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Since 2006, meningococcal serogroup C (MenC) conjugate (MCC) vaccines have been

supplied by the Brazilian government for HIV-infected children under 13 years old. For

measuring protection against MenC, the serum bactericidal antibody (SBA) assay is

the method of choice. The characterization of T follicular helper cells (TFH) cells has

been an area of intensive study because of their significance in multiple human diseases

and in vaccinology. The objective of this study was to characterize the phenotype of

peripheral TFH cells and B cells and how they associated with each other and with

SBA levels induced by vaccination as well as with serum cytokine levels of HIV-infected

and non-infected children and adolescents. We found that CD27−IgD−CD21−CD38+

(exhausted B cells) as well as short-lived plasmablasts (CD27+IgD−CD21−CD38+) are

increased in cART treated HIV patients and negatively associated with MCC vaccine

induced SBA levels. Baseline frequency of activated peripheral TFH cells was a negative

correlate for SBA response to MCC vaccine but positively correlated with circulating

plasmablast frequency. Baseline IL4-levels positively associated with SBA response

but showed a negative correlation with activated peripheral TFH cells frequency. The

increased frequency of activated peripheral TFH cells found in non-responders to the

vaccine implies that higher activation/differentiation of CD4T cells within the lymph node

is not necessarily associated with induction of vaccine responses.
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INTRODUCTION

Meningococcal disease is a public health problem worldwide
(1). In Brazil, case fatality rates of this disease are as high
as 18–20% of cases and serogroup C meningococcus (MenC)
accounts for more than 80% of reported cases (2). Since 2006,
meningococcal serogroup C conjugate (MCC) vaccines have
been supplied by the public sector for control of outbreaks
and for high-risk patients, including HIV-infected children
under 13 years old (3). Currently, the immunization schedule
consists of 3 injections of a MCC vaccine in the first year
of life and a booster dose in adolescents aged 12–13 years
(4).

We have previously shown that only 30% of Brazilian HIV-
infected children and adolescents seroconverted (bactericidal
antibody titers) after one dose of MCC vaccine (5). A second
dose of the vaccine induced seroconversion in about 70% of HIV-
infected individuals (6). Still 30% remained without protective
antibody response after two doses of vaccine. Poor antibody
response of vaccinees was associated with CD4T cell activation
identified through expression of CD38, HLA-DR and CCR5 (7).

Recent studies have been focused on the characterization of
circulating CD4T cells that represent counterparts of lymph node
follicular helper CD4T cells (TFH) (8, 9). Peripheral TFH cells
are characterized by high expression of the CXC chemokine
receptor 5 (CXCR5) while the co-expression of other surface
receptors like CCR6 and CXCR3 further defines peripheral TFH
subsets with different capacity for at least in vitro B cell help
(8, 9). In studies on seasonal influenza vaccines, the frequency
of ICOS+CXCR3+CXCR5+ peripheral TFH cells was shown
to increase only transiently after vaccination (peak at day 7)
(10). This kinetics seems synchronized with the emergence
of influenza-specific plasmablasts and plasma cells in blood.
In contrast, a study in aging HIV-infected and uninfected
women, activated (expression of HLA-DR and CD38) CD4 and
peripheral TFH cells was indicative of diminished influenza
vaccine-induced antibody response, mediated through TNFα
production and consequently impairment of peripheral TFH-
induced IL-21 secretion (11, 12). Over the past decade it has
become increasingly evident that many chronic human infectious
diseases to which immunity is not readily established, including
AIDS, malaria, HCV and TB, are associated with fundamental
alterations in the composition and functionality of B cells. A
common feature of these diseases appears to be a large expansion
of exhausted B cells, which are qualitatively inferior in attaining
immunological control of viremia and antibody production (13,
14).

