-function f_{k} on T with $f_{k}\left(y_{k}\right) \neq 0$. Since $x \in V^{2}(T) \cup V^{12}(T), f_{k}(x) \neq 0$. If $f_{k}\left(y_{k}\right)=1$ then $f_{k}(x)=1$, which easily implies $x \in V^{012}(T)$, a contradiction. Hence $f_{k}\left(y_{k}\right)=f_{k}(x)=2$. Define a γ_{R}-function l on T as $\left.l\right|_{T_{k}}=\left.f_{k}\right|_{T_{k}}$ and $l(u)=h(u)$ for all $u \in V(T)-V\left(T_{k}\right)$. But $\left|e p n\left[x, V_{2}^{l}\right]\right|<k$, a contradiction with the choice of h. Thus $V^{1}(T) \cup V^{2}(T) \cup V^{12}(T)$ is empty, and the required follows.

Lemma 6. Let T be a tree and $V^{-}(T)$ is not empty. Then each component of $\left\langle V^{-}(T)\right\rangle$ is either K_{1} or K_{2}.

Proof. Assume that $P: x_{1}, x_{2}, x_{3}$ is a path in T and $x_{1}, x_{2}, x_{3} \in V^{-}(T)$. Then there is a γ_{R}-function f_{i} on T with $f_{i}\left(x_{i}\right)=1, i=1,2,3$ (by Lemma 1). Denote by T_{j} the connected component of $T-x_{2} x_{j}$ that contains $x_{j}, j=1,3$. Then $\left.f_{2}\right|_{T_{j}}$ and $\left.f_{j}\right|_{T_{j}}$ are γ_{R}-functions on $T_{j}, j=1,3$. Now define a γ_{R}-function h on T such that $\left.h\right|_{T_{j}}=\left.f_{j}\right|_{T_{j}}, j=1,3$, and $h(u)=f_{2}(u)$ when $u \in V(T)-\left(V\left(T_{1}\right) \cup V\left(T_{3}\right)\right)$. But $h\left(x_{1}\right)=h\left(x_{2}\right)=h\left(x_{3}\right)=1$, a contradiction.

Lemma 7. Let T be a γ_{R}-excellent tree of order at least 2.
(i) If $x \in V^{012}(T)$, then x is adjacent to exactly one vertex in $V^{-}(T)$, say y_{1}, and $y_{1} \in$ $V^{012}(T)$.
(ii) Let $x \in V^{02}(T)$. If $\operatorname{deg}(x) \geq 3$ then x has exactly 2 neighbors in $V^{-}(T)$. If $\operatorname{deg}(x)=2$ then either $N_{T}(x) \subseteq V^{012}(T)$ or there is a path u, x, y, z in T such that $u, z \in V^{01}(T)$, $y \in V^{02}(T)$ and $\operatorname{deg}(y)=2$.
(iii) $V^{01}(T)$ is either empty or independent.

Proof. Let $x \in V^{012}(T) \cup V^{02}(T)$ and $N(x)=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$. If x is a leaf, then clearly $x, y_{1} \in V^{012}(T)$. So, let $r \geq 2$. Denote by T_{i} the connected component of $T-x$ which contains $y_{i}, i \geq 1$. Choose a γ_{R}-function h on T such that (a) $h(x)=2$, and (b) $k=\left|e p n\left[x, V_{2}^{h}\right]\right|$ to be as small as possible. Let without loss of generality epn $\left[x, V_{2}^{h}\right]=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. By the definition of h it immediately follows that (c) $\left.h\right|_{T_{j}}$ is a γ_{R}-function on T_{j} for all $j \geq k+1$, (d) for each $i \in$ $\{1, . ., k\},\left.h\right|_{T_{i}}$ is no RD-function on T_{i}, and (e) $\left.h\right|_{T_{i}-y_{i}}$ is a γ_{R}-function on $T_{i}-y_{i}$, $i \in\{1, \ldots, k\}$. Hence $\gamma_{R}\left(T_{i}\right) \leq \gamma_{R}\left(T_{i}-y_{i}\right)+1$ for all $i \in\{1, \ldots, k\}$. Assume that the equality does not hold for some $i \leq k$. Define an RD-function h_{i} on T as follows: $h_{i}(u)=h(u)$ when $u \in V(T)-V\left(T_{i}\right)$ and $\left.h_{i}\right|_{T_{i}}=h_{i}^{\prime}$, where h_{i}^{\prime} is some $\gamma_{R^{-}}$ function on T_{i}. But then either h_{i} has weight less than $\gamma_{R}(T)$ or h_{i} is a γ_{R}-function on T with epn $\left[x, V_{2}^{h_{i}}\right]=\operatorname{epn}\left[x, V_{2}^{h}\right]-\left\{y_{i}\right\}$. In both cases we have a contradiction. Thus $\gamma_{R}\left(T_{i}\right)=\gamma_{R}\left(T_{i}-y_{i}\right)+1$ for all $i \in\{1, . ., k\}$. Therefore $\gamma_{R}(T)=h(V(T))=$ $2+\sum_{i=1}^{k}\left(\gamma_{R}\left(T_{i}\right)-1\right)+\sum_{j=k+1}^{r} \gamma_{R}\left(T_{j}\right)=2-k+\sum_{i=1}^{r} \gamma_{R}\left(T_{i}\right)=2-k+\gamma_{R}(T-x)$. Thus $\gamma_{R}(T)=2-k+\gamma_{R}(T-x)$.
(i) Since $\gamma_{R}(T-x)+1=\gamma_{R}(T), k=1$. We already know that $\left.h\right|_{T_{j}}$ is a γ_{R}-function on $T_{j}, j \geq 2$. Assume that $y_{j} \in V^{012}(T) \cup V^{01}(T)$ for some $j \geq 2$. Then there is a γ_{R}-function l on T with $l\left(y_{j}\right)=1$. Clearly $\left.l\right|_{T_{j}}$ is a γ_{R}-function on T_{j}. Now define a γ_{R}-function $h^{\prime \prime}$ on T as follows: $h^{\prime \prime}(u)=h(u)$ when $u \in V(T)-V\left(T_{j}\right)$ and $\left.h^{\prime \prime}\right|_{T_{j}}=\left.l\right|_{T_{j}}$. But then $h^{\prime \prime}(x)=2, h^{\prime \prime}\left(y_{j}\right)=1$ and $x y_{j} \in E(G)$, which is impossible. Thus, $y_{2}, y_{3}, \ldots, y_{r} \in V^{02}(T)$. Define now γ_{R}-functions h_{1} and h_{2} on T as follows: $h_{1}(u)=h_{2}(u)=h(u)$ for all $u \in V(T)-\left\{x, y_{1}\right\}, h_{1}(x)=h_{1}\left(y_{1}\right)=1, h_{2}(x)=0$ and $h_{2}\left(y_{1}\right)=2$. Thus $y_{1} \in V^{012}(T)$.
(ii) Since $\gamma_{R}(T-x)=\gamma_{R}(T), k=2$. Recall that $\left.h\right|_{T_{j}}$ is a γ_{R}-function on $T_{j}, j \geq 3$, and $\gamma_{R}\left(T_{i}-y_{i}\right)=\gamma_{R}\left(T_{i}\right)-1$ for $i=1,2$. Hence there is a γ_{R}-function f_{i} on T_{i} with $f_{i}\left(y_{i}\right)=1, i=1,2$.
Suppose first that $r \geq 3$. As in the proof of (i), we obtain $y_{3}, . ., y_{r} \in V^{02}(T)$. Hence there is a γ_{R}-function g on T such that $g\left(y_{3}\right)=2$. By the choice of $h, g(x)=0$. Then $\left.g\right|_{T_{i}}$ is a $\gamma_{R^{\prime}}$-function on $T_{i}, i=1,2$. Define now a $\gamma_{R^{\prime}}$-function g^{\prime} on T as $\left.g^{\prime}\right|_{T_{i}}=f_{i}$, $i=1,2$, and $g^{\prime}(u)=g(u)$ when $u \in V(T)-\left(V\left(T_{1}\right) \cup V\left(T_{2}\right)\right)$. Since $g^{\prime}\left(y_{1}\right)=g^{\prime}\left(y_{2}\right)=1$, $y_{1}, y_{2} \in V^{-}(T)$.
So, let $r=2$ and let f be a γ_{R}-function on T with $f(x)=0$. Then there is y_{s} such that $f\left(y_{s}\right)=2$, say $s=2$. Hence $y_{2} \in V^{02}(T) \cup V^{012}(T)$ and $\left.f\right|_{T_{1}}$ is a γ_{R}-function on T_{1}. Define the γ_{R}-function l on T as $\left.l\right|_{T_{1}}=f_{1}$ and $l(u)=f(u)$ when $u \in V(T)-V\left(T_{1}\right)$. Since $l\left(y_{1}\right)=1, y_{1} \in V^{01}(T) \cup V^{012}(T)$.

