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Lesion analyses are critical for drawing insights about stroke injury and recovery, and
their importance is underscored by growing efforts to collect and combine stroke
neuroimaging data across research sites. However, while there are numerous processing
pipelines for neuroimaging data in general, few can be smoothly applied to stroke data
due to complications analyzing the lesioned region. As researchers often use their own
tools or manual methods for stroke MRI analysis, this could lead to greater errors and
difficulty replicating findings over time and across sites. Rigorous analysis protocols
and quality control pipelines are thus urgently needed for stroke neuroimaging. To this
end, we created the Pipeline for Analyzing Lesions after Stroke (PALS; DOI: https://
doi.org/10.5281/zenodo.1266980), a scalable and user-friendly toolbox to facilitate
and ensure quality in stroke research specifically using T1-weighted MRIs. The PALS
toolbox offers four modules integrated into a single pipeline, including (1) reorientation
to radiological convention, (2) lesion correction for healthy white matter voxels, (3)
lesion load calculation, and (4) visual quality control. In the present paper, we discuss
each module and provide validation and example cases of our toolbox using multi-
site data. Importantly, we also show that lesion correction with PALS significantly
improves similarity between manual lesion segmentations by different tracers (z = 3.43,
p = 0.0018). PALS can be found online at https://github.com/npnl/PALS. Future work
will expand the PALS capabilities to include multimodal stroke imaging. We hope PALS
will be a useful tool for the stroke neuroimaging community and foster new clinical
insights.
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INTRODUCTION

Characterizing the relationship between brain structure and function is an important step in
identifying and targeting biomarkers of recovery after stroke (Dimyan and Cohen, 2011). As
stroke is heterogeneous in both its anatomical and clinical presentation, it is often difficult to
draw generalizable inferences with typical sample sizes. Moreover, many stroke research groups
have traditionally operated in silos (Hachinski et al., 2010). This poses a problem for scientific
reproducibility, as different research groups have various in-house analytic processes and pipelines
that are often not transparent (Gorgolewski and Poldrack, 2016). In recent years, big data
approaches have emerged and been embraced in the neuroimaging field (Milham, 2012). This
offers new hope for discovery of otherwise difficult-to-detect neural patterns that hold promise for
promoting advanced therapeutic techniques (Feldmann and Liebeskind, 2014; Huang et al., 2016).
While promising in their potential to overcome the problem of heterogeneity in stroke research, big
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data approaches to research come with their own challenges,
especially with respect to combining data across sites, and
managing and analyzing such large quantities of data (Van Horn
and Toga, 2014). Particularly for the analysis of data from
persons with stroke, there is a pressing need for the development
of reproducible image processing and analysis pipelines that
properly incorporate the lesion to promote collaborative efforts
in the analysis of large stroke datasets.

The semiautomatic brain region extraction (SABRE) pipeline
is one such example of an image processing pipeline for lesion
analysis that has been made open-source (Dade et al., 2004). The
SABRE pipeline integrates currently existing software, such as
FSL and ANTs to allow for volumetric profile of regionalized
tissue and lesion classes, while emphasizing quality control
(Avants et al., 2009; Jenkinson et al., 2012). However, the SABRE
pipeline was not specifically developed for stroke MRIs, and
requires multi-modal inputs, which are not commonly available
for research on chronic stroke.

To this end, we created the Pipeline for Analyzing Lesions after
Stroke (PALS; DOI: https://doi.org/10.5281/zenodo.1266980), an
open-source analysis pipeline with a graphical user interface
(GUI) to facilitate reproducible analyses across stroke research
sites using a single modality—a T1-weighted MRI, which is
the most commonly available for chronic stroke research. Our
goal is to improve the standardization and analysis of stroke
lesions and to encourage collaboration across stroke research
groups by creating a flexible, scalable, user-friendly toolbox for
researchers. PALS has four modules integrated into a single
analysis pipeline (Figure 1, bolded text): (1) reorientation of
image files to the standard radiological convention, (2) lesion
correction for healthy white matter, which removes voxels in the
lesion mask that are within a normal intensity range of white
matter, (3) lesion load calculation, which calculates the number
of voxels that are overlapping between the lesion and a specified
region of interest, and (4), visual quality control (QC), which
creates HTML pages with screenshots of lesion segmentations
and intermediary outputs to promote visual inspection of data
at each analysis step. Notably, researchers should use a method
of their choice to generate the initial lesion masks for their
dataset before using PALS. We provide a comprehensive review
of all existing automated lesion segmentation methods (Ito, Kim,
and Liew, under review), and note that the gold standard is
still manual lesion segmentation. However, once lesion masks
are generated, whether through automated or manual methods,
the PALS pipeline will facilitate quality control and additional
analyses using the lesion masks.

