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Dysbiosis of the gut microbiome, including elevated abundance of putative leading

bacterial triggers such as E. coli in inflammatory bowel disease (IBD) patients, is of great

interest. To date, most E. coli studies in IBD patients are focused on clinical isolates,

overlooking their relative abundances and turnover over time. Metagenomics-based

studies, on the other hand, are less focused on strain-level investigations. Here, using

recently developed bioinformatic tools, we analyzed the abundance and properties

of specific E. coli strains in a Crohns disease (CD) patient longitudinally, while also

considering the composition of the entire community over time. In this report, we

conducted a pilot study on metagenomic-based, strain-level analysis of a time-series

of E. coli strains in a left-sided CD patient, who exhibited sustained levels of E. coli

greater than 100X healthy controls. We: (1) mapped out the composition of the gut

microbiome over time, particularly the presence of E. coli strains, and found that the

abundance and dominance of specific E. coli strains in the community varied over

time; (2) performed strain-level de novo assemblies of seven dominant E. coli strains,

and illustrated disparity between these strains in both phylogenetic origin and genomic

content; (3) observed that strain ST1 (recovered during peak inflammation) is highly

similar to known pathogenic AIEC strains NC101 and LF82 in both virulence factors

and metabolic functions, while other strains (ST2-ST7) that were collected during more

stable states displayed diverse characteristics; (4) isolated, sequenced, experimentally

characterized ST1, and confirmed the accuracy of the de novo assembly; and (5)
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assessed growth capability of ST1 with a newly reconstructed genome-scale metabolic

model of the strain, and showed its potential to use substrates found abundantly in the

human gut to outcompete other microbes. In conclusion, inflammation status (assessed

by the blood C-reactive protein and stool calprotectin) is likely correlated with the

abundance of a subgroup of E. coli strains with specific traits. Therefore, strain-level

time-series analysis of dominant E. coli strains in a CD patient is highly informative, and

motivates a study of a larger cohort of IBD patients.

Keywords: inflammatory bowel disease, Escherichia coli, metagenomics, gut microbiome, de novo assembly

1. INTRODUCTION

Dysbiosis of the gut microbiome in inflammatory bowel disease
(IBD) patients is associated with reduced bacterial diversity, an
increase in relative abundance of Proteobacteria (Mukhopadhya
et al., 2012), and decline in Firmicutes (Matsuoka and Kanai,
2015). Specifically, E. coli is considered one of the potential causes
of IBD formation and progression (Rhodes, 2007; Sasaki et al.,
2007). One specific pathotype, adherent-invasive E. coli (AIEC),
which is able to attach to intestinal epithelial cells and survive and
replicate within macrophages, has been implicated in intestinal
inflammation (Darfeuille-Michaud et al., 1998; Palmela et al.,
2017).Members of this pathotype, as well as other IBD-associated
E. coli isolates, mainly belong to phylogroup B2 (Petersen et al.,
2009), carrying a diverse set of virulence factors and displaying
distinct metabolic phenotypes (Martinez-Medina andGarcia-Gil,
2014; Fang et al., 2018). However, no unique genetic determinant
has been identified for this group (O’Brien et al., 2016).

Previous studies on E. coli in IBD mainly focused on clinical
isolates extracted from intestinal biopsy and fecal samples, which
are then cultured and experimentally characterized (Eaves-Pyles
et al., 2008; Vejborg et al., 2011; Desilets et al., 2016; O’Brien
et al., 2016). However, most of these studies did not take into
consideration other factors including composition of the gut
microbiome and dynamics of the community. Recently, with
the drop in sequencing costs, metagenomics data has become
a popular source of information with which to investigate
the composition (Pascal et al., 2017), function (Morgan et al.,
2012; Ni et al., 2017) and dynamics (Halfvarson et al., 2017;
Schirmer et al., 2018) of the IBD microbiome. However, these
studies lack a detailed characterization of the E. coli community.
They generally only examine the relative abundance of E. coli,
overlooking the strain-level composition and strain-specific traits
of the E. coli community, yet previous study has already showed
genetic diversity and temporal variation in the E. coli population
(Caugant et al., 1981).

Fortunately, strain-level analysis of metagenomics data has
been made possible with recently developed bioinformatics
tools, including MIDAS, that characterizes strain-level variation
(Nayfach et al., 2016), DESMAN, that allows de novo extraction of
strains (Quince et al., 2017), among other strain-level population
genomics tools (Luo et al., 2015; Fischer et al., 2017; Truong
et al., 2017). Additionally, tools developed for genome-level
analysis, such as genome-scale metabolic models (GEMs), enable
comprehensive strain-level analysis. GEMs are reconstructions of

the metabolic network of strains that are subsequently converted
to computable mathematical models, allowing mapping between
the genetic basis and phenotypicmetabolic functions (McCloskey
et al., 2013). Due to the versatile genomic content of E. coli (Rasko
et al., 2008), strain-level GEM analysis has proven to be essential
and informative (Monk et al., 2013).

Here, we conducted a pilot study on one IBD patient,
specifically a patient with left-sided Crohn’s disease (CD),
and performed metagenomics-based, strain-level analysis of the
patients time-series E. coli community. We not only examined
the composition of the gut microbiome, relative abundance of
E. coli, and community dynamics, but also performed strain-
level analysis to identify, assemble, and characterize the dominant
E. coli strains at different time points, followed by experimental
validation.