Assume first that $y_{1} \in V^{012}(T)$. Then there is a γ_{R}-function f^{\prime} on T with $f^{\prime}\left(y_{1}\right)=2$. Since $x \in V^{02}(T)$ and $\operatorname{deg}(x)=2, f^{\prime}(x)=0$. Hence $\left.f^{\prime}\right|_{T_{2}}$ is a a $\gamma_{R^{\prime}}$-function on T_{2}. But then we can choose f^{\prime} so that $\left.f^{\prime}\right|_{T_{2}}=f_{2}$. Thus $y_{2} \in V^{012}(T)$.
So let $y_{1} \in V^{01}(T)$ and suppose $y_{2} \in V^{012}(T)$. Then there is a γ_{R}-function $f^{\prime \prime}$ on T with $f^{\prime \prime}\left(y_{2}\right)=1$. Since $x \in V^{02}(T), f^{\prime \prime}(x)=0$ and $f^{\prime \prime}\left(y_{1}\right)=2$, a contradiction. Thus, if $y_{1} \in V^{01}(T)$ then $y_{2} \in V^{02}(T)$.
Finally, let us consider a path y_{1}, x, y_{2}, z in T, where $y_{1} \in V^{01}(T), x, y_{2} \in V^{02}(T)$ and $\operatorname{deg}(x)=2$. Assume to the contrary that $N\left(y_{2}\right)=\left\{z_{1}, z_{2}, \ldots, z_{s}=x\right\}$ with $s \geq 3$. Denote by $T_{z_{p}}$ the connected component of $T-y_{2}$ that contains $z_{p}, p=1,2, . ., s$. By applying results proved above for $x \in V^{02}(T)$ with $\operatorname{deg}(x) \geq 3$ to y_{2}, we obtain that (a) y_{2} has exactly 2 neighbors in $V^{-}(T)$, say, without loss of generality, $z_{1}, z_{2} \in V^{-}(T)$, and (b) $\gamma_{R}\left(T_{z_{i}}-z_{i}\right)=\gamma_{R}\left(T_{z_{i}}\right)-1$, where $i=1,2$. Recall now that: $h(x)=2,\left.h\right|_{T_{i}}$ is no RD-function on T_{i} and $\left.h\right|_{T_{i}-y_{i}}$ is a γ_{R}-function on $T_{i}-y_{i}, i=1,2$. Hence $h\left(y_{1}\right)=h\left(y_{2}\right)=0$ and $\left.h\right|_{T_{z_{j}}}$ is a γ_{R}-function on $T_{z_{j}}, j \leq s-1$. Since $\gamma_{R}\left(T_{z_{i}}-z_{i}\right)=$ $\gamma_{R}\left(T_{z_{i}}\right)-1, i=1,2$, additionally we can choose h so that $h\left(z_{1}\right)=h\left(z_{2}\right)=1$. But then the function h_{1} defined as $h_{1}(u)=h(u)$ when $u \in V(T)-\left\{y_{1}, x, y_{2}, z_{1}, z_{2}\right\}$ and $h_{1}\left(y_{1}\right)=h_{1}(x)=1, h_{1}\left(y_{2}\right)=2, h_{1}\left(z_{1}\right)=h\left(z_{2}\right)=0$ is a γ_{R}-function on T. Now $h_{1}(x)=1, h_{1}\left(y_{2}\right)=2$ and $x y_{2} \in E(G)$ lead to a contradiction. Thus, $N\left(y_{2}\right)=\{x, z\}$. Suppose $z \notin V^{01}(T)$. Then there is a γ_{R}-function h_{4} on T with $h_{4}(z)=2$. If $h_{4}\left(y_{2}\right)=2$, then $h_{4}(x)=0$ and the function h_{5} on T defined as $h_{5}(x)=h_{5}\left(y_{2}\right)=1$ and $h_{5}(u)=h_{4}(u)$ otherwise, is a γ_{R}-function on T, a contradiction. Hence $h_{4}\left(y_{2}\right)=0$ and since $y_{1} \in V^{01}(T), h_{4}(x)=2$ and $h_{4}\left(y_{1}\right)=0$. But then the function h_{6} on T defined as $h_{6}(x)=h_{6}\left(y_{1}\right)=1$ and $h_{6}(u)=h_{4}(u)$ otherwise, is a γ_{R}-function on T, a contradiction. Therefore $z \in V^{01}(T)$, and we are done.
(iii) Assume that $u_{1}, u_{2} \in V^{01}(T)$ are adjacent. Let $T_{u_{i}}$ be the component of $T-u_{1} u_{2}$ that contains $u_{i}, i=1,2$. Let g_{i} be a γ_{R}-function on T with $g_{i}\left(u_{i}\right)=1, i=1,2$. Hence $g_{i}\left(T_{u_{j}}\right)$ is a γ_{R}-function on $T_{u_{j}}, i, j=1,2$. Thus $\gamma_{R}(T)=\gamma_{R}\left(T_{u_{1}}\right)+\gamma_{R}\left(T_{u_{2}}\right)$. Define now a γ_{R}-function g_{3} on T as $\left.g_{3}\right|_{T_{i}}=\left.g_{i}\right|_{T_{i}}, i=1,2$. But then a function g_{4} defined as $g_{4}(u)=g_{3}(u)$ when $u \in V(T)-\left\{u_{1}, u_{2}\right\}, g_{4}\left(u_{1}\right)=2$ and $g_{4}\left(u_{2}\right)=0$ is a γ_{R}-function on T, contradicting $u_{1} \in V^{01}(T)$. Thus $V^{01}(T)$ is independent.

4. Proof of the main result

Proof of Theorem 1. Let T be a γ_{R}-excellent tree. First, we shall prove the following statement.
$\left(\mathcal{P}_{2}\right)$ There is a labeling $L: V(T) \rightarrow\{A, B, C, D\}$ such that (a) $L_{A}(T)$ is either empty or independent, (b) each component of $\left\langle L_{B}(T)\right\rangle$ and $\left\langle L_{D}(T)\right\rangle$ is isomorphic to K_{2}, (c) each element of $L_{B}(T)$ has degree 2 and it is adjacent to exactly one vertex in $L_{A}(T)$, (d) each vertex v in $L_{C}(T)$ has exactly 2 neighbors in $L_{A}(T) \cup L_{D}(T)$, and if $\operatorname{deg}(v)=2$ then both neighbors of v are in $L_{D}(T)$.

By Lemma 5 we know that $V(T)=V^{01}(T) \cup V^{012}(T) \cup V^{02}(T)$. Define a labeling $L: V(T) \rightarrow\{A, B, C, D\}$ by $L_{A}(T)=V^{01}(T), L_{D}(T)=V^{012}(T), L_{B}(T)=\{x \in$
$V^{02}(T) \mid \operatorname{deg}(x)=2$ and $\left.\left|N(x) \cap V^{02}(T)\right|=1\right\}$, and $L_{C}(T)=V^{02}(T)-L_{B}(T)$. The validity of $\left(\mathcal{P}_{2}\right)$ immediately follows by Lemma 7 .
Denote by \mathscr{T}_{1} the family of all labeled, as in $\left(\mathcal{P}_{2}\right)$, trees T. We shall show that if $(T, L) \in \mathscr{T}_{1}$ then $(T, L) \in \mathscr{T}$.
(I) Proof of $(T, L) \in \mathscr{T}_{1} \Rightarrow(T, L) \in \mathscr{T}$.

Let $(T, L) \in \mathscr{T}_{1}$. The following claim is immediate.

Claim 1.1

(i) Each leaf of T is in $L_{A}(T) \cup L_{D}(T)$.
(ii) If v is a support vertex of T, then v is adjacent to at most 2 leaves.
(iii) If u_{1} and u_{2} are leaves adjacent to the same support vertex, then $u_{1}, u_{2} \in L_{A}(T)$.

We now proceed by induction on $k=\left|L_{B} \cup L_{C}\right|$. The base case, $k \leq 2$, is an immediate consequence of the following easy claim, the proof of which is omitted.

Claim 1.2 (see Fig.1)

(i) If $k=0$ then $(T, L)=\left(H_{1}, I^{1}\right)$.
(ii) If $k=1$ then (T, L) is obtained from $\left(H_{1}, I_{1}\right)$ by operation O_{2}, i.e. $(T, L)=$ $\left(H_{11}, I^{11}\right)$.
(iii) If $k=2$ then either (T, L) is $\left(H_{r}, I^{r}\right)$ with $r \in\{2,3,4,5\}$, or (T, L) is obtained from $\left(H_{11}, I^{11}\right)$ by operation O_{1} or by operation O_{2} (see the graphs $\left(H_{s}, I^{s}\right)$ where $s \in\{6,7,8,9,10\}$.

Let $k \geq 3$ and suppose that each tree $\left(H, L^{\prime}\right) \in \mathscr{T}_{1}$ with $\left|L_{B}^{\prime}(H) \cup L_{C}^{\prime}(H)\right|<k$ is in \mathscr{T}. Let now $(T, L) \in \mathscr{T}_{1}$ and $k=\left|L_{B}(T) \cup L_{C}(T)\right|$. To prove the required result, it suffices to show that T has a subtree, say U, such that $\left(U,\left.L\right|_{U}\right) \in \mathscr{T}_{1}$, and (T, L) is obtained from $\left(U,\left.L\right|_{U}\right)$ by one of operations O_{1}, O_{2}, O_{3} and O_{4}. Consider any diametral path $P: x_{1}, x_{2}, \ldots, x_{n}$ in T. Clearly x_{1} is a leaf. Denote by $x_{i}^{1}, x_{i}^{2}, .$. all neighbors of x_{i}, which do not belong to $P, 2 \leq i \leq n-1$.
Case 1: $\operatorname{sta}\left(x_{1}\right)=A$ and $\operatorname{sta}\left(x_{2}\right)=B$.
Then $\operatorname{deg}\left(x_{1}\right)=1, \operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right)=2, \operatorname{sta}\left(x_{3}\right)=B$ and $\operatorname{sta}\left(x_{4}\right)=A$. Thus T is obtained from $T-\left\{x_{1}, x_{2}, x_{3}\right\} \in \mathscr{T}_{1}$ and a copy of H_{2} by operation O_{3} (via x_{4}).

Case 2: $\operatorname{sta}\left(x_{1}\right)=A$ and $\operatorname{sta}\left(x_{2}\right)=C$.
Hence $\operatorname{deg}\left(x_{2}\right) \geq 3$. By the choice of $P, \operatorname{deg}\left(x_{2}\right)=3, x_{2}^{1}$ is a leaf, $\operatorname{sta}\left(x_{2}^{1}\right)=A$, and $\operatorname{sta}\left(x_{3}\right)=C$. If $\operatorname{deg}\left(x_{3}\right) \geq 4$ then T is obtained from $T-\left\{x_{2}^{1}, x_{1}, x_{2}\right\} \in \mathscr{T}_{1}$ and a copy of F_{1} by operation O_{1}. So, let $\operatorname{deg}\left(x_{3}\right)=3$. Assume first that $\operatorname{sta}\left(x_{4}\right)=A$. Then either x_{3}^{1} is a leaf of status A or x_{3}^{1} is a support vertex, $\operatorname{deg}\left(x_{3}^{1}\right)=2$, and both x_{3}^{1} and its leaf-neighbor have status D. Thus, T is obtained from $T-\left(N\left[x_{2}\right] \cup N\left[x_{3}^{1}\right]\right) \in \mathscr{T}_{1}$ and a copy of H_{3} or H_{4}, respectively, by operation O_{3} (via x_{4}). Finally let $\operatorname{sta}\left(x_{4}\right)=D$. By the choice of P, either x_{3}^{1} is a leaf of status A and then T is obtained from
$T-\left(N\left[x_{2}\right] \cup\left\{x_{3}^{1}\right\}\right) \in \mathscr{T}_{1}$ and a copy of H_{3} by operation O_{4}, or x_{3}^{1} is a support vertex of degree 2 and both x_{3}^{1} and its leaf-neighbor have status D, and then T is obtained from $T-\left\{x_{2}^{1}, x_{1}, x_{2}\right\} \in \mathscr{T}_{1}$ and a copy of F_{1} by operation O_{1}.