A comprehensive understanding of the biology and dynamics
of peripheral TFH cells and circulating B cells may be important
for the establishment of cellular determinants of vaccine-
induced antibody response, which may have relevance for
vaccine design or a more rational use of routine vaccines in
immunocompromised individuals. Here, we characterized the
phenotype of circulating B cells and peripheral TFH cells and how
they associated with each other and with the protective antibody
response induced by vaccination (MCC) of HIV-infected and
non-infected children and adolescents. Also shown are the

TABLE 1 | Baseline characteristics of HIV+ patients classified as responders

(≥4-fold increase in bactericidal antibody titers) or non-responders to MenC

vaccination.

Characteristic Responders* Non-responders

(n = 10) (n = 7)

AGE, YEARS

Median (Range) 13.9 (6.4–18.4) 12.3 (8.9–16.8)

GENDER

Male (%) 5 (50) 5 (71.4)

Female (%) 5 (50) 2 (28.6)

Plasma HIV RNA, copies/ml** 229.5 (<50–2768) 236 (<50–587)

Nadir CD4 count, cells/µl, blood** 325.5 (128–807) 374 (193–1441)

CD4 count, cells/µl, blood** 737 (463–953) 689 (582–1730)

CD4 percentage** 25.5 (15–33) 32 (20–37)

CD8 percentage** 46 (43–60) 43 (34–53)

Length of cART (years)** 6.8 (4.5–11.2) 6.2 (5.5–10.7)

Age of initiation of cART (years)** 4.7 (0.9–8.7) 3.3 (1.6–9.3)

% of CDC Clinical Category C 3 (30%) 4 (57%)

Mean (log2) of SBA titer to MenC after 2

doses of MCC vaccine

7.0 0.4

*Only one individual was not in cART.

**Median (IQR).

associations of baseline blood cytokine concentrations with the
frequency of peripheral TFH cells and antibody response.

MATERIALS AND METHODS

Cohorts
We conducted a prospective cohort study at the Instituto de
Puericultura e Pediatria Martagão Gesteira, Universidade Federal
do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, Brazil, to
investigate the secoronversion rate after MCC vaccination in
HIV-vertically infected 2-18 year-old children. Details of the
study were previously described (5). Baseline characteristics of
HIV+ patients are described in Table 1.

Vaccination and Specimen Collection
Following informed consent, the cohort received one
intramuscular injections of MCC vaccine (Novartis; C
Polysaccharide/CRM197) at the recommended dose (10
µg/0.5ml). One year later, HIV-vertically infected children
received a booster dose at the recommended dose described
above. HIV uninfected (HIV−) controls did not receive the
booster dose, as per recommendation at the time of this study,
in healthy children and youth, aged 1–25 years, a single MenC
dose should be given (15). For HIV+ group, blood samples were
collected before vaccination (visit 1), 1–2 months after one dose
(visit 2), before booster (10–12 months after first dose, visit 3)
and 1–2 months after boosting (visit 4). HIV− group had blood
samples collected at visit 1 and visit 2. Heparin-treated tubes or
in the absence of anti-coagulant were used and processed within
3 h after the blood draw. Peripheral blood mononuclear cells
(PBMC) were separated by density-gradient centrifugation over
Histopaque R© (Sigma, St Louis, USA) and stored in RPMI/20%
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fetal bovine serum/10% DMSO in liquid nitrogen until the day
of the assays. Serum samples were stored at−20◦C.

For this study, we selected 17 HIV+ children (median age
of 12.9 years) and 12 HIV− children (median age of 9.2 years).
Patients were classified as responders (Rs) to the vaccine if they
showed at least 4-fold increase in serum bactericidal antibody
levels after vaccination. For HIV+ group and HIV− group 10
(62%) and 6 (38%) individuals were classified as Rs, respectively.

Bactericidal Assay
Serum bactericidal antibody (SBA) titers were measured as
previously described (5, 7), using human complement source.