2. RESULTS AND DISCUSSION

2.1. Time-Series Stool Samples Were
Collected and Sequenced for 3 Years
We studied 27 time-series stool samples (named TP1-TP27
as shown in Figure 1) collected from a 69 year-old male CD
patient, who was diagnosed with colonic CD at the age of
63 with inflammation confined to his sigmoid colon. These
samples were collected over a period of 3 years between 2011
and 2014 (Table S1), covering both stable and inflamed states
(Wu et al., 2013). We generated metagenomics data for each
sample collected, and recorded detailed metadata including body
mass index (BMI), blood C-reactive protein (CRP) level, fecal
calprotectin level, and other biomarker measurements during
this period (Table S1). During the 3 years, this patient took
Ciprofloxacin, Metronidazole, and Prednisone daily in February
2012, and also used Lialda and Uceris from June to November
2013. BMI was recorded for all samples and ranged between
23.6 and 25.9 (Figure 1). High-Sensitivity CRP (hs-CRP) level,
which is indicative of inflammation level, was measured for 18/27
samples, and fluctuated between 2.4 and 27.1 mg/L (Figure 1).
Fecal calprotectin showed a trend similar to blood hs-CRP level,
with significant variation (Figure S2). In particular, blood and
fecal inflammation levels were the highest when the first sample
was collected, with hs-CRP peaked at 27.1mg/L, while the normal
range of hs-CRP for healthy controls is ≤ 1 mg/L (Mosli et al.,
2015), and with Calprotectin peaking at 2500, over 50x the
upper limit for healthy controls. Therefore, we aimed to explore
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FIGURE 1 | Blood hs-CRP level and BMI of the patient fluctuated during the 3 years of this study (hs-CRP only available for 18 samples). Samples collected during

bleeding or flare are labeled in red. The dominant E. coli strain varied for different time points (discussed in the next paragraph), and are labeled by different

background colors.

the relationship between inflammation status and gut microbes,
especially with the E. coli community in the gut microbiome.

2.2. Composition of the Gut Microbiome
and E. coli Community Changed Over Time
Analysis of the gut microbiome composition and richness
indicates that the gut microbial community of this patient was
dysbiotic, and highly dynamic during the 3 years of this study.We
performed taxonomy assignment for the metagenomic samples
using MetaPhlan2 (Truong et al., 2017), and calculated the
alpha and beta diversity of the 27 samples. Compared to the
gut microbiome of healthy controls that are mostly dominated
by Firmicutes (49–76%) and Bacteroidetes (16–23%) (Matsuoka
and Kanai, 2015) with a minor component of Proteobacteria
(median = 1%) (Bradley and Pollard, 2017), this patient had an
elevated level of Proteobacteria ranging from 1.09 to 55.3%, and
a reduced level of Firmicutes between 22.3 and 49.1%. We also
found enterobacteria phages K1E (accession: NC_007637.1) and
K1-5 (accession: NC_008152.1) in TP1, which are not shown in
MetaPhlan2 results in (Figure 2) (see Supplementary Material

for detailed analysis). We also performed principal coordinate
analysis (PCoA) on the beta diversity calculated (see Figure S3)
to evaluate the dissimilarity between samples.

In particular, we characterized the E. coli community in
the gut microbiome, since E. coli is considered one of the
leading bacterial triggers in IBD (Rhodes, 2007). The relative
abundance of E. coli in this patient ranges from 0.1 to 42.6%,
which was abnormally high (as much as 400x) compared to
that of the healthy controls (≤0.1% in the healthy cohort
Human Microbiome Project Consortium, 2012, but consistent
with elevated E. coli abundance observed in previous IBD studies
(Matsuoka and Kanai, 2015). During the 3 years of study, the

E. coli level remained relatively high, except for the first 4 months
of 2013, during which TP5-TP10 were collected (highlighted in
red in Figure 2B). The inflammation level during this particular
period did not show significant differences compared to other
time points. Interestingly, the relative abundance of E. coli did not
necessarily correlate with inflammation level in all samples. For
example, TP2 has the highest E. coli relative abundance of 42.6%,
yet it only has a hs-CRP level of 2.8mg/L (1/10 of the hs-CRP level
for TP1). Since E. coli is a highly versatile species with an open
pan-genome (Snipen et al., 2009), it is possible that only a subset
of E. coli strains with certain pathogenic features contribute to
disease progression in IBD. Therefore, we further investigated
the strain-level composition for the E. coli community in
the 21 samples that have ≥5% E. coli relative abundance
(highlighted in green in Figure 2B). Six samples (TP5-TP10)
were excluded from further E. coli studies due to their scarcity of
E. coli.

Single-nucleotide variants (SNV) analysis on the selected 21
samples suggests that the E. coli community was dominated by a
single strain in most samples, and the dominant strain switched
over time. SNV frequencies for E. coli species were detected by
MIDAS (Nayfach et al., 2016). Most SNV frequencies are close
to 0 or 1 (Figure S4), implying that a single strain was typically
dominating the E. coli community at a given point in time. This
result is consistent with a finding in a previous study that a single
strain dominates most species in the gut microbiome (Truong
et al., 2017).

Positions of the detected SNVs across multiple samples
also suggest that the dominant E. coli strain changed over
time (see section 5) (Figure 2C), potentially due to alterations
in diet, microbiome ecological structure, and environment
(including the components of the human immune system).
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FIGURE 2 | Composition of the gut microbiome and the E. coli community is dynamic. (A) Relative abundance of microbes at phyla level. (B) Relative abundance of

E. coli in this patient. E. coli relative abundance is <0.1% in the healthy cohort. (C) Dominant strains of the E. coli community identified in 21/27 samples. Colors

represent different dominant strains. Arrows highlight the samples we selected for further analysis on dominant strains.

In the 21 samples with higher E. coli relative abundance, we
identified a total of seven dominant strains (some of them
abundant in several time points). To further characterize
the dominant strains and understand their association
with inflammation, we then focused on the highlighted
samples in Figure 2C that contain the seven dominant
strains.

2.3. Dominant E. coli Strains Assembled
and Computationally Characterized
We attempted to recover genome sequences of the seven
dominant E. coli strains from the selected samples. Draft
assemblies of the dominant strains (named ST1-ST7) were
obtained by de novo metagenomic assembly and binning of
individual samples (see section 5), followed by functional
annotation using Prokka (Seemann, 2014). Numbers of protein
coding genes in the resulting annotations range from 4, 411 to 5,
213 (Table 1). In addition, we performed phylogenetic analysis
using PhyloPhlan (Segata et al., 2013) to infer the phylogroup
of each assembly. Although previous studies have shown that
strains in B2 and D phylogroups are more frequently found
in IBD patients (Kotlowski et al., 2007), the seven dominant
strains in this patient have diverse phylogenetic origins and
are predicted to span phylogroups B2, E, D, B1, and A. In
particular, ST1 and ST5 likely belong to phylogroup B2, which
contains most of AIEC strains. In addition, we have also
assigned the sequence types of the dominant strains using the
de novo assemblies and BacWGSTdb (Ruan and Feng, 2016).
The dominant strains are reported to have different sequence

TABLE 1 | Characteristics of the seven dominant strains recovered from

metagenomic samples.