In what follows, let $\operatorname{sta}\left(x_{1}\right)=D$. Hence $\operatorname{deg}\left(x_{2}\right)=2, \operatorname{sta}\left(x_{2}\right)=D$ and $\operatorname{sta}\left(x_{3}\right)=C$. If $\operatorname{deg}\left(x_{3}\right)=2$ then T is obtained from $T-N\left[x_{2}\right] \in \mathscr{T}_{1}$ and a copy of F_{4} by operation O_{2}.

Case 3: $\operatorname{deg}\left(x_{3}\right)=3$ and $\operatorname{sta}\left(x_{4}\right) \in\{A, D\}$.
In this case $\operatorname{sta}\left(x_{3}^{1}\right)=C, x_{3}^{1}$ is a support vertex, $\operatorname{deg}\left(x_{3}^{1}\right)=3$, and the leaf neighbors of x_{3}^{1} have status A. Now (a) if $\operatorname{sta}\left(x_{4}\right)=A$ then T is obtained from $T-\left(N\left[x_{2}\right] \cup N\left[x_{3}^{1}\right]\right) \in$ \mathscr{T}_{1} and a copy of H_{4} by operation O_{3} (via x_{4}), and (b) if sta $\left(x_{4}\right)=D$ then T is obtained from $T-\left(N\left[x_{2}\right] \cup N\left[x_{3}^{1}\right]\right) \in \mathscr{T}_{1}$ and a copy of H_{4} by operation O_{4} (via x_{4}).

Case 4: $\operatorname{deg}\left(x_{3}\right)=3, \operatorname{sta}\left(x_{4}\right)=C$ and $\operatorname{sta}\left(x_{3}^{1}\right)=A$.
Hence x_{3}^{1} is a leaf. If $\operatorname{deg}\left(x_{4}\right)=3$ and $\operatorname{sta}\left(x_{5}\right)=\operatorname{sta}\left(x_{4}^{1}\right)=D$, or $\operatorname{deg}\left(x_{4}\right) \geq 4$, then T is obtained from $T-\left\{x_{1}, x_{2}, x_{3}, x_{3}^{1}\right\} \in \mathscr{T}_{1}$ and a copy of F_{2} by operation O_{1}. So, let $\operatorname{deg}\left(x_{4}\right)=3$ and the status of at least one of x_{5} and x_{4}^{1} is A. Assume first that $\operatorname{sta}\left(x_{4}^{1}\right)=A$. Hence x_{4}^{1} is a leaf (by the choice of P). If $\operatorname{sta}\left(x_{5}\right)=A$ then T is obtained from a copy of H_{4} and a tree in \mathscr{T}_{1} by operation O_{3} (via x_{5}). If $\operatorname{sta}\left(x_{5}\right)=D$ then T is obtained from a copy of H_{4} and a tree in \mathscr{T}_{1} by operation O_{4} (via x_{5}). Second, let $\operatorname{sta}\left(x_{4}^{1}\right)=D$. Hence $\operatorname{sta}\left(x_{5}\right)=A, \operatorname{deg}\left(x_{4}^{1}\right)=2$ and the status of the leaf-neighbor of x_{4}^{1} is D. But then T is obtained from a copy of H_{5} and a tree in \mathscr{T}_{1} by operation O_{3} (via x_{5}).

Case 5: $\operatorname{deg}\left(x_{3}\right)=3, \operatorname{sta}\left(x_{4}\right)=C$ and $\operatorname{sta}\left(x_{3}^{1}\right)=D$.
Hence $\operatorname{deg}\left(x_{3}^{1}\right)=2, x_{3}^{1}$ is a support vertex, and the leaf-neighbor of x_{3}^{1} has status D. If $\operatorname{deg}\left(x_{4}\right) \geq 4$ or $\operatorname{sta}\left(x_{5}\right)=\operatorname{sta}\left(x_{4}^{1}\right)=D$, then T is obtained from $T-N\left[\left\{x_{2}, x_{3}^{1}\right\}\right] \in \mathscr{T}_{1}$ and a copy of F_{3} by operation O_{1}. So, let $\operatorname{deg}\left(x_{4}\right)=3$ and at least one of x_{5} and x_{4}^{1} has status A. Assume $\operatorname{sta}\left(x_{4}^{1}\right)=A$. Hence x_{4}^{1} is a leaf. If $\operatorname{sta}\left(x_{5}\right)=A$ then T is obtained from $T-N\left[\left\{x_{2}, x_{3}^{1}, x_{4}^{1}\right\}\right] \in \mathscr{T}_{1}$ and a copy of H_{6} by operation O_{3} (via x_{5}). If $\operatorname{sta}\left(x_{5}\right)=D$ then T is obtained from $T-N\left[\left\{x_{2}, x_{3}^{1}, x_{4}^{1}\right\}\right] \in \mathscr{T}_{1}$ and a copy of H_{6} by operation O_{4} (via x_{5}). Now let $\operatorname{sta}\left(x_{4}^{1}\right)=D$. Hence $\operatorname{sta}\left(x_{5}\right)=A$ and then T is obtained from a copy of H_{7} and a tree in \mathscr{T}_{1} by operation O_{3} (via x_{5}).

Case 6: $\operatorname{deg}\left(x_{3}\right) \geq 4$.
Hence x_{3} has a neighbor, say y, such that $y \neq x_{4}$ and $\operatorname{sta}(y)=C$. By the choice of P, y is a support vertex which is adjacent to exactly 2 leaves, say z_{1} and z_{2}, and $\operatorname{sta}\left(z_{1}\right)=\operatorname{sta}\left(z_{2}\right)=A$. But then T is obtained from $T-\left\{y, z_{1}, z_{2}\right\} \in \mathscr{T}_{1}$ and a copy of F_{1} by operation O_{1}.

By Claim 2.1, there are no other possibilities.
(II) $(T, S) \in \mathscr{T} \Rightarrow(T, S) \in \mathscr{T}_{1}$. Obvious.

It remains the following.
(III) Proof of $(T, S) \in \mathscr{T} \Rightarrow T$ is γ_{R}-excellent and $\left(\mathcal{P}_{1}\right)$ holds.

Let $(T, S) \in \mathscr{T}$. We know that $(T, S) \in \mathscr{T}_{1}$. We now proceed by induction on $k=\left|S_{B} \cup S_{C}\right|$. First let $k \leq 2$. By Claim 1.2, $T \in \mathscr{H}=\left\{H_{1}, . ., H_{11}\right\}$. It is easy to see that all elements of \mathscr{H} are γ_{R}-excellent graphs and $\left(\mathcal{P}_{1}\right)$ holds for each $T \in \mathscr{H}$.
Let $k \geq 3$ and suppose that if $\left(H, S^{\prime}\right) \in \mathscr{T}$ and $\left|S_{B}^{\prime}(H) \cup S_{C}^{\prime}(H)\right|<k$, then H is $\gamma_{R^{-}}$ excellent and $\left(\mathcal{P}_{1}\right)$ holds with (T, S) replaced by $\left(H, S^{\prime}\right)$. So, let $(T, S) \in \mathscr{T}$ and $k=$ $\left|S_{B}(T) \cup S_{C}(T)\right|$. Then there is a \mathscr{T}-sequence $\tau:\left(T^{1}, S^{1}\right), \ldots,\left(T^{j-1}, S^{j-1}\right),(T, S)$. By induction hypothesis, T^{j-1} is γ_{R}-excellent and (\mathcal{P}_{1}) holds with (T, S) replaced by (T^{j-1}, S^{j-1}). We consider four possibilities depending on whether T is obtained from T^{j-1} by operation O_{1}, O_{2}, O_{3} or O_{4}.
Case 7: T is obtained from $T^{j-1} \in \mathscr{T}$ and F_{a} by operation $O_{1}, a \in\{1,2,3\}$. Hence T is obtained after adding the edge $u x$ to the union of T^{j-1} and F_{a}, where $s t a_{T^{j-1}}(u)=s t a_{F_{a}}(x)=C$ (see Fig. 2). First note that $\gamma_{R}\left(F_{a}\right)=a+1$, and F_{2} and F_{3} are γ_{R}-excellent graphs. Since $\gamma_{R}\left(F_{a}-x\right)=\gamma_{R}\left(F_{a}\right)$ and $u \in V^{02}\left(T^{j-1}\right)$, Lemma 2 implies $\gamma_{R}(T)=\gamma_{R}\left(T^{j-1}\right)+\gamma_{R}\left(F_{a}\right)$. Hence for any γ_{R}-function g on T, the weight of $\left.g\right|_{F_{a}}$ is not more than $\gamma_{R}\left(F_{a}\right)$. But then $g(x) \neq 1$ and either $\left.g\right|_{F_{a}}$ is a $\gamma_{R^{\prime}}$-function on F_{a} or $\left.g\right|_{F_{a}-x}$ is a γ_{R}-function on $F_{a}-x$. By inspection of all γ_{R}-functions on F_{a} and $F_{a}-x$, we obtain

$$
\begin{aligned}
& \left(\alpha_{1}\right) S_{A}(T) \cap V\left(F_{a}\right)=V^{01}(T) \cap V\left(F_{a}\right), S_{B}(T) \cap V\left(F_{a}\right)=\emptyset,\{x\}=S_{C}(T) \cap V\left(F_{a}\right)= \\
& V^{02}(T) \cap V\left(F_{a}\right), \text { and } S_{D}(T) \cap V\left(F_{a}\right)=V^{012}(T) \cap V\left(F_{a}\right) .
\end{aligned}
$$