Polychromatic Flow Cytometry
Antibodies
Flow cytometry was performed using the following directly
conjugated antibodies (clones): (1) BD Biosciences: CD3 H7APC
(SK7 clone), CD45RA PE- Cy7 (L48), (2) BioLegend: CD3 BV650
(OKT3), IgM BV570 (MHM-88), PD-1 BV711 (EH12.2H7),
CCR6 BV785 (G034E3), CD27 Alexa Fluor 594 (IA4CD27),
CD27 BV605 (O323), CCR7 BV605 (G043H7), CCR7 APC
(G043H7), CD8 BV650 (RPA-T8), ICOS Pac Blue (C398.4A),
CD38 BV785 (HIT2); CXCR5 Alexa Fluor 488 (J252D4), CXCR3
PE (G025H7) (3) Invitrogen: CD4 PE-Cy5.5 (S3.5) and Aqua
LIVE/DEAD R© amine viability dye; (4) eBioscience: CXCR5 PE-
CY7 (MU5UBEE); (5) Southern Biotech: IgD-PE; (6) Beckman
Coulter: CD19 ECD (J3-119). The IgG (Alexa Fluor 680) and
CD21 (PE-CY5.5) were conjugated in-house.

Phenotypic Analysis
PBMCs were resuspended in RPMI 1640 (Invitrogen)
supplemented with 10% fetal bovine serum, 2mM L-glutamine,
100 U/mL penicillin and 100 ug /mL streptomycin (Invitrogen).
1 – 2 × 106 PBMCs were incubated with Aqua viability dye and
surface stained with titrated amounts of antibodies to panel (1):
CD3, CD4, CD8, CD27, CD45RA, CCR7, PD-1, CCR6, CXCR3,
CXCR5, and ICOS or (2) CD3, CD19, CD21, CD27, CD38, IgD,
IgG, IgM, CXCR5, and CCR7. Cells were then washed in RPMI
and fixed with 1% paraformaldehyde. Events were collected on a
modified LSRII flow cytometer (BD Immunocytometry Systems).
Electronic compensation was performed with antibody capture
beads (BD Biosciences) stained separately with antibodies used
in the test samples. Data were analyzed using FlowJo Version 9.6
(TreeStar, Ashland, OR).

Measurement of Serum Cytokines
Serum samples collected before vaccination (V1) were used
to measure soluble CD14 (sCD14), using standard ELISA
assays according to manufacturer’s instructions (Quantikine R©

ELISA, R & D Systems, Minneapolis, MN, USA) and for the
following cytokines: IL-4, IL-10, IL-21, TNF-α, and IFN-γ using
the LuminexMap platform multiplex assay (EMD Millipore,
Billerica, MA, USA). For CXCL13 chemokine we used the
ProcartaPlex Human BLC) Simplex kit (eBioscience, Waltham,
MA USA). The Luminex Platform was from Department of
Periodontics, UERJ, Rio de Janeiro, Brazil.

Serum IgG, IgM, and IgA Measurements
Total immunoglobulin concentrations of serum samples
collected before vaccination (V1) were done by turbidimetry
(Architect c4000, Abbott, Illinois, U.S.A.) according to
manufacturer’s instructions (BioSystems, Barcelona, Spain)
at Immunology Laboratory, Pedro Ernesto University
Hospital-UERJ, Rio de Janeiro, Brazil.

Statistical Analysis
Flow cytometry data were analyzed using FlowJo software,
version 7.6.4 (Tree StarInc., Ashland, OR). The levels of
significance of the differences between groups were examined
by, either the Mann-Whitney test (unpaired samples) or the
Wilcoxon matched-pair test (paired samples), as nonparametric
data were obtained. The correlation between different
measurements of immune response was analyzed using
Spearman rank test, after graph analyses. These analyses were
performed with the GraphPad-Prism software, version 7
(GraphPad Software, Inc., USA).