Name Time Number of

CDS

Inferred

phylogroup

Sequence

type

ST1 2011/12/28 5, 134 B2 95

ST2 2012/04/03 5, 213 E 1,629

ST3 2012/08/07 4, 591 D 69

ST4 2013/07/14 4, 618 B1 58

ST5 2014/03/23 4, 498 B2 131

ST6 2014/08/25 4, 411 A 409

ST7 2014/09/28 4, 487 B1 1,727

types (Table 1). Specifically, sequence type 95, 69, and 131
are predominant in extraintestinal pathogenic E. coli strains
(Doumith et al., 2015).

To further explore the diversity of the selected strains,
we constructed a pan-genome for the seven assemblies and
found significant variation between strains. We built the pan-
genome with Roary (Page et al., 2015) using a threshold
of 80% for gene similarity (see section 5). We identified a
total of 8,459 orthologs, of which only 37.7% are core genes
shared between all strains. Among the rest of the accessory
genes, 39.9% are unique to only one strain (Figure S5),
highlighting the diversity of the seven strains. To further
explore the variation between strains, we next investigated the
genomic features and metabolic functions of the dominant
strains.
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2.4. The Analysis of Recovered Strains
Reveals a Diversity of Virulence Factors
We examined the distribution of virulence factors in the seven
assemblies. For comparison, we included two well-studied AIEC
strains, NC101 (Allen-Vercoe and Jobin, 2014; Ellermann et al.,
2015), associated with inducing colon-cancer (Arthur et al.,
2012), and LF82, an E. coli strain associated with right-sided
ileal CD patients (Darfeuille-Michaud, 2002; Darfeuille-Michaud
et al., 2004; Miquel et al., 2010). In addition, we included the
widely studied commensal strain K-12 MG1655 as a well-defined
reference strain. We first mapped the seven genome assemblies
and three reference strains to a curated virulence factor database
VFDB (Chen et al., 2005) using BLAST (Boratyn et al., 2012)
with a threshold of 80% sequence similarity. This procedure
identified a total of 164 virulence factors amongst the ten strains
(Figure S6). Many of these virulence factors are involved in
functions that are previously implicated in pathophysiology in
IBD, including iron-acquisition (Dogan et al., 2014), adhesion
(Barnich et al., 2007), secretion systems (Nash et al., 2010), and
capsule synthesis (Martinez-Medina et al., 2009). We observed
that strains in phylogroup B2 (NC101, LF82, ST1, ST5) generally
have more virulence factors compared to the other strains, and
have more virulence factors in common.

2.5. Presence/Absence of 57 Known
IBD-Associated Virulence Factors in the
Recovered Strains
We next focused on 57 genes that have been associated with
pathogenicity in IBD patients from previous studies (Table S2).
We collected the genes and their sequences from literature, and
mapped them against the ten strains using BLAST (Boratyn et al.,
2012). Interestingly, only ST1 clustered with the representative
AIEC strains LF82 and NC101, while ST5 did not share as
many genes with the selected pathogenic strains (Figure 3).
This could potentially explain why ST1 correlated with high
inflammation level, while hs-CRP was only 2.4 mg/L when ST5
was collected. We found a set of genes that are unique or more
prevalent in ST1, LF82, and NC101 that differentiate them from
other strains (highlighted in Figure 3). Besides IBD-associated
virulence factors, we also found that similar to NC101, ST1 also
harbors the polyketide synthase (pks) genotoxic island that was
shown to induce colorectal cancer (Arthur et al., 2012).

2.6. Metabolic Networks Differentiate ST1
and AIEC Strains From Other Dominant
Strains Collected During Periods of Low
Inflammation
Besides virulence factors, we also delineated the differences in
metabolism between strains. We built draft metabolic networks
for seven assemblies and the three reference strains based on
the previously published multi-strain genome-scale metabolic
models (GEMs) (Monk et al., 2013) (see section 5). For the
ten metabolic networks reconstructed, there are 3,077 metabolic
reactions in total, among which 302 are accessory reactions
missing from at least one strain, and 2,775 core reactions that are
present in all strains.

To investigate the discrepancy in metabolic functions between
these strains, we created a pan-reactome for these ten strains (see
section 5). We then performed multiple correspondence analysis
(MCA) on the pan-reactome matrix formed by absence/presence
calls for these reactions, which has been shown to effectively
classify reactomes (Monk et al., 2014). We then focused on factor
1 and factor 2 (Figure 4A), since they explained a total of 84%
variance (67.1 and 16.9%, respectively).

The plot of factor 1 vs. factor 2 (Figure 4A) shows that TP1 is
very similar to NC101 and LF82 in terms of metabolic functions,
while strains isolated from other time points displayed diverse
characteristics (Figure 4A). We observed that factor 1 separated
B2 strains from non-B2 strains, while factor 2 separated TP5
and K12 from the other strains. We further investigated the 50
reactions that have the greatest contribution to factor 1 and 2
(Table S3), and plotted their functional distribution (Figure 4B).
Many of the top contributing reactions in factor 1 are involved
in alternative carbon metabolism, cofactor biosynthesis, and
transport reactions. Further analysis showed B2 and non-B2
strains have distinct reactions involved in carbon utilization and
metabolite transport (Figure S7A), suggesting that B2 strains and
non-B2 strains may be adapted to different microenvironments
and nutrient substrates.

For the top contributing reactions in factor 2, although some
are also involved in carbon metabolism and transport reactions,
more than half of the reactions are engaged in lipopolysaccharide
(LPS) biosynthesis and recycling. Additional analysis showed
that TP5 and K12 have a unique set of reactions involved in
LPS synthesis compared to the other eight strains (Figure S7B).
Previous studies showed that endotoxicity of LPS produced by
intestinal microbiota plays a vital role in the development of
intestinal colitis (Gronbach et al., 2014). Thus, the difference
we observed in LPS biosynthesis may correlate with host
inflammation status, and needs to be experimentally studied in
the future.