By the definition of operation O_{1} it immediately follows
$\left(\alpha_{2}\right) S_{X}(T) \cap V\left(T^{j-1}\right)=S_{X}^{j-1}\left(T^{j-1}\right)$, for all $X \in\{A, B, C, D\}$.
Let f_{1} be a γ_{R}-function on T^{j-1} and f_{2} a γ_{R}-function on F_{a}. Then the RD-function f on T defined as $\left.f\right|_{T^{j-1}}=f_{1}$ and $\left.f\right|_{F_{a}}=f_{2}$ is a γ_{R}-function on T. Since f_{1} was chosen arbitrarily, we have

$$
\begin{aligned}
&\left(\alpha_{3}\right) V^{01}\left(T^{j-1}\right) \\
& \subseteq V^{01}(T) \cup V^{012}(T), \quad V^{02}\left(T^{j-1}\right) \subseteq V^{02}(T) \cup V^{012}(T), \text { and } \\
& V^{012}\left(T^{j-1}\right) \subseteq V^{012}(T) .
\end{aligned}
$$

By $\left(\alpha_{1}\right)$ and $\left(\alpha_{3}\right)$ we conclude that T is γ_{R}-excellent.
Now we shall prove that

$$
\begin{aligned}
& \left(\alpha_{4}\right) V^{01}(T) \cap V\left(T^{j-1}\right)=V^{01}\left(T^{j-1}\right), V^{02}(T) \cap V\left(T^{j-1}\right)=V^{02}\left(T^{j-1}\right), \text { and } V^{012}(T) \cap \\
& V\left(T^{j-1}\right)=V^{012}\left(T^{j-1}\right) .
\end{aligned}
$$

Assume there is a vertex $z \in V^{02}\left(T^{j-1}\right) \cap V^{012}(T)$. By Lemma $7, z$ is adjacent to at most 2 elements of $V^{-}\left(T^{j-1}\right)$. Now by $\left(\alpha_{3}\right)$ and since $\Delta\left(\left\langle V^{-}(T)\right\rangle\right) \leq 1$ (by Lemma 6), z is adjacent to exactly one element of $V^{-}\left(T^{j-1}\right)$. But then Lemma 7 implies that there is a path z_{1}, z, z_{2}, z_{3} in T^{j-1} such that $\operatorname{deg}_{T^{j-1}}(z)=\operatorname{deg}_{T^{j-1}}\left(z_{2}\right)=2$, $z, z_{2} \in V^{02}\left(T^{j-1}\right)$ and $z_{1}, z_{3} \in V^{01}\left(T^{j-1}\right)$. Since $\left(\mathcal{P}_{1}\right)$ is true for $T^{j-1}, \operatorname{sta}_{T^{j-1}}\left(z_{1}\right)=$ $s t a_{T^{j-1}}\left(z_{3}\right)=A$, and $s t a_{T^{j-1}}(z)=s t a_{T^{j-1}}\left(z_{2}\right)=B$. Clearly, at least one of z_{1} and z_{3} is a cut-vertex. Denote by Q the graph $\left\langle\left\{z_{1}, z, z_{2}, z_{3}\right\}\right\rangle$ and let the vertices of Q
are labeled as in T^{j-1}. Let U_{s} be the connected component of $T-\left\{z, z_{2}\right\}$, which contains $z_{s}, s=1,3$.
Assume first that T^{1} is a subtree of $U \in\left\{U_{1}, U_{3}\right\}$. Then there is i such that T^{i} is obtained from T^{i-1} and Q by operation O_{3}. Hence T^{i-1} is a subtree of U. Recall that if $y \in V\left(T^{r}\right)$ and $r \leq s \leq j-1$, then $s t a_{T^{r}}(y)=s t a_{T^{s}}(y)$. Using this fact, we can choose τ so, that $T^{i-1}=U$. Therefore U is in \mathscr{T}. Suppose that neither z_{1} nor z_{3} is a leaf of T^{j-1}. Define $R^{s}=T^{i+s}-\left(V\left(T^{i-1}\right) \cup\left\{z, z_{2}\right\}\right), s=1,2, \ldots, j-1-i$. Since clearly R^{1} is in $\left\{H_{2}, H_{3}, \ldots, H_{7}\right\}$, the sequence $R^{1}, R^{2}, \ldots, R^{j-1-i}$ is a \mathscr{T}-sequence of U^{\prime}, where $\left\{U, U^{\prime}\right\}=\left\{U_{1}, U_{2}\right\}$. Thus, both U_{1} and U_{3} are in \mathscr{T}, and sta $a_{U_{1}}\left(z_{1}\right)=A$. By the induction hypothesis, $z_{1} \in V^{01}\left(U_{1}\right)$.
Suppose now that $u \in V\left(U_{3}\right)$. Consider the sequence of trees U_{3}, U_{4}, U_{5}, where U_{4} is obtained from U_{3} and Q by operation O_{3} (via z_{3}), and U_{5} is obtained from U_{4} and F_{a} by operation O_{1}. Clearly U_{5} is in \mathscr{T}, sta $a_{U_{5}}\left(z_{1}\right)=A$ and by the induction hypothesis, $z_{1} \in V^{01}\left(U_{5}\right)$. Since $T=\left(U_{5} \cdot U_{1}\right)\left(z_{1}\right)$ and $\left\{z_{1}\right\}=V^{01}\left(U_{1}\right) \cap V^{01}\left(U_{5}\right)$, by Proposition 2 we have $z_{1} \in V^{01}(T)$. But then Lemma 7 implies $z_{2} \in V^{02}(T)$, a contradiction.
Now let $u \in V\left(U_{1}\right)$. Denote by U_{2} the graph obtained from U_{1} and F_{a} by operation O_{3}. Then U_{2} is in \mathscr{T}, sta $a_{U_{2}}\left(z_{1}\right)=A$, and by induction hypothesis, $z_{1} \in V^{01}\left(U_{2}\right)$. Define also the graph U_{6} as obtained from U_{3} and Q by operation O_{3}, i.e. $U_{6}=\left(U_{3}\right.$. $Q)\left(z_{3}\right)$. Then U_{6} is in $\mathscr{T}, s t a_{U_{6}}\left(z_{1}\right)=A$ and by induction hypothesis, $z_{1} \in V^{01}\left(U_{6}\right)$. Now by Proposition $2, z_{1} \in V^{01}(T)$, which leads to $z_{2} \in V^{02}(T)$ (by Lemma 7), a contradiction.
Thus, in all cases we have a contradiction. Therefore $V^{02}\left(T^{j-1}\right) \subseteq V^{02}(T)$ when both z_{1} and z_{3} are cut-vertices. If z_{1} or z_{3} is a leaf, then, by similar arguments, we can obtain the same result.
Let now $T^{1} \equiv Q$. Then T^{2} is obtained from T^{1} and H_{k} by operation O_{3}. Consider the sequence of trees $\tau_{1}: T_{1}^{1}=H_{k}, T^{2}, T^{3}, \ldots, T^{j-1}$. Clearly τ_{1} is a \mathscr{T}-sequence of T^{j-1} and $T_{1}^{1} \neq Q$. Therefore we are in the previous case. Thus, $V^{02}\left(T^{j-1}\right)=$ $V\left(T^{j-1}\right) \cap V^{02}(T)$.
Assume now that there is a vertex $w \in V^{01}\left(T^{j-1}\right) \cap V^{012}(T)$. By Lemma 7(i) w has a neighbor in T, say w^{\prime}, such that $w^{\prime} \in V^{012}(T)$. Since $w \not \equiv u, w^{\prime} \in V\left(T^{j-1}\right)$. But all neighbors of w in T^{j-1} are in $V^{02}\left(T^{j-1}\right)$ (by Lemma 7 applied to T^{j-1} and w). Since $V^{02}\left(T^{j-1}\right)=V\left(T^{j-1}\right) \cap V^{02}(T)$, we obtain a contradiction.

Thus $\left(\alpha_{4}\right)$ is true.
Now we are prepared to prove that $\left(\mathcal{P}_{1}\right)$ is valid. Using, in the chain of equalities below, consecutively $\left(\alpha_{2}\right)$, the induction hypothesis, $\left(\alpha_{1}\right)$ and $\left(\alpha_{4}\right)$, we obtain
$S_{A}(T)=S_{A}^{j-1}\left(T^{j-1}\right) \cup\left(S_{A}(T) \cap V\left(F_{a}\right)\right)=V^{01}\left(T^{j-1}\right) \cup\left(V^{01}(T) \cap V\left(F_{a}\right)\right)=V^{01}(T)$,
and similarly, $S_{D}(T)=V^{012}(T)$. Since $u \notin S_{B}(T)$ and $S_{B}(T) \cap V\left(F_{a}\right)=\emptyset$, we have

$$
\begin{aligned}
S_{B}(T) & =S_{B}(T) \cap V\left(T^{j-1}\right) \stackrel{\left(\alpha_{2}\right)}{=} S_{B}^{j-1}\left(T^{j-1}\right) \\
& =\left\{t \in V^{02}\left(T^{j-1}\right) \mid \operatorname{deg}_{T^{j-1}}(t)=2 \text { and }\left|N_{T^{j-1}}(t) \cap V^{02}\left(T^{j-1}\right)\right|=1\right\} \\
& \stackrel{\left(\alpha_{4}\right)}{=}\left\{t \in V^{02}(T) \cap V\left(T^{j-1}\right) \mid d e g_{T}(t)=2 \text { and }\left|N_{T}(t) \cap V^{02}(T)\right|=1\right\} \\
& =\left\{t \in V^{02}(T) \mid d e g_{T}(t)=2 \text { and }\left|N_{T}(t) \cap V^{02}(T)\right|=1\right\} .
\end{aligned}
$$

The last equality follows from $\operatorname{deg}_{T}(x)>2$ and $\{x\}=V^{02}(T) \cap V\left(F_{a}\right)$ (see $\left(\alpha_{1}\right)$). Now the equality $S_{C}(T)=V^{02}(T)-S_{B}(T)$ is obvious. Thus, $\left(\mathcal{P}_{1}\right)$ holds and we are done.