The rationale for each step was informed by both existing
literature as well as current attempts to combine stroke data
collected across multiple sites (Liew et al., 2018). In this report,
we will first review the rationale for each of these features, then
discuss the implementation of the features, and finally present
results from using the toolbox on multi-site data. The compiled
toolbox, source code, and instructions can be freely accessed at
our Github repository1.

1https://github.com/npnl/PALS

MAIN FEATURES: RATIONALE

PALS features a GUI-based navigation system for ease of
use (Figure 2). Any combinations of the four modules
(reorientation to radiological convention, lesion correction,
lesion load calculation, and visual quality control) can be selected
and the entire pipeline will run automatically.

Reorientation to Radiological Convention
Inconsistent orientation of images within a dataset is a
common and serious issue in image processing. Neurological
and radiological orientations are both widely used conventions
for storing image information (Brett et al., 2017). Whereas the
neurological convention stores a patient’s left side on the left
part of the image, the radiological convention stores left side
information on the right side of the image. The convention in
which image information is stored can vary between scanners
or even acquisition parameters, such that some images are
stored in the radiological convention, and others are stored
in the neurological convention. Moreover, commonly used
neuroimaging processing tools display and store information in
different ways, which can lead to orientation inconsistencies.
For example, FSL and FSLeyes by default displays images in
radiological convention (Jenkinson et al., 2012), the SPM display
utility by default displays images in neurological convention
(Penny et al., 2011), and MRIcron allows users to switch between
the orientations (Rorden and Brett, 2000). If image labels are
inconsistent or incorrect, analyses may be negatively impacted
since one may be incorrectly flipping the two sides of the
brain (Duff, 2015). This is particularly problematic for stroke
neuroimaging research, as one may mislabel the hemisphere
of the stroke lesion. As such, image orientation needs to be
carefully considered especially for large collaborative efforts,
when data has been collected from multiple sites. We thus built
a simple, optional module to convert all image inputs to the
radiological convention prior to performing any subsequent step
to harmonize data across sites. We recommend use of this module
with all datasets.

Lesion Correction for Healthy White
Matter Voxels
While many automated approaches have been developed for
lesion segmentation, manual segmentation remains the gold
standard for tissue labeling and continues to be the benchmark
for automated approaches (Fiez et al., 2000; Maier et al., 2017).
Yet, depending on the size and location of the lesion, manual
lesion segmentation could be a highly time- and labor-intensive
process. This becomes particularly challenging for large, multi-
site collaborative efforts, as having larger datasets places an
increasing demand on skilled manual labor. As such, multiple
individuals are often trained to perform lesion segmentations to
distribute the heavy labor demands. However, the wide variability
in lesion characteristics as well as inter-subjective differences
in the way that lesions are defined may introduce potential
inconsistencies in the manual lesion segmentation process (Fiez
et al., 2000). Lesion correction for healthy white matter voxels
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FIGURE 1 | Analysis pipeline. PALS takes in a minimum of two inputs (in blue): a T1-weighted MRI and a lesion mask file and has four main modules: (1)
reorientation to radiological convention, (2) lesion correction, (3) lesion load calculation, and (4) visual QC. Users can choose to perform any or all of the main
modules. White boxes indicate processing steps used in the pipeline. Green “QC” circles indicate that PALS will create a quality control page for that processing
step. ROIs, regions of interest.