MCA analysis of the pan-reactome showed similarity in
metabolic functions between ST1 and AIEC strains LF82
and NC101, suggesting that E. coli strains associated with
intestinal inflammation in IBD patients may share certain
metabolic capabilities. However, because we only obtained de
novo assemblies that are incomplete, we could not construct
accurate GEMs to further evaluate their growth capabilities. To
verify our results and enable accurate GEM simulation of the
most interesting ST1 strain, we proceeded with its experimental
isolation, sequencing, and characterization.

2.7. ST1 Isolation and Characterization
Since ST1 was present in high abundance during peak
inflammation and showed the closest resemblance to known
AIEC strains, we proceeded to isolate ST1 from the stool
sample and characterize it experimentally. Its identity was
confirmed with SNV analysis (see section 5). This strain, which
we named CG1MAC was sequenced and assembled to give
a 5,169,659 bp genome with 4,916 coding regions, of which
4,905 genes were present in the ST1 assembly. The accuracy
of the ST1 assembly, compared to CG1MAC, is 95.5%.
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FIGURE 3 | Distribution of 57 genes that were implicated in AIEC pathogenesis in ten strains. Genes unique to ST1, NC101, and LF82 are involved in various

functions including capsule synthesis (kpsT, Martinez-Medina et al., 2009), mucins protease (vat-AIEC, Gibold et al., 2016), CRISPR-associated genes (cys3, cas6,

cys2, and cas1, Zhang et al., 2015), invasion (ibeA and its variant, Cieza et al., 2015), phage encoded VFs (gipA, Vazeille et al., 2016), and propanediol utilization

(pduC, Dogan et al., 2014).

FIGURE 4 | MCA analysis of pan-reactome for ten strains. (A) Visualization of factor 1 and factor 2 of MCA results. (B) Functional distribution of important reactions in

factor 1 and factor 2.

Additional genomic analysis showed that CG1MAC is closely-
related to 3_2_53FAA (sharing 4837/4916 ORFs), an E. coli
strain previously isolated from the inflamed left-sided descending
colon of a 52-year-old male CD patient, and is part of the
HMP reference genome collection with the strain identification
number HM-38 (Human Microbiome Jumpstart Reference
Strains Consortium et al., 2010) (see Supplementary Material).
We note the similarity in gender, age, and colon inflammation
site with our patient. Additionally, the serotype of CG1MAC
was experimentally determined to be O2:H7 by the National
Microbiology Laboratory in Canada. Phylogenetic analyses
suggest that CG1MAC is evolutionarily closely related to
AIEC and uropathogenic (UPEC) strains in phylogroup B2
(Figure S8).

To examine whether CG1MAC exhibited AIEC
characteristics, we conducted adhesion and invasion assays.

Experimental results showed that CG1MAC is able to adhere
well to the intestinal epithelial cell line Caco-2, but does not
invade THP-1 macrophages, unlike the representative AIEC
strain LF82. CG1MAC was engulfed at a low level and showed
poor survival intracellularly (see Supplementary Material).

2.8. Growth Capability of CG1MAC Is
Predicted to be Similar to That of AIEC
Strains
We built a draft genome-scale model (GEM) for CG1MAC
based on its genome sequence and previously published E. coli
models (Monk et al., 2013) (see section 5). The GEM for the
CG1MAC strain contains 1,581 genes, 2,913 metabolic reactions,
and 2,115 metabolites. We then predicted the growth capability
of CG1MAC, along with three draft reference models K-12,
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LF82, and NC101 that were reconstructed following the same
procedure.

Growth simulation results on various nutrient sources
indicate that CG1MAC is similar to AIEC strains in terms
of growth capability. Growth predictions suggest the four
strains (CG1MAC, K-12, LF82, and NC101) have distinct
metabolic capabilities, as their predicted growth ability differs
for 35 substrates (Figure 5A). The predicted growth phenotype
displayed by CG1MAC is similar to LF82 and NC101, as
they share the ability to utilize a subset of six substrates
(labeled in orange in Figure 5A), but not K-12. Among the
six identified substrates, some are found abundantly in the
intestine, including cellobiose, a derivative of an insoluble dietary
fiber cellulose (Cummings, 1984; Cocinero et al., 2009), as well
as monosaccharides derived from intestinal mucosa: N-acetyl-
D-galactosamine (GalNAc) and N-acetyl-D-galactosamine 1-
phosphate (GalNAc 1P) (Ravcheev and Thiele, 2017). The ability
to utilize deoxyribose, on the other hand, suggests pathogenicity
of CG1MAC and NC101. A previous study showed that the
capability to metabolize deoxyribose is associated with the
pathogenic potential of intestinal and extraintestinal E. coli
strains, as this ability increases their competitiveness (Bernier-
Fébreau et al., 2004). Deoxyribose availability also promotes
host colonization of the intestine by pathogenic E. coli strains
(Martinez-Jéhanne et al., 2009). The remaining two substrates, 3-
phospho-D-glycerate (3PG) and 2-phospho-D-glycerate (2PG),
are important intermediates in glycolysis (Neidhardt and Curtiss,
1999), and precursors for amino acid biosynthesis (Kaleta
et al., 2013). The ability to directly uptake these substrates
potentially enables NC101 and CG1MAC to generate energy
more efficiently, thus likely to outcompete other microbes.
We have also identified reactions that enable growth on the
above six substrates, that are missing from K-12 (labeled in
red in Figure 5B). We observed that K-12 lacks transporters
for all six substrates, as well as some downstream enzymes.
We also performed experimental growth experiments for model
validation (see Supplementary Material and Table S4).

3. DISCUSSION

In this study we performed metagenomic-based, strain-level
analysis of E. coli in a time-series of stool samples from a
CD patient. The key findings are as follows: (1) The E. coli
community was highly dynamic in this patient, with different
relative abundance and dominant strains at different time points.
(2) We were able to extract strain-level de novo assemblies of
seven dominant strains from metagenomics data, and showed
large variation in genomic content among strains using a
pan-genome analysis. (3) Comparative genomic analysis and
metabolic network reconstruction suggest ST1 (isolated during
peak inflammation) resembles known AIEC reference strains
NC101 and LF82, while other strains collected during stable
states displayed diverse characteristics. (4) To assess the accuracy
of de novo assemblies from metagenomics data, we isolated
ST1 (named CG1MAC) from the stool sample, sequenced and
experimentally characterized it. (5) We then built a complete

FIGURE 5 | Simulation results of four GEMs. (A) Growth capabilities on

various nutrient sources can be used to differentiate between strains. (B) The

key pathways involved in the capability to catabolize the six highlighted

substrates. Enzymes in red are missing from E. coli K-12.

genome-scale metabolic model of CG1MAC and assessed its
growth capability.