Case 8: T is obtained from $T^{j-1} \in \mathscr{T}$ by operation O_{2}.
Clearly, $\gamma_{R}\left(F_{4}\right)=\gamma_{R}\left(F_{4}-x\right)=2$. By Lemma 2, $\gamma_{R}(T)=\gamma_{R}\left(T^{j-1}\right)+\gamma_{R}\left(H_{4}\right)$. Let f_{1} be a γ_{R}-function on T^{j-1} and f_{2} a γ_{R}-function on F_{4}. Then the function f defined as $\left.f\right|_{T^{j-1}}=f_{1}$ and $\left.f\right|_{F_{4}}=f_{2}$ is a $\gamma_{R^{-}}$-function on T. Therefore $V^{012}\left(T^{j-1}\right) \subseteq V^{012}(T)$, $V^{01}\left(T^{j-1}\right) \subseteq V^{01}(T) \cup V^{012}(T)$, and $V^{02}\left(T^{j-1}\right) \subseteq V^{02}(T) \cup V^{012}(T)$.
Assume that there is $y \in V^{0 s}\left(T^{j-1}\right) \cap V^{012}(T), s \in\{1,2\}$, and let f^{\prime} be a $\gamma_{R^{-}}$ function on T with $f^{\prime}(y)=r \notin\{0, s\}$. If $\left.f^{\prime}\right|_{T^{j-1}}$ is an RD-function on T^{j-1}, then $\left.f^{\prime}\right|_{T^{j-1}}\left(V\left(T^{j-1}\right)\right)>\gamma_{R}\left(T^{j-1}\right)$ and $\left.f^{\prime}\right|_{F_{4}}\left(V\left(F_{4}\right)\right) \geq 2$. This leads to $f^{\prime}(V(T))>$ $\gamma_{R}(T)$, a contradiction. Hence $\left.f^{\prime}\right|_{T^{j-1}}$ is no RD-function on T^{j-1} and $\left.f^{\prime}\right|_{T^{j-1}-u}$ is a γ_{R}-function on $T^{j-1}-u$. Define now an RD-function $f^{\prime \prime}$ on T^{j-1} as $\left.f^{\prime \prime}\right|_{T^{j-1}-u}=$ $\left.f^{\prime}\right|_{T^{j-1}-u}$ and $f^{\prime \prime}(u)=1$. Since $u \in V^{-}\left(T^{j-1}\right)$, $f^{\prime \prime}$ is a $\gamma_{R^{\prime}}$-function on T^{j-1} with $f^{\prime \prime}(y)=r \notin\{0, s\}$, a contradiction with $y \in V^{0 s}\left(T^{j-1}\right)$. Thus
$\left(\alpha_{5}\right) V^{012}\left(T^{j-1}\right)=V^{012}(T) \cap V\left(T^{j-1}\right), V^{01}\left(T^{j-1}\right)=V^{01}(T) \cap V\left(T^{j-1}\right)$, and $V^{02}\left(T^{j-1}\right)=V^{02}(T) \cap V\left(T^{j-1}\right)$.

Let x, x_{1}, x_{2} be a path in F_{4}, h_{1} a γ_{R}-function on T^{j-1} with $h_{1}(u)=2$, and h_{2} a γ_{R}-function on $T^{j-1}-u$. Define γ_{R}-functions $g_{1}, . ., g_{4}$ on T as follows:

- $\left.g_{1}\right|_{T^{j-1}}=h_{1}, g_{1}(x)=g_{1}\left(x_{2}\right)=0$ and $g_{1}\left(x_{1}\right)=2 ;$
- $\left.g_{2}\right|_{T^{j-1}}=h_{1}, g_{2}(x)=0$ and $g_{2}\left(x_{1}\right)=g_{2}\left(x_{2}\right)=1$;
- $\left.g_{3}\right|_{T^{j-1}}=h_{1}, g_{3}(x)=g_{3}\left(x_{1}\right)=0$ and $g_{3}\left(x_{2}\right)=2$;
- $\left.g_{4}\right|_{T^{j-1}-u}=h_{2}, g_{4}(u)=g_{4}\left(x_{1}\right)=0, g(x)=2$ and $g_{4}\left(x_{2}\right)=1$.

This, $\left(\alpha_{5}\right)$ and Lemma 6 allows us to conclude that T is γ_{R}-excellent, $x_{1}, x_{2} \in V^{012}(T)$ and $x \in V^{02}(T)$.
By induction hypothesis, $\left(\mathcal{P}_{1}\right)$ holds with (T, S) replaced by $\left(T^{j-1}, S^{j-1}\right)$. Then Since $u \notin S_{B}(T)$ and $S_{B}(T) \cap V\left(F_{4}\right)=\emptyset$, we have

$$
\begin{aligned}
S_{B}(T) & =S_{B}^{j-1}\left(T^{j-1}\right) \\
& =\left\{t \in V^{02}\left(T^{j-1}\right) \mid \operatorname{deg}_{T^{j-1}}(t)=2 \text { and }\left|N_{T^{j-1}}(t) \cap V^{02}\left(T^{j-1}\right)\right|=1\right\} \\
& =\left\{t \in V^{02}(T) \mid \operatorname{deg}_{T}(t)=2 \text { and }\left|N_{T}(t) \cap V^{02}(T)\right|=1\right\} .
\end{aligned}
$$

The last equality follows from $\operatorname{deg}_{T}(x)>2$ and $\{x\}=V^{02}(T) \cap V\left(F_{4}\right)$. Now the equality $S_{C}(T)=V^{02}(T)-S_{B}(T)$ is obvious. Thus, $\left(\mathcal{P}_{1}\right)$ is true.

Case 9: T is obtained from $T^{j-1} \in \mathscr{T}$ by operation O_{3}.
Let $T=\left(T^{j-1} \cdot H_{k}\right)(u, v: u)$, where $\operatorname{sta}_{T^{j-1}}(u)=\operatorname{sta}_{H_{k}}(v)=s t a_{T}(u)=A$ and $k \in\{2, . ., 7\}$. Hence $S_{X}(T)=S_{X}^{j-1}\left(T^{j-1}\right) \cup I_{X}^{k}\left(H_{k}\right)$, for any $X \in\{A, B, C, D\}$. We know that $\left(\mathcal{P}_{1}\right)$ holds with (T, S) replaced by any of $\left(T^{j-1}, S^{j-1}\right)$ and $\left(H_{k}, I^{k}\right)$. Hence $S_{A}(T)=S_{A}^{j-1}\left(T^{j-1}\right) \cup I_{A}^{k}\left(H_{k}\right)=V^{01}\left(T^{j-1}\right) \cup V^{01}\left(H_{k}\right)$. Now, by Proposition 2, applied to T^{j-1} and $H_{k}, S_{A}(T)=V^{01}(T)$. Similarly we obtain $S_{D}(T)=V^{012}(T)$. We also have

$$
\begin{aligned}
S_{B}(T) & =S_{B}^{j-1}\left(T^{j-1}\right) \cup I_{B}^{k}\left(H_{k}\right) \\
& =\left\{t \in V^{02}\left(T^{j-1}\right) \mid \operatorname{deg}_{T^{j-1}}(t)=2 \text { and }\left|N_{T^{j-1}}(t) \cap V^{02}\left(T^{j-1}\right)\right|=1\right\} \\
& \cup\left\{t \in V^{02}\left(H_{k}\right) \mid d e g_{H_{k}}(t)=2 \text { and }\left|N_{H_{k}}(t) \cap V^{02}\left(H_{k}\right)\right|=1\right\} \\
& =\left\{t \in V^{02}\left(T^{j-1}\right) \cup V^{02}\left(H_{k}\right) \mid \operatorname{deg}_{T}(t)=2 \text { and }\left|N_{T}(t) \cap V^{02}(T)\right|=1\right\},
\end{aligned}
$$

as required, because $V^{02}\left(T^{j-1}\right) \cup V^{02}\left(H_{k}\right)=V^{02}(T)$ (by Proposition 2). Now the equality $S_{C}(T)=V^{02}(T)-S_{B}(T)$ is obvious.
Case 10: T is obtained from $T^{j-1} \in \mathscr{T}$ and $H_{k} \in \mathscr{T}, k \in\{3,4,6\}$, by operation O_{4}. By induction hypothesis and Lemma 4, we have $\gamma_{R}(T)=\gamma_{R}\left(T^{j-1}\right)+\gamma_{R}\left(H_{k}\right)-1$ and $u \in V^{012}(T)$. Let f_{1} be a γ_{R}-function on T^{j-1} and f_{2} a γ_{R}-function on $H_{k}-v$. Then the function f defined as $\left.f\right|_{T^{j-1}}=f_{1}$ and $\left.f\right|_{H_{k}-v}=f_{2}$ is a $\gamma_{R^{\prime}}$-function on T. Therefore $V^{012}\left(T^{j-1}\right) \subseteq V^{012}(T), V^{01}\left(T^{j-1}\right) \subseteq V^{01}(T) \cup V^{012}(T)$, and $V^{02}\left(T^{j-1}\right) \subseteq$ $V^{02}(T) \cup V^{012}(T)$. Assume that there is $y \in V^{0 s}\left(T^{j-1}\right) \cap V^{012}(T), s \in\{1,2\}$, and let f^{\prime} be a $\gamma_{R^{\prime}}$-function on T with $f^{\prime}(y)=r \notin\{0, s\}$. But then $\left.f^{\prime}\right|_{T^{j-1}}$ is no RDfunction on $T^{j-1}, f^{\prime}(u)=0,\left.f^{\prime}\right|_{T^{j-1}-u}$ is a $\gamma_{R^{-}}$function on $T^{j-1}-u$ and $\left.f^{\prime}\right|_{H_{k}}$ is a $\gamma_{R^{\prime}}$-function on H_{k}. Define now an RD-function g_{1} on T^{j-1} as $\left.g_{1}\right|_{T^{j-1}-u}=\left.f^{\prime}\right|_{T^{j-1}-u}$ and $g_{1}(u)=1$. Since $g_{1}\left(V\left(T^{j-1}\right)\right)=\gamma_{R}\left(T^{j-1}-u\right)+1=\gamma_{R}\left(T^{j-1}\right), g_{1}$ is a γ_{R}-function on T^{j-1}. But $g_{1}(y)=r \notin\{0, s\}$, a contradiction. Thus
$\left(\alpha_{6}\right) V^{012}\left(T^{j-1}\right)=V^{012}(T) \cap V\left(T^{j-1}\right), V^{01}\left(T^{j-1}\right)=V^{01}(T) \cap V\left(T^{j-1}\right)$, and $V^{02}\left(T^{j-1}\right)=V^{02}(T) \cap V\left(T^{j-1}\right)$.