RESULTS

Circulating CD27−IgD−CD21−CD38+

(Tissue-Like Exhausted B Cells) Are
Increased in HIV+ Non-responders and
Negatively Correlates With SBA
We have previously reported a significant negative correlation
between the vaccine-induced bactericidal antibody responses
and the frequency of circulating activated CD4T cells in a
Brazilian HIV-infected cohort aged 2–18 years (7). Here, we
sought to extend these studies by analyzing bulk circulating
CD4 and B cell population and its association with vaccine
antibody response. The immunization schedule and time of
blood collection according to patient visits at the pediatric
clinic are shown in Figure 1A. Demographic, immunological
and virological parameters for HIV-infected participants are
shown in Table 1. No significant differences between HIV+ non-
responders (NRs) and responders (Rs) were found when these
parameters were analyzed, including time and length of cART
(combination antiretroviral therapy) (Table 1). The median age
of HIV− Rs and NRs was 9.2 and 10.4 years, respectively. For
HIV− cohort, 55.5 and 71% of Rs and NRs, respectively, were
female.

Circulating CD3−CD19+ B cell subsets, identified by the
expression of surface markers, were analyzed as shown in
Supplementary Data (Figure S1). First, the relative frequency
of subsets defined based on the expression of CD27 and IgD
molecules were determined. For HIV+ group, a significant
difference (p = 0.032) was found only for the baseline frequency
of CD27−IgD− B cell subset between R and NR groups
(Figure 1B and Figures S2A–C). No differences, however, were
observed when the frequencies of B cell subsets were analyzed
in the HIV− group (Figure 1C and Figure S2D). Interestingly, a
significant negative correlation (r = −0.55, p = 0.044) between
the baseline (V1) frequency of CD27−IgD− B cells and SBA
measured after one dose of vaccine (V2) was found (Figure 1D).
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FIGURE 1 | Baseline frequency of memory B cell subsets predict the response to MenC vaccination in HIV-infected young individuals. (A) Immunization schedule and

blood sample collection of HIV-infected patients. HIV-uninfected received only one vaccine injection at visit 1 and had blood samples collected at visits 1 and 2 (V1 and

V2). (B,C) Pooled data showing the relative frequencies of pre-vaccination (V1) B-cell populations, judged by the expression of CD27 and IgD, in (B) HIV+ responders

(black closed circles) and non-responders (black open circles) and in (C) HIV− responders (red closed squares) and non-responders (red open squares). (D) Serum

bactericidal antibody (SBA) levels of HIV+ group post-one dose of vaccine (V2) inversely correlate with baseline frequencies of CD27− IgD− B cells subset. (E)

Exhausted B cells are increased in HIV+ non-responders compared with responders mainly at baseline and at V2. (F,G) SBA levels of HIV+ group after the first (V2)

and the second dose of vaccine (V4) inversely correlate with frequencies of exhausted B cells, respectively. Lines represent the median with range values. P-values

were calculated using Mann-Whitney test. Correlations were evaluated using a non-parametric Spearman rank correlation coefficient test. *p < 0.05, **p ≤ 0.01.

A similar picture was seen when we considered SBA after two
doses (V4) of vaccine (r = −0.53, p = 0.054, data not shown).
Contrary to HIV-infected group, no correlation between baseline
CD27−IgD− B cells and SBAwas found for theHIV− group (data
not shown).

Decreased expression of CD21 and increased expression
of CD38 is associated with activation and terminal B cell
differentiation in HIV infection (16, 17). Therefore, we sought
to analyze the expression of CD21 and CD38 on CD27−IgD−