Detailed time-series data not only showed intestinal dysbiosis
of this patient, but also revealed the dynamics of his gut
microbiome at strain level. Although recent studies have already
shown dramatic fluctuations in both composition and function
of the gut microbiome of IBD patients (Halfvarson et al., 2017;
Schirmer et al., 2018), and linked it to disease development
(Sharpton et al., 2017), they only focused on species level
evaluations. In this study, however, we presented strain-level
dynamics of the E. coli community: not only did relative
abundance of E. coli vary over time, we also identified seven
strains that dominated the E. coli community at different time
points, which are later shown to have diverse gene contents and
phylogenetic origins by de novo assemblies.

Strain-level analysis of the dominant E. coli strains and
their correlation with metadata led us to hypothesize that
only certain E. coli strains with specific features contribute to
IBD progression. Comparative genomic analysis and metabolic
network reconstructions suggest similarity in both virulence
factors and metabolic functions between ST1 (collected during
peak inflammation) and known pathogenic IBD isolates NC101
and LF82. Evidence from literature suggests that the AIEC
pathotype, to which both LF82 and NC101 belong, is implicated
in IBD. However, we isolated and experimentally characterized
ST1 (later named CG1MAC), and found that it does not display
AIEC phenotypes. Interestingly, previous studies focused on
clinical isolates have also isolated non-AIEC strains from IBD
patients, as well as AIEC strains from healthy controls (O’Brien
et al., 2016). These results suggest that strains capable of eliciting
an inflammatory response in IBD patients may share certain
features, but they may not necessarily belong to the AIEC
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pathotype. Although this result needs to be further verified, both
experimentally and in a larger cohort, it illustrates the importance
of strain-level evaluations of gut microbiome. Another aspect
that needs to be taken into consideration in future study is the
association between the strain-specific features and the subtypes
of IBD (ileal CD, colonic CD and ulcerative colitis), as research
has shown that the three subtypes are genetically determined and
may be triggered by different external factors (Cleynen et al.,
2016).

Moreover, with the sequence of CG1MAC, we confirmed the
validity of the de novo assemblies, and characterized the growth
capability of CG1MAC with an accurate GEM. Strain-level de
novo assemblies have not been widely adopted in microbiome
studies, but we illustrated the potential and feasibility of such
analysis, as the ST1 assembly accurately captures 95.5% of the
actual genome content. On the other hand, another powerful
tool—GEMs, allowed us to predict that: CG1MAC, along with
NC101 and LF82, are able to utilize substrates that are either
abundant in the human gut (including cellobiose and mucus
glycan), or substrates that potentially enable them to outcompete
other strains such as deoxyribose (Bernier-Fébreau et al., 2004;
Martinez-Jéhanne et al., 2009).

Additionally, medication also plays an important role in gut
microbiome composition. Antibiotics including Ciprofloxacin
and Metronidazole have been shown to lower bacterial diversity
and decrease abundance of enterobacteria (Langdon et al.,
2016), while corticosteroid such as Prednisone and Uceris may
contribute to substantial shift in gut microbiota (Huang et al.,
2015). Additionally, this patient has also taken mesalamine
(Lialda) that has been shown to decrease abundance of
Escherichia and Shigella (Morgan et al., 2012). We observe
in this patient that after taking Ciprofloxacin, Metronidazole
and Prednisone in February 2012, the CRP level dropped
dramatically, while the alpha diversity also decreased (Figure S3).
After taking Uceris and Liada in 2013 from June to November,
no more bleeding or flare was observed. However, more
data and experiments are needed to obtain a comprehensive
understanding of the impact of medications on microbiome
structure and disease progression.

We also recognize some limitations of this approach that need
to be addressed going forward: (1) The accuracy of de novo
assembly at strain-level from metagenomics data needs to be
carefully evaluated. Our study showed that such assembly does
not capture the genome sequence at 100% accuracy, and such
analysis is only possible for samples with high read coverage of
E. coli. However, with metagenomics analytics tools being rapidly
developed, the quality and feasibility of de novo assembly at the
strain level are expected to be improved in the future. (2) We
only examined metagenomics data, not gene expression level
in this study. By including metatranscriptomics in the future,
one should be able to describe functional states of microbes
more accurately. (3) This workflow only allow us to examine the
dominant strains at each time point, while E. coli strains of lower
abundance are not taken into consideration. Therefore, genetic
variation in the E. coli community at each time point is not
characterized. (4) Other factors that contribute to IBD need to
be taken into consideration. Association between characteristics

of E. coli strains and other elements such as host genomics,
diet, and their microbial neighbors will likely add valuable
insights to future analyses. Overall, we believe performing such
an analysis on a large cohort of IBD patients will greatly enrich
our knowledge of IBD and the gut microbiome.

4. CONCLUSIONS

In this study, we observed the dominant E. coli strain in this
patient varied over time. Particularly, the dominant strains
isolated during peak inflammation is most similar to known
pathogenic strains implicated in IBD, while other strains
collected during more stable states have diverse properties.
Overall, this pilot study illustrates that a strain-level analysis of
E. coli from a time-series of stool samples can be very productive.
The approach we utilized in this study not only captures the
structure and dynamics of the entire microbiome community,
but also allows a detailed evaluation of E. coli at the strain
level. Due to decreasing sequencing cost, and fewer experimental
procedures involved, this approach should also enable rapid and
large-scale analyses in the future.