The next claim is obvious.
Claim 1.3 Let x be the neighbor of v in $H_{k}, k \in\{3,4,6\}$. Then $\gamma_{R}\left(H_{3}\right)=4, \gamma_{R}\left(H_{4}\right)=$ $5, \gamma_{R}\left(H_{6}\right)=6, \gamma_{R}\left(H_{k}-v\right)=\gamma_{R}\left(H_{k}-\{v, x\}\right)=\gamma_{R}\left(H_{k}\right)$, and $l(x)=0$ for any $\gamma_{R^{-}}$ function l on $H_{k}-v$.
Let h be a γ_{R}-function on T. We know that $u \in V^{012}(T), u \in V^{012}\left(T^{j-1}\right), v \in$ $V^{01}\left(H_{k}\right)$, and $\gamma_{R}(T)=\gamma_{R}\left(T^{j-1}\right)+\gamma_{R}\left(H_{k}\right)-1$. Then by Claim 1.3 we clearly have:
(a1) If $h(u)=2$ then at least one of the following holds:
(a1.1) $\left.h\right|_{H_{k}-v}$ is a γ_{R}-function on $H_{k}-v$, and
(a1.2) $h_{H_{k}-\{v, x\}}$ is a γ_{R}-function on $H_{k}-\{v, x\}$.
(a2) If $h(u)=1$ then $\left.h\right|_{H_{k}-v}$ is a $\gamma_{R^{-}}$function on $H_{k}-v$.
(a3) If $h(u)=0$ then either $\left.h\right|_{H_{k}}$ is a γ_{R}-function on H_{k}, or $\left.h\right|_{H_{k}-v}$ is a γ_{R}-function on $H_{k}-v$.
Let $l_{1}, l_{2}, l_{3}, l_{4}$ and l_{5} be γ_{R}-functions on $H_{k}, H_{k}-v, H_{k}-\{v, x\}, T^{j-1}-u$ and T^{j-1}, respectively, and let $l_{5}(u)=2$. Define the functions h_{1}, h_{2}, and h_{3} on T as follows: (i) $\left.h_{1}\right|_{T^{j-1}}=l_{5}, h_{1}(x)=0$ and $\left.h_{1}\right|_{H_{k}-\{v, x\}}=l_{3}$, (ii) $\left.h_{2}\right|_{T^{j-1}}=l_{5}$ and $\left.h_{1}\right|_{H_{k}-v}=l_{2}$, and (iii) $\left.h_{3}\right|_{T^{j-1}-u}=l_{4}$ and $\left.h_{3}\right|_{H_{k}}=l_{1}$. Clearly h_{1}, h_{2}, and h_{3} are γ_{R}-functions on T. After inspection of all γ_{R}-functions of $H_{k}, H_{k}-v$ and $H_{k}-\{v, x\}$, we conclude that $V^{01}\left(H_{k}\right)-\{v\} \subseteq V^{01}(T), V^{02}\left(H_{k}\right) \subseteq V^{02}(T)$, and $V^{012}\left(H_{k}\right) \subseteq V^{012}(T)$. This and (α_{6}) imply

$$
\begin{aligned}
\left(\alpha_{7}\right) & V^{012}(T)=V^{012}\left(T^{j-1}\right) \cup V^{012}\left(H_{k}\right), V^{02}(T)=V^{02}\left(T^{j-1}\right) \cup V^{02}\left(H_{k}\right), \text { and } \\
& V^{01}(T)=V^{01}\left(T^{j-1}\right) \cup\left(V^{01}\left(H_{k}\right)-\{v\}\right) .
\end{aligned}
$$

Since (\mathcal{P}_{1}) holds with T replaced by H_{k} or by T^{j-1} (by induction hypothesis), using $\left(\alpha_{7}\right)$ we obtain that $\left(\mathcal{P}_{1}\right)$ is satisfied.

5. Corollaries

The next three results immediately follow by Theorem 1.

Corollary 1. If $\left(T, S_{1}\right),\left(T, S_{2}\right) \in \mathscr{T}$ then $S_{1} \equiv S_{2}$.

If $(T, S) \in \mathscr{T}$ then we call S the \mathscr{T}-labeling of T.

Corollary 2. Let T be a γ_{R}-excellent tree of order $n \geq 5$, and S the \mathscr{T}-labeling of T. Then $\frac{n}{5} \leq\left|V^{02}(T)\right| \leq \frac{2}{3}(n-1)$ and $\frac{4}{5} n \geq\left|V^{-}(T)\right| \geq \frac{1}{3}(n+2)$. Moreover,
(i) $\frac{n}{5}=\left|V^{02}(T)\right|$ if and only if (T, S) has a \mathscr{T}-sequence $\tau:\left(T^{1}, S^{1}\right), \ldots,\left(T^{j}, S^{j}\right)$, such that $\left(T^{1}, S^{1}\right)=\left(F_{3}, J^{3}\right)$ and if $j \geq 2,\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ and $\left(F_{3}, J^{3}\right)$ by operation O_{1}.
(ii) $\left|V^{02}(T)\right| \leq \frac{2}{3}(n-1)$ if and only if (T, S) has a \mathscr{T}-sequence $\tau:\left(T^{1}, S^{1}\right), \ldots$, ($\left.T^{j}, S^{j}\right)$, such that $\left(T^{1}, S^{1}\right)=\left(H_{2}, I^{2}\right)$ and if $j \geq 2$, $\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ and $\left(H_{2}, I^{2}\right)$ by operation O_{3}.

Corollary 3. Let G be an n-order γ_{R}-excellent connected graph of minimum size. Then either $G=K_{3}$ or $n \neq 3$ and G is a tree.

6. Special cases

Let G be a graph and $\left\{a_{1}, . ., a_{k}\right\} \subseteq\{0,1,2,01,02,12,012\}$. We say that G is a $\mathcal{R}_{a_{1}, . ., a_{k}}$-graph if $V(G)=\cup_{i=1}^{k} V^{a_{i}}(G)$ and all $V^{a_{1}}(G), . ., V^{a_{k}}(G)$ are nonempty. Now let T be a γ_{R}-excellent tree of order at least 2. By Theorem 1, we immediately conclude that $T \in \mathcal{R}_{012} \cup \mathcal{R}_{01,02} \cup \mathcal{R}_{02,012} \cup \mathcal{R}_{01,02,012}$. Moreover,
(i) $T \in \mathcal{R}_{012}$ if and only if $T=K_{2}$, and
(ii) $T \in \mathcal{R}_{01,02,012}$ if and only if none of $S_{A}(T), S_{C}(T)$ and $S_{D}(T)$ is empty, where S is the \mathscr{T}-labeling of T.

In this section, we turn our attention to the classes $\mathcal{R}_{01,02}$ and $\mathcal{R}_{02,012}$.

6.1. $\mathcal{R}_{01,02 \text {-graphs. }}$

Here we give necessary and sufficient conditions for a tree to be in $\mathcal{R}_{01,02}$. We define a subfamily $\mathscr{T}_{01,02}$ of \mathscr{T} as follows. A labeled tree $(T, S) \in \mathscr{T}_{01,02}$ if and only if (T, S) can be obtained from a sequence of labeled trees $\tau:\left(T^{1}, S^{1}\right), \ldots,\left(T^{j}, S^{j}\right),(j \geq 1)$, such that $\left(T^{1}, S^{1}\right)$ is in $\left\{\left(H_{2}, I^{2}\right),\left(H_{3}, I^{3}\right)\right\}$ (see Figure 1) and $(T, S)=\left(T^{j}, S^{j}\right)$, and, if $j \geq 2,\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ by one of the operations O_{5} and O_{6} listed below; in this case τ is said to be a $\mathscr{T}_{01,02-\text { sequence }}$ of T.

Operation O_{5}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(F_{1}, J^{1}\right)$ (see Figure 2) by adding the edge $u x$, where $u \in V\left(T_{i}\right), x \in V\left(F_{1}\right)$ and $s t a_{T^{i}}(u)=$ $s t a_{F_{1}}(x)=C$.
Operation O_{6}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(H_{k}, I^{k}\right)$, $k \in\{2,3\}$ (see Figure 1), in such a way that $T^{i+1}=\left(T^{i} \cdot H_{k}\right)(u, v: u)$, where $s t a_{T^{i}}(u)=s t a_{H_{k}}(v)=A$, and $s t a_{T^{i+1}}(u)=A$.

Remark that once a vertex is assigned a status, this status remains unchanged as the labeled tree (T, S) is recursively constructed. By the above definitions we see that $S_{D}(T)$ is empty when $(T, S) \in \mathscr{T}_{01,02}$. So, in this case, it is naturally to consider a labeling S as $S: V(T) \rightarrow\{A, B, C\}$. From Theorem 1 we immediately obtain the following result.

Corollary 4. Let T be a tree of order at least 2 . Then $T \in \mathcal{R}_{01,02}$ if and only if there is a labeling $S: V(T) \rightarrow\{A, B, C\}$ such that (T, S) is in $\mathscr{T}_{01,02}$. Moreover, if $(T, S) \in \mathscr{T}_{01,02}$ then

$$
\left.\left.\begin{array}{rl}
\left(\mathcal{P}_{3}\right) & S_{B}(T)
\end{array}\right)=\left\{x \in V^{02}(T) \mid \operatorname{deg}(x)=2 \text { and }\left|N(x) \cap V^{02}(T)\right|=1\right\}, S_{A}(T)=V^{01}(T) \text {, and }\right) \text {, } \quad S_{C}(T)=V^{02}(T)-S_{B}(T) . ~ \$
$$

As un immediate consequence of Corollary 1 we obtain:
Corollary 5. If $\left(T, S_{1}\right),\left(T, S_{2}\right) \in \mathscr{T}_{01,02}$ then $S_{1} \equiv S_{2}$.

A graph G is called a 2-corona if each vertex of G is either a support vertex or a leaf, and each support vertex of G is adjacent to exactly 2 leaves. In a labeled 2 -corona all leaves have status A and all support vertices have status C.

Proposition 3. Every connected n-order graph $H, n \geq 2$, is an induced subgraph of a $\mathcal{R}_{01,02}$-graph with the domination number equals to $2|V(H)|$.