FIGURE 2 | PALS Interface. PALS has a simple and intuitive graphical user interface (GUI) which allows back and forth navigation and easy selection of modules.
Additionally, the interface has tool tip icons (indicated by small black diamonds with question marks), which provide a brief helper text about each function when the
user hovers over the tool tip icon.

is one method proposed to decrease subjective differences in
the manual definition of lesions (Riley et al., 2011). The lesion
correction aims to correct for intact white matter voxels that
may have been inadvertently included in a manually segmented
lesion mask. This is done by removing voxels in the lesion
mask that were within the intensity range of a healthy white
matter mask. We previously created a semi-automated toolbox
to address this (SRQL toolbox; Ito et al., 2017). However, it

required manual delineation of a white matter mask for each
subject. Here, we integrated an updated version of the SRQL
toolbox as an optional lesion correction module that improves
on the SRQL toolbox by taking advantage of automated white
matter segmentation in FSL. We note that we recommend use
of the lesion correction module only on manually segmented
lesions, and not on automated segmentations, as evidenced in our
validation work below. Furthermore, careful visual inspection of
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white matter segmentation masks should be completed prior to
using this module.

Lesion Load Calculation
Currently, one of the main goals of stroke research is to
identify biomarkers for recovery, which can help identify patient
subgroups and predict which treatments would be most beneficial
for different patient subgroups (González, 2006; Cramer, 2010;
Stinear, 2017). Studying the anatomy and precise location of
stroke lesions is one potential avenue for drawing clinically
meaningful inferences about recovery. Specifically, the structural
integrity of white matter motor pathways, which has been
measured as the overlap of the lesion with a corticospinal (CST)
tract template, has been associated with motor performance
(Zhu et al., 2010; Riley et al., 2011; Stinear, 2017), and it has
been suggested that good recovery of motor function is largely
reflective of spontaneous processes that involve the ipsilesional
motor pathway (Byblow et al., 2015). In fact, it has been
shown that both initial motor impairment and long-term motor
outcome are dependent on the extent of CST damage, and the
extent of white matter damage had greater predictive value than
lesion volume (Puig et al., 2011; Feng et al., 2015). The extent of
CST damage has been developed into an imaging biomarker as
the weighted CST lesion load, which is calculated by overlaying
lesion maps from anatomical MRIs with a canonical, atlas-based
CST tract (Riley et al., 2011). Here, we built a module to calculate
the CST lesion load using T1w MRIs, and validate use of our
module against a similar lesion load calculator (Riley et al.,
2011). However, as it is likely that other motor and non-motor
regions in the brain may also be predictive of motor or cognitive
recovery (Crafton et al., 2003; Rondina et al., 2017), we have
extended the lesion load module to analyze lesion overlap with
corticospinal tract or other cortical and subcortical structures and
tracts, based on regions of interest from the FreeSurfer software
and sensorimotor area tract template (S-MATT; Archer et al.,
2017) packages, respectively.

Visual Quality Control
To analyze large quantities of data efficiently, most neuroimaging
processing steps are now automated. Yet the presence of a
stroke lesion substantially increases the susceptibility to image
preprocessing errors (Andersen et al., 2010; Siegel et al.,
2017). The accuracy of each image processing step, including
but not limited to lesion segmentation, brain extraction, and
normalization, could impact subsequent downstream processing
and analyses. Therefore, visual inspection of automated output is
imperative for lesion analyses. To this end, we encourage visual
inspection of data for quality data assurance by integrating the
creation of quality control review pages for each preprocessing
step that PALS requires. PALS is designed to pause after each
intermediary step and ask the user to inspect the data and
provide manual input on whether each subject’s output passes
visual inspection (which can be marked in a checkbox under
each individual). From there, PALS will only perform subsequent
analyses on subjects that pass the visual inspection. If, however,
users wish to run all subjects through the entire pipeline without

pausing, they are given the option to do so, but are highly
encouraged to visually inspect all analyses steps after completion.

For users who simply wish to efficiently visualize lesion masks
and do not wish to run other modules, PALS also offers the visual
quality control feature as a stand-alone tool.

BASIC STRUCTURE OF PALS
DIRECTORIES

PALS requires the user to specify the path to an Input Directory
and an empty Output Directory (Figure 3).