and CD27+IgD− (switched memory) B cell populations. A
higher baseline (p= 0.005) and V2 (p = 0.001) frequency
of CD27−IgD−CD21−CD38+ B cells (hereafter described as
exhausted B cells), in HIV+ NRs compared to Rs was found
(Figure 1E). Significant inverse correlations between baseline
exhausted B cells and SBA after one (V2) and two (V4)
doses of vaccine were also found in the HIV-infected group
(Figures 1F,G). For HIV-uninfected cohort, we observed a trend
for higher baseline frequencies of exhausted B cells at V1 and
V2 (Figure S2E). Regarding the switched B cells (CD27+IgD−),
HIV+ NRs showed higher frequency of CD38+CD21+ cells than
HIV+ Rs at all time points studied but V3 (Figures S3A–D).
A trend for high levels of CD27+IgD−CD21−CD38+ B cells
(short-lived plasmablasts, hereafter described as plasmablasts)
was also seen in NRs, especially at V2 (Figure S3B). A
significant negative correlation was found between the baseline

frequency of CD27+IgD−CD21+CD38+ B cells and SBA at
V2 and V4 (Figures S3E,F) as well as between the frequency
of that B cell phenotype at V3 and SBA at V4 (Figure S3G).
A trend (p = 0.073) for higher frequency of plasmablasts
in NRs compared to Rs was found in HIV− individuals
(Figure S3H).

For both HIV+ and HIV− cohorts, we did not detect
significant differences in the frequency of IgG+ or IgM+

switched B cells (data not shown) at any time point studied.
Furthermore, no differences were found when the expression
of CXCR5 and CCR7 on CD27−IgD− and CD27+IgD−

B cells, between Rs and NRs, from both cohorts were
analyzed (data not shown). Our data indicate that exhausted
B cells and CD27+IgD−CD21+CD38+ B cells as well as
plasmablasts are increased during treated HIV infection and
negatively associated with the MCC vaccine induced antibody
response.

Baseline Frequency of Activated Peripheral
TFH Cells Inversely Correlates With
Vaccine Induced Antibodies
Recently, several studies have been focused on the analysis
of circulating CD4 subsets with increased capacity for in
vitro B cell help as surrogates of the development of TFH
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cells in the secondary lymphoid organs (8, 18, 19). We
investigated the dynamics of peripheral TFH subsets based
on the expression of CXCR5, CCR6 and CXCR3 (9, 10), the
gating scheme is shown in Figure S4. A significantly higher
frequency of CXCR3−CCR6− (median values: 22.1–28.9%
from V1 to V4) compared to CXCR3−CCR6+ (median
values: 0.68–1.41%) peripheral TFH cells was found in the
HIV-infected group at all visit times (Figures 2A,B). No
significant differences were found between Rs and NRs,
when these populations were analyzed in all samples tested
(Figures 2A,B). Similar data were observed for the HIV-
non-infected group (Figures S5A,B). The expression of
CCR7, PD-1 and ICOS receptors (CCR7−PD1++ICOS+ and
CCR7+PD1−/+ICOS−subsets) was used as a surrogate for
the activation of these cells. We saw higher frequency of
activated (CCR7−PD1++ICOS+) CXCR3−CCR6− cells for
NRs compared to Rs for all time points reaching statistical
significance at V2, V3, and V4 (V1 = 0.053) (Figure 2C). In
contrast to activated peripheral TFH, similar frequencies of
“resting” (CCR7+PD1−/+ICOS−) CXCR3−CCR6− peripheral
TFH were found for both group of vaccinees (Figure 2D). We
did not observe a consistent pattern for activated or resting
CXCR3−CCR6+ peripheral TFH cells (data not shown).
A similar trend, although no significant, was found when
CXCR3−CCR6− activated peripheral TFH cells from HIV-
non-infected individuals were analyzed (Figures S5C,D).
Next, the association between baseline CXCR3−CCR6−

activated peripheral TFH cells and the SBA responses was
analyzed. The baseline frequency of activated peripheral TFH
cells negatively correlated with SBA at V2 (r = −0.79, p =

0.0014) and V4 (r = −0.66, p = 0.0124) (Figures 2E,F). The
same pattern of association was registered for correlation
analysis between the frequency of activated peripheral TFH
cells at V2 and V3 and SBA at V4 (data not shown). A
similar trend, although not significant, was found when the
baseline frequency of activated peripheral TFH cells and
SBA in HIV-non-infected individuals was analyzed (data not
shown).