Proof. Let a graph G be a 2-corona such that the induced subgraph by the set of all support vertices of G is isomorphic to H. Let x be a support vertex of G and y, z the leaf neighbors of x in G. Then clearly for any γ_{R}-function f on G, $f(x)+f(y)+f(z) \geq 2, f(y) \neq 2 \neq f(z)$ and $f(x) \neq 1$. Define RD-functions h and g on G as follows: (a) $h(u)=2$ when u is a support vertex of G and $h(u)=0$, otherwise, and (b) $g(v)=h(v)$ when $v \notin\{x, y, z\}$, and $g(x)=0, g(y)=g(z)=1$. Therefore $\gamma_{R}(G)=2|V(H)|$ and G is in $\mathcal{R}_{01,02}$.

Corollary 6. There does not exist a forbidden subgraph characterization of the class of $\mathcal{R}_{01,02-\text {-graphs. There does not exist a forbidden subgraph characterization of the class of }}$ γ_{R}-excellent graphs.

Let $\mathscr{T}_{01,02}^{\prime}$ be the family of all labeled trees (T, L) that can be obtained from a sequence of labeled trees $\lambda:\left(T^{1}, L^{1}\right), \ldots,\left(T^{j}, L^{j}\right),(j \geq 1)$, such that $(T, L)=\left(T^{j}, L^{j}\right)$, $\left(T^{1}, L^{1}\right)$ is either $\left(H_{2}, I^{2}\right)$ (see Figure 1) or a labeled 2-corona tree, and, if $j \geq 2$, (T^{i+1}, L^{i+1}) can be obtained recursively from $\left(T^{i}, L^{i}\right)$ by one of the operations O_{7} and O_{8} listed below; in this case λ is said to be a $\mathscr{T}_{01,02}^{\prime}$-sequence of T.
Operation O_{7}. The labeled tree $\left(T^{i+1}, L^{i+1}\right)$ is obtained from $\left(T^{i}, L^{i}\right)$ and $\left(H_{2}, I^{2}\right)$, in such a way that $T^{i+1}=\left(T^{i} \cdot H_{2}\right)(u, v: u)$, where $s t a_{T^{i}}(u)=s t a_{H_{2}}(v)=A$, and $\operatorname{sta}_{T^{i+1}}(u)=A$.

Operation O_{8}. The labeled tree $\left(T^{i+1}, L^{i+1}\right)$ is obtained from $\left(T^{i}, L^{i}\right)$ and a labeled 2-corona tree, say U_{i}, in such a way that $T^{i+1}=\left(T^{i} \cdot U_{i}\right)(u, v: u)$, where $s t a_{T^{i}}(u)=s t a_{U_{i}}(v)=A$, and $s t a_{T^{i+1}}(u)=A$.

Again, once a vertex is assigned a status, this status remains unchanged as the 2labeled tree T is recursively constructed.

Theorem 2. For any tree T the following are equivalent.
(A_{1}) T is in $\mathcal{R}_{01,02}$.
$\left(A_{2}\right)$ There is a labeling $S: V(T) \rightarrow\{A, B, C\}$ such that (T, S) is in $\mathscr{T}_{11,02}$.
$\left(A_{3}\right)$ There is a labeling $L: V(T) \rightarrow\{A, B, C\}$ such that (T, L) is in $\mathscr{T}_{01,02}^{\prime}$.

Proof. $\left(A_{1}\right) \Leftrightarrow\left(A_{2}\right)$: By Corollary 4.
$\left(A_{3}\right) \Rightarrow\left(A_{2}\right):$
Let a tree $(T, L) \in \mathscr{T}_{01,02}^{\prime}$. It is clear that all $\mathscr{T}_{01,02}^{\prime}$-sequences of (T, L) have the same number of elements. Denote this number by $r(T)$. We shall prove that $(T, L) \in$ $\mathscr{T}_{01,02}^{\prime} \Rightarrow(T, L) \in \mathscr{T}_{01,02}$. We proceed by induction on $r(T)$. If $r(T)=1$ then either
(T, L) is a labeled 2-corona tree, or $(T, L)=\left(H_{2}, I^{2}\right)$. In both cases $(T, L) \in \mathscr{T}_{01,02}$. We need the following obvius claim.

Claim 2.1 If $\left(T^{\prime}, L^{\prime}\right)$ is a labeled 2-corona tree, $w \in V\left(T^{\prime}\right)$ and $\operatorname{sta}(w)=A$, then either $\left(T^{\prime}, L^{\prime}\right)$ is $\left(H_{3}, I^{3}\right)$ or there is a \mathscr{T}-sequence $\tau:\left(T^{1}, S^{1}\right), \ldots,\left(T^{l}, S^{l}\right),(l \geq 2)$, such that $\left(T^{1}, S^{1}\right)=\left(H_{3}, I^{3}\right), w \in V\left(T^{1}\right),\left(T^{l}, S^{l}\right)=\left(T^{\prime}, L^{\prime}\right)$, and $\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ and $\left(F_{1}, J^{1}\right)$ by operation O_{5}.

Suppose now that each tree $\left(H, L_{H}\right) \in \mathscr{T}_{01,02}^{\prime}$ with $r(H)<k$ is in $\mathscr{T}_{01,02}$, where $k \geq 2$. Let $\lambda:\left(T^{1}, L^{1}\right), \ldots,\left(T^{k}, L^{k}\right)$, be a $\mathscr{T}_{01,02}^{\prime}$-sequence of a labeled tree $(T, L) \in \mathscr{T}_{01,02}^{\prime}$. By the induction hypothesis, $\left(T^{k-1}, L^{k-1}\right)$ is in $\mathscr{T}_{01,02}$. Let $\tau_{1}:\left(U^{1}, S^{1}\right), \ldots,\left(U^{m}, S^{m}\right)$ be a \mathscr{T}-sequence of $\left(T^{k-1}, L^{k-1}\right)$. Hence $U^{m}=T^{k-1}$ and $S^{m}=L^{k-1}$. If $\left(T^{k}, L^{k}\right)$ is obtained from $\left(T^{k-1}, L^{k-1}\right)$ and $\left(H_{2}, I^{2}\right)$ by operation O_{7}, then $\left(U^{1}, S^{1}\right), \ldots,\left(U^{m}, S^{m}\right),\left(T^{k}, L^{k}\right)=(T, L)$ is a \mathscr{T}-sequence of (T, L). So, let $\left(T^{k}, L^{k}\right)$ is obtained from $\left(T^{k-1}, L^{k-1}\right)$ and a labeled 2-corona tree, say $\left(Q, L_{q}\right)$ by operation O_{8}. Hence T^{k-1} and Q have exactly one vertex in comman, say w, and $s t a_{T^{k-1}}(w)=s t a_{Q}(w)=\operatorname{sta}_{T^{k}}(w)=A$. By Claim 2.1, $\left(Q, L_{q}\right) \in \mathscr{T}_{01,02}$ and it has a $\mathscr{T}_{01,02}$-sequence, say $\left(Q^{1}, L_{q}^{1}\right), \ldots,\left(Q^{s}, L_{q}^{s}\right)$ such that $Q^{s}=Q, L_{q}=L_{q}^{s}$, and $w \in V\left(Q^{1}\right)$. Denote $W^{m+i}=\left\langle V\left(U^{m}\right) \cup V\left(Q^{i}\right)\right\rangle$ and let a labeling S^{m+i} be such that $\left.S^{m+i}\right|_{U^{m}}=S^{m}$ and $\left.S^{m+i}\right|_{Q^{i}}=L_{q}^{i}$. Then the sequence of labeled trees $\left(U^{1}, S^{1}\right), \ldots,\left(U^{m}, S^{m}\right),\left(W^{m+1}, S^{m+1}\right), \ldots,\left(W^{m+s}, S^{m+s}\right)=(T, L)$ is a $\mathscr{T}_{01,02^{-}}$ sequence of (T, L).
$\left(A_{2}\right) \Rightarrow\left(A_{3}\right):$
Let a labeled tree $(T, S) \in \mathcal{T}_{01,02}$. Then (T, S) has a \mathscr{T}-sequence τ : $\left(T^{1}, S^{1}\right), \ldots,\left(T^{j}, S^{j}\right)=(T, S)$, where $\left(T^{1}, S^{1}\right) \in\left\{\left(H_{2}, I^{2}\right),\left(H_{3}, I^{3}\right)\right\} \subset \mathscr{T}_{01,02}^{\prime}$. We proceed by induction on $p(T)=\Sigma_{z \in \mathrm{C}(T)} d e g_{T}(z)$, where $\mathrm{C}(T)$ is the set of all cutvertices of T that belong to $S_{A}(T)$. Assume first $p(T)=0$. If $j=1$ then we are done. If $j \geq 2$ then $\left(T^{1}, S^{1}\right)=\left(H_{3}, I^{3}\right)$ and $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(F_{1}, J^{1}\right)$ and $\left(T^{i}, S^{i}\right)$ by operation O_{5}. Thus, (T, S) is a labeled 2-corona tree, which allow us to conclude that (T, S) is in $\mathscr{T}_{01,02}^{\prime}$.
Suppose now that $p(T)=k \geq 1$ and for each labeled tree $\left(H, S_{H}\right) \in \mathscr{T}_{01,02}$ with $p(H)<k$ is fulfilled $\left(H, S_{H}\right) \in \mathscr{T}_{01,02}^{\prime}$. Then there is a cut-vertex, say z, such that (a) $z \in S_{A}(T)$, (b) (T, S) is a coalescence of 2 graphs, say $\left(T^{\prime},\left.S\right|_{T^{\prime}}\right)$ and ($T^{\prime \prime},\left.S\right|_{T^{\prime \prime}}$), via z, and (c) no vertex in $S_{A}(T) \cap V\left(T^{\prime \prime}\right)$ is a cut-vertex of $T^{\prime \prime}$. Hence $\left(T^{\prime},\left.S\right|_{T^{\prime}}\right) \in \mathscr{T}_{01,02}^{\prime}$ (by induction hypothesis) and ($T^{\prime \prime},\left.S\right|_{T^{\prime \prime}}$) is either a labeled 2-corona tree or H_{2}. Thus (T, S) is in $\mathscr{T}_{01,02}^{\prime}$.

6.2. $\mathcal{R}_{02,012}$-trees.