5. MATERIALS AND METHODS

5.1. Metagenomics Data Generation
DNA was extracted from primary fecal samples using the MoBio
PowerMag extraction kit (Qiagen Inc). Shotgun metagenomic
libraries were prepared and sequenced at the sequencing core
facility at the Institute for Genomic Medicine at UCSD.
Briefly, libraries were constructed from each sample using
200 ng of extracted DNA, sheared to a target fragment size
of approximately 400 bp using a Covaris E220 sonicator,
and input to the TruSeq Nano PCR-based library prep kit
(Illumina Inc), with samples individually indexed using dual
8 bp barcoded adapters. Amplified libraries were then pooled
and sequenced on a HiSeq4000 instrument. Sequenced reads
were trimmed of adapter sequences and quality-filtered using
Skewer (Jiang et al., 2014) (end-quality trimming parameter
of Phred 15 and a minimum length setting of 100 bp after
trimming) and cutadapt (Martin, 2011) v1.15 (parameters -m 36 -
q 20 -a ATCGGAAGAGCACACGTCTGAACTCCAGTCAC, -A
ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT). Trimmed
sequences were then filtered of human-derived reads using
Bowtie2 (Langmead and Salzberg, 2012) under the “very-
sensitive” setting, only retaining read pairs for which neither pair
mapped to the human reference.

5.2. Metagenomics Data Analysis
Taxonomic profiles of the metagenomics data were evaluated
using MetaPhlan2 (Truong et al., 2017) with default parameters.
We extracted E. coli relative abundance from the result and
compared it across samples. In addition to MetaPhlan2 analysis,
we also performed additional analysis to confirm the presence
of bacteriophages in a sample using Bowtie2 by mapping
sequencing reads to genome sequences of the two phages
(Langmead2012-zv) (see Supplementary Material).
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Alpha and beta diversity of the metagenomics data were
calculated with the python package skbio (sci, 2018). We utilized
the previously calculated taxonomy profiles at species level as the
input OTU tables for diversity calculation. We calculated alpha
diversity using the metric “observed_otus” and beta diversity
using the metric “braycurtis”. We then performed principal
coordinate analysis, and plotted the PC1, 2, 3 using the same
python package skbio.

5.3. Characterization of the Dominant
E. coli Strains Using Single Nucleotide
Variant (SNV) Frequencies
First, MIDAS pipeline (database v 1.2) (Nayfach et al., 2016)
was used with defaults to call genome-wide SNVs for all
abundant species within individual samples. SNVs frequencies
information for E. coli 58110 (representative genome for E. coli
species in the MIDAS database) was merged across samples.
Figure S4 illustrates minor allele frequencies at particular
genomic sites across all samples (positions chosen by MIDAS,
columns reordered with respect to their hierarchical clustering).
The heatmap suggests that E. coli population within most of
metagenomic samples was dominated by single strain (only
values close to 0 or 1 are observed in respective rows) that
changed over time.

We then performed refined computational analysis of
the SNV frequencies to confirm this hypothesis and identify
samples with the same dominant E. coli strain. For each
metagenomic sample, MIDAS pipeline with parameter
“–species_id Escherichia_coli_58110” was used to compute
per-base coverage and SNV frequencies for the E. coli reference.
To avoid various artifacts, we then discarded sites with aberrant
coverage as follows: positions with coverage 0, positions with
coverage less than twice the median across the remaining sites,
and positions with coverage falling within low/high 10% of the
coverage values across the remaining sites.

To test whether the E. coli population within the sample
is dominated by a single strain we then analyzed variant
allele frequencies at the remaining positions. Specifically, we
considered population as dominated if less than 0.05% of the
positions had a minor variant frequency exceeding 10%. All but
two samples (TP23 and TP27) satisfied this condition.

We further attempted to divide the remaining 19 samples into
groups dominated by the same strain. We define the similarity
between the pair of samples as a fraction of positions in which
the major variants matched (only the sites retained in the analysis
of both samples were considered). Single-linkage clustering with
a 99.9% threshold was used to obtain 7 groups of samples each
corresponding to a particular E. coli strain. A single sample has
been chosen within each group to attempt the reconstruction of
the strain genome via de novo assembly (see section 5.4).

5.4. Assembling Dominant E. coli Strains
From Metagenomics Data
metaSPAdes assembler v3.11.1 with default parameters has been
used to perform de novo assembly of 7 individual metagenomic

samples (12/28/2011; 4/3/2012; 8/7/2012; 7/14/2013; 3/23/2014;
8/25/2014; 9/28/2014).

Resulting scaffolds and their coverage depths (average 56-
mer coverage reported by metaSPAdes) were provided as input
to MaxBin2 (Wu et al., 2016). Each sample contained a bin
annotated as E. coli with an estimated completeness exceeding
97% (as reported by CheckM Parks et al., 2015), which was
used as a draft assembly for the downstream analysis. We have
also considered including smaller bins annotated as E. coli
by MaxBin2, but it has resulted in sharp increase of the
contamination level (as reported by CheckM). Contamination
and completeness scores of these assemblies are reported in
Table S5.

5.5. Phylogenetic Analysis and
Pan-Genome Construction of the Seven
Assemblies
We first annotated the assemblies using Prokka (Seemann,
2014) with default parameters. The output files from Prokka
were then used to perform phylogenetics analysis and pan-
genome reconstruction. To perform phylogenetic analysis using
PhyloPhlan (Segata et al., 2013), we utilized the protein FASTA
files ending in “.faa” from Prokka output, and constructed the
phylogenetic trees with 110 other E. coli strains with known
phylogroups to infer phylogroup of each assembly. To construct
pan-genome of the seven assemblies, we used Roary (Page et al.,
2015) that takes input files ending in “.gff” , which contain the
master annotation in GFF3 format produced by Prokka. We set
the parameter “minimum percentage identity for blastp” to 80.

5.6. Virulence Factor Analysis
We mapped genome assemblies of the dominant strains against
two sets of virulence factor references. The first set is the curated
virulence factors collected from the VFDB database (Chen et al.,
2005). The second set is 57 genes identified from literature that
are associated with AIEC strains, which are implicated in IBD.
These genes are mainly identified and collected according to the
review paper by Palmela et al. (2017). Note that the 57 genes
contain variants of genes that perform the same functions. We
used BLAST (Boratyn et al., 2012) to map the assemblies to the
references and considered genes to be present when the sequence
similarity is greater than 80%.