Next, we asked whether there is any association between B
cell subsets and peripheral TFH cells. We found a significant
positive correlation between the baseline frequency of activated
peripheral TFH cells and the frequency of plasmablasts at V2 (r
= 0.72, p = 0.0086) (Figure 3A) while CXCR3−CCR6− resting
peripheral TFH cells at V2 negatively correlated with short-lived
plasmablasts at V2 (r = −0.66, p = 0.0068) (Figure 3B). No
significant correlations were found when similar cell populations
from HIV-non-infected individuals were analyzed (data not
shown). Regarding the CXCR3−CCR6+ peripheral TFH cells
measured in HIV+ cohort, we found a significant inverse
correlation between both activated (r = −0.756, p = 0.041) and
resting (r = −0.829, p = 0.0167) phenotypes measured before
the second dose of vaccine (V3) and SBA levels post-second
vaccination (V4) (data not shown). Taken together, our data
indicate that the baseline frequency of activated CXCR3−CCR6−

peripheral TFH cells is a negative correlate for the bactericidal
antibody response to MCC vaccine in cART treated young
individuals.

Baseline Serum Levels of IL-4 Correlate
With Vaccine-Elicited Protective Antibody
Titers
As expected (20), significantly higher baseline (V1) serum sCD14
(p = 0.0087) were found in HIV-infected compared to non-
infected individuals (Figure 4A). TNF-α levels were similar for
HIV-infected or non-infected, for both, Rs and NRs (data not
shown). INF-γ was detected in sera of a few individuals (data not
shown) while no IL-10 or IL-21 was detected in any serum sample
of our cohort. Total IgG levels (V1) were found significantly
higher in HIV-infected compared to non-infected individuals (p
= 0.0339) (Figure 4B). However, no difference in baseline IgG
or sCD14 concentration was found between HIV+ Rs and NRs
(data not shown). Furthermore, no difference was found in the
levels of blood (V1) IgM or IgA between the two cohorts (data
not shown).

Next, the circulating levels of IL-4 and CXCL-13, cytokines
involved in the follicular B cell response development (8, 9,
18) were analyzed. IL-4 levels were significantly higher in
Rs compared to NRs selectively in the HIV-infected group
(p = 0.006) (Figure 4C, Figure S6C shows IL-4 levels for
HIV− cohort). We found a significant correlation between
baseline (V1) serum levels of IL-4 and vaccine-induced antibody
titers at V2 (r = 0.62, p = 0.0098) (Figure 4D) and V4
(r = 0.52, p = 0.033, Figure S6B). In contrast, a significant
negative association was found between baseline IL-4 levels
and the frequency of activated peripheral TFH cells after the
second immunization (V4) (Figure 4E). Regarding CXCL-13, no
significant differences were found between Rs and NRs for both
cohorts (Figures S6A,D). Although not significant, HIV-non-
infected vaccinees showed lower levels of CXCL-13 compared
to HIV-infected ones (Figures S6A,D). There was no correlation
between baseline circulating levels of IgG and CXCL-13 in HIV+

subjects. However, a positive association was found between
baseline levels of TNF-α and CXCL-13 for HIV+ (r = 0.51, p =

0.052) and HIV− cohort (r = 0.62, p = 0.035) (data not shown).
Therefore, IL-4 and CXCL-13 blood levels are differentially
correlated with the development of the vaccine-induced B cell
responses in cART treated young individuals.