Our aim in this section is to present a characterization of $\mathcal{R}_{02,012 \text {-trees. For this }}$ purpose, we need the following definitions. Let $\mathscr{T}_{02,012} \subset \mathscr{T}$ be such that $(T, S) \in$ $\mathscr{T}_{02,012}$ if and only if (T, S) can be obtained from a sequence of labeled trees τ : $\left(T^{1}, S^{1}\right), \ldots,\left(T^{j}, S^{j}\right),(j \geq 1)$, such that $\left.\left(T^{1}, S^{1}\right)=\left(F_{3}, J^{3}\right)\right\}$ (see Figure 2) and $(T, S)=\left(T^{j}, S^{j}\right)$, and, if $j \geq 2,\left(T^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(T^{i}, S^{i}\right)$ by one of the operations O_{9} and O_{10} listed below.

Operation O_{9}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(F_{3}, J^{3}\right)$ by adding the edge $u x$, where $u \in V\left(T^{i}\right), x \in V\left(F_{3}\right)$ and $s t a_{T^{i}}(u)=s t a_{F_{3}}(x)=C$.

Operation O_{10}. The labeled tree $\left(T^{i+1}, S^{i+1}\right)$ is obtained from $\left(T^{i}, S^{i}\right)$ and $\left(F_{4}, J^{4}\right)$ (see Figure 2) by adding the edge $u x$, where $u \in V\left(T^{i}\right), x \in V\left(F_{4}\right)$, sta $a_{T^{i}}(u)=D$, and $\operatorname{sta}_{F_{4}}(x)=C$.

Note that once a vertex is assigned a status, this status remains unchanged as the labeled tree (T, S) is recursively constructed. By the above definitions we see that if $(T, S) \in \mathcal{R}_{01,02}$, then $S_{A}(T)=S_{B}(T)=\emptyset$. Therefore it is naturally to consider a labeling S as $S: V(T) \rightarrow\{C, D\}$.
From Theorem 1 we immediately obtain the following result.

Corollary 7. A tree T is in $\mathcal{R}_{02,012}$ if and only if there is a labeling $S: V(T) \rightarrow\{C, D\}$ such that (T, S) is in $\mathscr{T}_{02,012}$. Moreover, if $(T, S) \in \mathscr{T}_{02,012}$ then $S_{C}(T)=V^{02}(T)$ and $S_{D}(T)=V^{012}(T)$.

As an immediate consequence of Corollary 1 we obtain:

Corollary 8. If $\left(T, S_{1}\right),\left(T, S_{2}\right) \in \mathscr{T}_{02,012}$ then $S_{1} \equiv S_{2}$.

Theorem 3. [3] If G is a connected graph of order $n \geq 3$, then $\gamma_{R}(G) \leq 4 n / 5$. The equality holds if and only if G is C_{5} or is obtained from $\frac{n}{5} P_{5}$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{5} P_{5}$.

As a consequence of Theorem 3 and Corollary 7 we have:
Corollary 9. Let G be a connected n-vertex graph with $n \geq 6$ and $\gamma_{R}(G)=4 n / 5$. Then G is in $\mathcal{R}_{02,012}$ and $V^{012}(G)$ consists of all leaves and all support vertices. Moreover, if G is a tree, then G has a \mathscr{T}-sequence $\tau:\left(G^{1}, S^{1}\right), \ldots,\left(G^{j}, S^{j}\right),(j \geq 1)$, such that $\left(G^{1}, S^{1}\right)=\left(F_{3}, J^{3}\right)$ (see Figure 2) and if $j \geq 2$, then $\left(G^{i+1}, S^{i+1}\right)$ can be obtained recursively from $\left(G^{i}, S^{i}\right)$ by operation O_{9}.

A graph G is said to be in class $U V R$ if $\gamma(G-v)=\gamma(G)$ for each $v \in V(G)$. Constructive characterizations of trees belonging to $U V R$ are given in [14] by Samodivkin, and independently in [11] by Haynes and Henning. We need the following result in [14] (reformulated in our present terminology).

Theorem 4. [14] A tree T of order at least 5 is in $U V R$ if and only if there is a labeling $S: V(T) \rightarrow\{C, D\}$ such that (T, S) is in $\mathscr{T}_{02,012}$. Moreover, if $(T, S) \in \mathscr{T}_{02,012}$ then $S_{C}(T)$ and $S_{D}(T)$ are the sets of all γ-bad and all γ-good vertices of T, respectively.

We end with our main result in this subsection.

Theorem 5. For any tree T the following are equivalent:
$\left(A_{4}\right) T$ is in $\mathcal{R}_{02,012}, \quad\left(A_{5}\right) T$ is in $\mathscr{T}_{02,012}, \quad\left(A_{6}\right) T$ is in $U V R$.

Proof. Corollary 7 and Theorem 4 together imply the required result.

7. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further research. Let first note that if $n \geq 3$ and $\mathrm{G}_{n, k}$ is not empty, then $k \leq 4 n / 5$ (Theorem $3)$.
An element of $\mathbb{R} \mathbb{E}_{n, k}$ is said to be isolated, whenever it is both maximal and minimal. In other words, a graph $H \in \mathrm{G}_{n, k}$ is isolated in $\mathbb{R E}_{n, k}$ if and only if $H \in \mathcal{R}_{C E A}$ and for each $e \in E(H)$ at least one of the following holds: (a) $H-e$ is not connected, (b) $\gamma_{R}(H) \neq \gamma_{R}(H-e)$, (c) $H-e$ is not γ_{R}-excellent.

Example 1. (i) All γ_{R}-excellent graphs with the Roman domination number equals to 2 are $\overline{K_{2}}$ and $K_{n}, n \geq 2$. If a graph $G \in \mathcal{R}_{C E A}$ and $\gamma_{R}(G)=2$, then G is complete. K_{n} is isolated in $\mathbb{R E}_{n, 2}, n \geq 2$.
(ii) [8] K_{2}, H_{7} and H_{8} (see Fig. 1) are the only trees in $\mathcal{R}_{C E A}$.
(iii) If $\mathbb{R E}_{n, k}$ has a tree T as an isolated element, then either $(n, k)=(2,2)$ and $T=K_{2}$, or $(n, k)=(9,7)$ and $T=H_{7}$, or $(n, k)=(10,8)$ and $T=H_{8}$.

- Find results on the isolated elements of $\mathbb{R E}_{n, k}$.
- What is the maximum number of edges $m\left(\mathrm{G}_{n, k}\right)$ of a graph in $\mathrm{G}_{n, k}$? Note that (a) $m\left(\mathrm{G}_{n, 2}\right)=n(n-1) / 2$, (b) $m\left(\mathrm{G}_{n, 3}\right)=n(n-1) / 2-\lceil n / 2\rceil$.
- Find results on those minimal elements of $\mathbb{R E}_{n, k}$ that are not trees.

Example 2. (a) A cycle C_{n} is a minimal element of $\mathbb{R E}_{n, k}$ if and only if $n \equiv 0(\bmod 3)$ and $k=2 n / 3$. (b) A graph G obtained from the complete bipartite graph $K_{p, q}, p \geq q \geq 3$, by deleting an edge is a minimal element of $\mathbb{R E}_{p+q, 4}$.

The height of a poset is the maximal number of elements of a chain.

- Find the height of $\mathbb{R E}_{n, k}$.

Example 3. (a) It is easy to check that any longest chain in $\mathbb{R E}_{6,4}$ has as the first element H_{3} (see Fig 1) and as the last element one of the two 3 -regular 6 -vertex graphs. Therefore the height of $\mathbb{R E}_{6,4}$ is 5 .
(b) Let us consider the poset $\mathbb{R E}_{5 r, 4 r}, r \geq 2$. All its minimal elements are γ_{R}-excellent trees (by Theorem 3 and Corollary 9), which are characterized in Corollary 9. Moreover, the graph obtained from $r P_{5}$ by adding a complete graph on the set of centers of the components of $r P_{5}$ is the largest element of $\mathbb{R E}_{5 r, 4 r}$. Therefore the height of $\mathbb{R E} \mathbb{E}_{5 r, 4 r}$ is $(r-1)(r-2) / 2+1$.

- Find results on $\gamma_{\mathrm{Y} R}$-excellent graphs at least when Y is one of $\{-1,0,1\},\{-1,1\}$ and $\{-1,1,2\}$.

References

[1] H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), no. 2, 241-255.
[2] T. Burton and D.P. Sumnur, γ-excellent, critically dominated, end-dominated, and dot-critical trees are equivalent, Discrete Math. 307 (2007), no. 6, 683-693.
[3] E.W. Chambers, B. Kinnerslay, N. Prince, and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009), no. 3, 1575-1586.
[4] E.J. Cockayne, P.A. Jr. Dreyer, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1, 11-22.
[5] J. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications (Y. Alavi and A. Schwenk, eds.), Wiley, 1995, pp. 311-321.
[6] J. Dunbar, S.T. Hedetniemi, and A. McRae, Minus domination in graphs, Discrete Math. 199 (1999), no. 1-3, 35-47.
[7] G. Fricke, T. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, Excellent trees, Bull. Inst. Comb. Appl. 34 (2002), 27-38.
[8] A. Hansberg, N.J. Rad, and L. Volkmann, Vertex and edge critical Roman domination in graphs, Util. Math. 92 (2013), 73-97.
[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[10] T.W. Haynes and M.A. Henning, A characterization of i-excellent trees, Discrete Math. 248 (2002), no. 1-3, 69-77.
[11] , Changing and unchanging domination: a classification, Discrete Math. 272 (2003), no. 1, 65-79.
[12] M.A. Henning, Total domination excellent trees, Discrete Math. 263 (2003), no. 1-3, 93-104.
[13] E.M. Jackson, Explorations in the classification of vertices as good or bad, Master's thesis, East Tennessee State University, 82001.
[14] V. Samodivkin, Domination in graphs, God. Univ. Arkhit. Stroit. Geod. Sofiya, Svitk II, Mat. Mekh. 39 (1996-1997), 111-135.
[15] _, The bondage number of graphs: good and bad vertices, Discuss. Math. Graph Theory 28 (2008), no. 3, 453-462.
[16] T. Trotter, Partially ordered sets, Handbook of Combinatorics (Y. Alavi and A. Schwenk, eds.), Elsevier, 1995, pp. 433-480.