5.7. Metabolic Network Reconstruction
and Pan-Reactome Matrix Analysis
The draft metabolic reconstructions of E. coli strains are created
based on a previous multi-strain E. coli study (Monk et al.,
2013). We first created an E. coli pan model that combines all
the genes, reactions, and metabolite in the 55 E. coli models
reconstructed by Monk et al. (2013). To incorporate the most
recent update in E. coli reconstruction, we also added the content
of the latest K-12 model iML1515 (Monk et al., 2017) to the pan
model. Since all included E. coli strains span various pathotypes
and phylogenetic origins, the pan model created is considered a
comprehensive representation of metabolic functions in E. coli
strains, as well as a good starting point for metabolic network
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reconstruction. We then mapped the sequences of strains of
interest to all the genes in the pan model using BLAST
(McGinnis and Madden, 2004), and set a threshold of 80%
for both gene similarity and alignment length, in order for
a gene to be considered present in the strains. The missing
genes and their correlated reactions and metabolites in each
strain are removed from the pan model to create strain-specific
metabolic network reconstructions. The metabolic network was
reconstructed using the python package COBRApy (Ebrahim
et al., 2013).

To compare the metabolic networks of the 7 dominant strains
and 3 reference strains, we then created a binary matrix of size 10
by 3,077 that records the presence and absence of each reaction in
all 10 strains. To determine the similarity in metabolic functions
in 10 strains, we performed MCA analysis using python package
mca (mca, 2018) with Benzecri correction, with the parameter
of TOL set to 1e-9. To extract the important reactions in factor 1
and factor 2, we identified the top 50 reactions that has the highest
contribution to these two factors (Table S3).

5.8. Isolation of Bacterial Strains: CG1MAC
and 3_2_53FAA
In order to isolate CG1MAC from the stool sample, we diluted
the sample in saline and plated dilutions on McConkey agar to
select for E. coli isolates. All obtained isolates were picked, and
gDNA was extracted using a Qiagen stool mini kit. To verify the
isolates that identified with the predicted genotype of the target
strain, four genes were used, fyuA, vasD, xerD, gsp, to which
we designed PCR primers based on sequence data from the de
novo assembly of ST1. Comparative analysis showed that these
genes were present in the metagenomic dataset obtained from
the originating stool sample, and are more prevalent in IBD-
associated E. coli strains. There were 40 strains obtained and
screened by PCR in this way, and all were found to positively
identify with the ST1 assembly. Of the clones, one was selected
for further analysis, and named CG1MAC.

Strain 3_2_53FAA was isolated from an inflamed biopsy
sample from the descending colon of a 52 year old male left-
sided CD patient in a Calgary, Canada clinic in 2007. The patient
had an initial diagnosis of ulcerative colitis which was later
changed to Crohn’s colitis (ileal biopsies were normal). Strain
3_2_53FAA was placed into the Human Microbiome Project
reference genome collection as HM-38, and as such was genome
sequenced by the Broad Institute (GenBank assembly accession
number GCA_000157115.2).

Both CG1MAC and 3_2_53FAA were serotyped by The
National Microbiology Laboratory (Public Health Agency of
Canada) at Guelph, Ontario.

5.9. Bacterial Genome Sequence
We sequenced the genome of isolated E. coli strain CG1MAC.
First, we isolated and purified gDNA from pelleted cells using
the Macherey-Nagel NucleoSpin Tissue Kit (Catalog number
740952.50) following the manufacturer’s protocol, including
RNAse treatment. Second, we prepared a genomic DNA library
using a KAPA HyperPlus Library Preparation Kit (catalog
number KK8514) incorporating dual indices during the PCR

amplification step, and checking quality with TapeStation.
Eventually we pooled the library and sequenced using the
Illumina HIseq 4000 instrument with paired-end and 100/100
reads settings.

We used SPAdes (Bankevich et al., 2012) to assemble the high
quality reads with default parameters. The assembled genome has
been submitted to NCBI with accession number QLAC00000000.

5.10. Confirmation of CG1MAC Isolate
Identity With SNV Analysis
We used genome-wide single nucleotide variant (SNV)
frequencies analysis to verify that: (1) the population of E. coli
in the TP1 metagenomic sample is dominated by a single
subpopulation; (2) Dominant subpopulation is represented by
isolated CG1MAC strain.

Both TP1 and CG1MAC isolate reads were processed
by MIDAS pipeline (Nayfach et al., 2016) with parameter
–species_id Escherichia_coli_58110 to compute coverage and
SNV frequencies for metagenomic and isolate sequencing reads
against E. coli reference included in its database.

First we demonstrate that E. coli population in TP1 is likely
dominated by a single strain. To avoid various artifacts we
ignored positions with coverage falling within low/high 10% of
the coverage values across all covered positions of the reference.
Out of 2.85 million remaining sites only 181 had major allele
frequency (MAF) not exceeding 90% (in comparison, CG1MAC
sample had 96 of such positions), suggesting that a single
strain accounted for the lions share of E. coli population. Then
we compared the predicted genotypes of the CG1MAC isolate
and dominant E. coli strain in TP1. Only sites with MAF ≥

90% and coverage falling within 10 and 90th percentiles in
both samples were considered. While they cover 59% of the
reference genome (total 2.48Mb), no differences were observed
between the major alleles of the two samples, reliably indicating
that the CG1MAC isolate originates from the dominant
subpopulation.

5.11. Curation of the CG1MAC Model
First, we created the draft metabolic reconstruction of CG1MAC
following the procedure described in section 5.6. We then
performed additional curation to improve the accuracy of the
draft model. We annotated the genome of CG1MAC with
RAST (Aziz et al., 2008) and identified metabolic genes using
Enzyme Commision (EC) numbers. We then identified 413
metabolic genes not included in the pan model, and looked into
the reactions associated with them in Uniprot database (The
UniProt Consortium, 2017) regarding their annotation score
and experimental evidence. Among all identified reactions, we
only added six to the model based on the following filtering
criteria: (1) Have a complete EC number with four numbers;
(2) Not involved in DNA/RNA modification, as suggested
by the established GEM reconstruction protocol (Thiele and
Palsson, 2010); (3) experimentally proven to be present in
E. coli; (4) have a defined reaction with specificity; (5) do
not duplicate with existing reactions. The majority of the
identified reactions are already present in the model, as their
encoding genes are variants of existing genes in the model.
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We then added the new reactions to the CG1MAC model and
the 3 reference models whenever appropriate, to ensure the
growth simulation performed on these four models is accurate.
Finally, we performed the manual curation step for CG1MAC
model following the established protocol (Thiele and Palsson,
2010). Because the 55 existing models that the reconstruction
was based on were already manually curated, we focused on
curating newly added reaction. We removed reactions and
metabolites in the wrong compartment, added in subsystem
of new reactions, ensured the new reactions were mass/charge
balanced, and checked gene-protein-reaction (gpr) of newly-
added reactions.