DISCUSSION

MCC vaccine has been shown to be safe and immunogenic
in many high-risk populations, with results depending on the
degree of immunosuppression and/or immune hyperactivation
(7, 21). Suboptimal immune responses to immunization with
MCC vaccine results in poor serum bactericidal antibody
response that correlates with inadequate protection (22).
Different of polysaccharide vaccines, conjugate vaccines induce
a T-cell dependent antibody response with predominance of
IgG antibodies (21, 23). We took advantage of a cohort
of HIV+ children/adolescents, with or without response to
MCC vaccine (5–7), to further investigate possible associations
between relevant circulating immune cell populations and
vaccine antibody response. Our previous work has revealed that
activation of circulating CD4T cell, judged by the expression of
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FIGURE 2 | Baseline frequency of activated peripheral TFH cells inversely correlates with vaccine antibody response in HIV-infected individuals. (A) Frequency of

CXCR3−CCR6− peripheral TFH cells in HIV+ responders (closed circles) and non-responders (open circles) pre- (V1 and V3) and post-vaccination (V2 and V4). (B)

Frequency of CXCR3−CCR6+ peripheral TFH cells. (C) Frequency of activated (CCR7− PD1++ ICOS+) CXCR3−CCR6− peripheral TFH cells. (D) Frequency of

resting (CCR7+PD1−/+ ICOS−) CXCR3−CCR6− peripheral TFH cells. (E,F) The frequency of baseline (V1) activated CXCR3−CCR6− peripheral TFH cells negatively

correlated with SBA induced by one vaccine injection (V2) (r = −0.79, P = 0.0014) and with SBA induced by two vaccine injections (V4) (r = −0.66, P = 0.0124).

Lines represent the median values. P-values were calculated using Mann-Whitney test. Correlations were evaluated using a non-parametric Spearman rank correlation

coefficient test. *p < 0.05, **p ≤ 0.01.

FIGURE 3 | Baseline activated peripheral CXCR3−CCR6− TFH cells correlate with plasmablasts after vaccination of HIV+ group. (A) A positive association between

activated peripheral TFH cells at V1 and plasmablasts (CD27+ IgD−CD21−CD38+ B cells) at V2. (B) The frequency of resting peripheral TFH cells, detected after the

first vaccination (V2), negatively correlated (r = −0.66, P = 0.0068) with plasmablasts.

CD38, HLA-DR, and CCR5, was negatively associated with MCC
induced responses in this cohort (7).

We described here a significant higher baseline frequency
of CD27−IgD− B cells in HIV+ NRs compared to HIV+

Rs, with baseline CD27−IgD− B cell frequency negatively
correlating with vaccine antibody response. Furthermore, we
found a negative correlation between the baseline frequency
of exhausted B cells and vaccine antibody response for

HIV+ cohort. Noteworthy, the frequency of exhausted B cell
subset was consistently higher in NRs compared to Rs. In
contrast, HIV-uninfected group had no significant differences
in the frequency of exhausted B cell subset before or after
vaccination. Therefore, the generalized activation of B cells,
evident by the elevated blood total IgG level, accompanied
by a skewed differentiation to less functional tissue-liked
exhausted B cells and short-lived plasmablasts is associated
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FIGURE 4 | Baseline serum levels of IL-4 correlate with SBA response in HIV+ vaccinees. (A,B) Pooled data showing soluble CD14 and IgG levels in HIV+ (black

circles) and HIV− (red squares) vaccinees, respectively. (C) Serum IL-4 levels of HIV+ responders (closed circles) are significantly higher than of non-responders (open

circles). (D) Baseline HIV+ blood IL-4 levels positively correlate with SBA at V2. (E) Baseline HIV+ blood IL-4 levels negatively correlated with activated peripheral

CXCR3−CCR6− TFH cells at V4. Lines represent the median values. P-values were calculated using Mann-Whitney test. Correlations were evaluated using a

non-parametric Spearman rank correlation coefficient test. *p < 0.05, **p ≤ 0.01.