5.12. Adhesion and Invasion Assays on
Caco-2 and THP-1 Cells
To determine bacterial invasion in epithelial cells and survival
in macrophages Caco-2, cells were maintained in DMEM +
10% FBS (Invitrogen). THP-1 cells were maintained in RPMI
+ 10% FBS (Invitrogen) in 5% CO2 humidified atmosphere at
37◦C. Differentiation of THP-1 cells was achieved by treatment
with 5ng/ml of PMA (Sigma-Aldrich) for 2 days. Cells were
allowed to recuperate in normal media for 1 day before assay was
performed.

Adhesion, invasion and survival assay were performed
as described in Negroni et al. (2012). Briefly, cell invasion
analyses were carried out in Caco-2 cells cultured in DMEM
without antibiotics, and maintained in 5% CO2 and 37◦C. Cell
monolayers were infected with E. coli strains at multiplicity of
infection (MOI) of 100, for 2h at 37◦C. After the infection
period, cells were washed with 3 x PBS and placed in
fresh medium supplemented with gentamicin (50 µg/ml),
incubated for 1 h at 37◦C, and lysed with 0.1% Triton-
X-100PBS. Lysate serial dilutions were plated on LB agar
(Invitrogen) and incubated at 37◦C overnight. Cell adhesion
analysis was also carried out in Caco-2 cells using similar
infection conditions as described for invasion assays, but
omitting the gentamicin treatment. Differentiated THP-1 cells
were infected with E. coli strains (MOI = 100) for 2h at 37◦C.
Cells were then washed in PBS and placed in fresh medium
supplemented with gentamicin (50µg/ml). Intracellular bacterial
content was determined at 1 and 24 h post infection at 37◦C
and the ratio between bacterial content at each period was
determined.

5.13. In silico Growth Simulations
Growth simulation for CG1MAC, K-12, LF82 and NC101
were performed using COBRApy. We simulated growth in M9
minimal media, with the lower bound of exchange reactions
for the following substrate set to -1000: Ca2+ , Cl− , CO2,
Co2+, Cu2+, Fe2+, Fe3+, H+, H2O, K

+, Mg2+, Mn2+, MoO4
2,

Na+, Ni2+, SeO4
2
−, SeO3

2
+, and Zn2+. Moreover, the default

carbon, nitrogen, sulfur and phosphate sources are glucose,
NH4

−, SO4
2, HPO4

2. These reactions have lower bounds set to
-1000. Another essential substrate is cob(I)alamin, for which the
exchange reaction has a lower bound of −0.01. We evaluated if
sole carbon, nitrogen, sulfur or phosphate substrate supported
growth. To do so, we set the lower bound of the exchange reaction

of the default substrate to 0, and added sole substrate by setting
the lower bound of exchange reaction to −10. Additionally, we
have simulated growth under aerobic condition by setting the
lower bound of oxygen uptake to−10.

5.14. Growth Experiments
The E. coli strains K12 and CG1MACwere grown inmodifiedM9
media with the main carbon, nitrogen, or sulfur source replaced.
For tests involving the replacement of the carbon source, glucose
was omitted from the M9 media and 0.022 moles/L of the new
carbon source was added in its place. For the nitrogen source
replacement tests, NH4Cl was replaced with 0.019 moles/L of
the new nitrogen source and for the sulfur source replacement
tests, HPO4 • 7 H2O was replaced with 0.001 moles/L of the
new sulfur source. For the media used in both the nitrogen and
sulfur replacement tests, the glucose concentration was increased
to 0.004 g/mL.

Freshly-cultured single colonies of each strain were selected
after overnight incubation on blood agar plates and individually
diluted in 5 mL of basal M9 media (no carbon, nitrogen or sulfur
source) and 100 µL of each diluted strain was used to inoculate 5
mL of modifiedM9medium containing the test carbon, nitrogen,
or sulfur source. Inoculated tubes were incubated for 24 h at
37◦C with orbital shaking at 200 rpm to pre-expose cells to each
metabolite. Following incubation, cells were pelleted at 5,000 rpm
for 10 min and resuspended in 200 µL PBS buffer, whereupon
the optical density at 555 nm was recorded. This value was used
to normalize the amount of each culture that was added to 5 mL
of the appropriate test medium in a glass test tube. Sample test
tubes were incubated for 48 h at 37◦C with orbital shaking at 200
rpm, and 100µL samples of these tubes were used to measure the
optical density at 555 nm which was recorded every 24 h using a
Wallac Victor 3 plate reader.

Metabolites used were: glucose (Fisher Scientific); melibiose,
phenylacetaldehyde, trans-3-Hydroxycinnamic acid, oxaloacetic
acid, dopamine hydrochloride, 2-Deoxy-D-ribose, iron (III)
citrate, taurine, threonine and sodium thiosulfate (from Sigma
Aldrich); cellobiose and D-arabinose (from Fluka); 3-(3-
hydroxy-phenyl) propionate, D-arabinose, choline chloride, D-
(+)-galactose, 3-hydroxyphenylacetic acid, tyramine and methyl-
4-hydroxyphenylacetate (from Alfa Aesar), and sucrose (from
Bioshop).

5.15. Ethics Statement
Patient that had the stool samples collected is consented under
two protocols: HRPP #141853 American Gut Project and HRPP
#150275 Evaluating the Human Microbiome. Both protocols
were approved by University of California San Diegos Human
Research Protection Program (HRPP).Written informed consent
on dissemination of the result and scientific publication are also
included in the approved protocols, and was obtained from the
patient.

The patient in which strain 3_2_53FAA was isolated was
recruited and consented through the Intestinal Inflammation
Tissue Bank at University of Calgary and this study was
approved through the Conjoint Health Research Ethics Board
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of the University of Calgary (Project Numbers; REB14-2429 and
REB14-2430).
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