with non-responsiveness to MCC vaccine in cART HIV+

children.
Several recent reports have been focused on the analysis of

circulating counterparts of follicular TFH (peripheral TFH) (8,
10–12). We found a consistently higher frequency of activated
(CCR7−PD1++ICOS+ CXCR3−CCR6− TCM) peripheral TFH
cells in HIV infected NRs compared to Rs. Furthermore,
this population was positively correlated with tissue like
exhausted B cells but showed a negative correlation with SBA.
CXCR3−CCR6− TFH cells express a Th2-like rather than a
Th1- or Th17-like functional profile (9). However, T follicular
regulatory cells could also express the same surface markers as
described here for TFH cells (24). Due to limited cell availability,
we were not able to perform functional assays to address the
specific functional profile of the populations under investigation
and elucidate possible mechanisms contributing to the negative
effect of activated peripheral TFH cells on B cell response.
However, we have observed a significant negative correlation
between CD4 TCM expressing several activation markers (PD1,
TIGIT, HLA-DR, and CD38) with SBA in our HIV+ cohort
(unpublished data). Therefore, it is possible that peripheral TFH
cells express a “hyperactive” profile in NRs associated with
impaired cell-cell interactions and possibly diminished help for
antibody responses (19, 25, 26). In line with this, we found

significantly higher levels of sCD14 in the HIV+ compared to
HIV− group, indicating that despite no significant differences in
duration or the age of initiation of cART, there was still a higher
immune activation in HIV+ individuals. Although the levels of
circulating CXCL-13, a chemokine that has been described as
an indicator of germinal center reactivity (27), did not differ
between Rs and NRs, we found that IL-4, an important cytokine
for germinal center B cell development (28, 29), was significantly
upregulated in Rs compared to NRs. Furthermore, we showed
here a positive correlation between baseline IL-4 levels and
vaccine antibody response while it was negatively associated with
the frequency of peripheral activated TFH cells. Despite their role
in germinal center response, this profile could reflect the different
sources, in addition to TFH cells (29, 30), for these two cytokines.

Expression of CXCR5 has been widely used for the
identification of peripheral TFH cells (8, 9). This CD4T cell
pool, however, is highly heterogeneous concerning the profile
of cytokine production and the capacity for in vitro B cell help
(8, 18). Whether peripheral TFH cells originate from lymph
node germinal center TFH cells or represent a transient pre-
TFH or a follicular, non-germinal center TFH population is
not well understood (18, 19, 25). Their increased frequency
found in NRs implies that higher activation/differentiation of
CD4T cells within the lymph node is not necessarily associated
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with induction of vaccine antibody response. Particularly in
chronically HIV-infected patients, where other factors including
lymph node structure damage, follicular hyperplasia and lysis
and loss of follicular dendritic cell network (31, 32) could play
a major role for the development of vaccine-induced response.
Furthermore, cART results in low/undetectable viremia and
lower immune activation, although not to levels found in HIV−

individuals, in blood (33) and lymph node level (34).
Given the limited, if any, access to lymph nodes from vaccine

clinical trials the identification of biomarkers or blood signatures
for monitoring vaccine efficacy is of great importance. An
association between vaccine responses and peripheral TFH cells
(12, 35–37) or CXCL-13 (27, 38, 39), a surrogate of germinal
center reactivity (27) has been previously shown. We have
recently reported a negative correlation between baseline levels
of circulating CXCL-13 and hepatitis B vaccine responses in
treated HIV infected adults (39). However, our current data show
that this is not the case for cART infected young individuals
receiving MCC vaccine. Whether this is related to the nature
of the immunogen or other biological factors like aging is
not known. Further studies are needed to confirm whether
the simultaneous analysis of circulating CXCL-13, IL-4 and
activated peripheral TFH cells could be used as a “biomarker”
for monitoring vaccine efficiency. Furthermore, whether the
capacity for response to specific immunogens reflects the overall
quality of host immune responses to HIV (39) is not clear. A
direct comparison between Th1, Th2, and lymph node TFH
specific responses and immunogen-specific B cell responses
would provide valuable information regarding this. To this end,
the use of non-human primatemodels, where the parallel analysis
of circulating and lymph node dynamics is feasible, is of great
importance.
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