Inputs
The Input Directory must contain separate Subject Directories for
each subject. Each Subject Directory must at minimum contain:
the subject’s T1-weighted anatomical image in NifTI format, and
one or more corresponding lesion masks, also in NifTI format.
Importantly, all inputs should be in valid NifTI format and have
the same image dimensions within each subject. T1 anatomical
images for all subjects must contain the same T1 image
identifier (e.g., T1 images for the first and second subject should
be subj1_T1.nii.gz and subj2_T1.nii.gz, respectively); similarly
lesion masks for all subjects must contain the same lesion mask
identifier (e.g., subj1_Lesion.nii.gz and subj2_Lesion.nii.gz). If
any subject has multiple lesions, each additional lesion mask must
contain the lesion identifier, appended by the index, beginning
with one for each additional lesion (e.g., subj1_Lesion1.nii.gz; see
blue boxes in Figure 3).

Additionally, if the user chooses to run the Lesion Correction
and/or Lesion Load Calculation modules, they are given the
option to include the following files in each Subject Directory:
a brain mask file (NifTI) and a white matter segmentation
file (NifTI). If these steps have already been performed, brain
extraction and white matter segmentation can be skipped during
subsequent analyses. One caveat of this is that the same option
must be implemented for all subjects in a given analysis pipeline.
That is, the user cannot choose to skip brain extraction for only
one subject; they would have to skip the step and provide their
own brain mask files for all subjects.

If the user has already performed FreeSurfer cortical and
subcortical segmentation for each subject, they may use subject-
specific ROIs derived from FreeSurfer for lesion load calculation.
If so, the user will be required to provide a (1) T1.mgz and
(2) aparc + aseg.mgz parcellation and segmentation volume file
from FreeSurfer outputs in each Subject Directory. The same
caveat of pursuing the same option for all subjects applies.

Outputs
To encourage reproducible analysis, PALS also automatically
creates time-stamped log files indicating selected options, inputs,
and all processing steps each time it is run. These log files can be
found in the source directory for PALS under the logs directory.
This directory will only be created after the first run of PALS.

The general structure of the Output Directory will look
similar to that of the Input Directory, with a separate directory
created for each subject. Each new Subject Directory will contain
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FIGURE 3 | PALS data structure. The user is expected to provide an input directory with subdirectories as shown above. Files in blue boxes are necessary inputs.
The user is also expected to provide the path to an output directory, and PALS will create all other directories and files under the output directory.

the final outputs of the selected modules (e.g., white matter
intensity adjusted lesion masks for the lesion correction module),
and a subdirectory called Intermediate_Files, in which outputs
from intermediary processing steps will be stored. Within the
Intermediate_Files directory will be an Original_Files directory,
which will contain a copy of all input files for the subject. Please
see our github page2 for a detailed description of each output file.

The Output Directory will additionally contain separate
QC directories for each intermediary step taken (e.g.,
QC_BrainExtractions for the brain extraction step). These
QC files will contain screenshots for each subject, and a single
HTML page for manual visual control.

Finally, if the lesion correction and/or lesion load modules
are selected, the Output Directory will also contain CSV files
with information on the lesion (e.g., number of voxels removed
during lesion correction, and percentage of lesion-ROI overlap
per subject).

IMPLEMENTATION

Dependencies
PALS was built in Mac OSX on Python 2.7 and requires pre-
installation of FSL. Separate installation of FSLeyes is necessary
only if a version of FSL older than 5.0.10 is installed. FreeSurfer
installation is necessary only if the user desires to use subject-
specific FreeSurfer segmentations for the lesion load calculation
module (see more information on lesion load calculation below).

PALS is compatible with Unix and Mac OS operating systems.
For first-time users, PALS will ask users for the directory path to

2https://github.com/npnl/PALS

FSL binaries. While we note that only 9 MB of space is needed
for PALS installation (not including its dependencies), the total
amount of space used for outputs created by the program will
vary widely depending on the operations and number of subjects
selected. Minimally, we recommend that 54 MB is allocated
per subject, assuming only one ROI is selected for lesion load
calculation, to run all operations.

Modules
Reorienting to Radiological Convention
The purpose of the reorient to radiological module is to make sure
that lesion masks are in the same convention as the anatomical
brain file, since some software used to create lesion masks may
flip the orientation of the lesion file. Additionally, this module
attempts to homogenize the orientation of files across subjects,
especially when combining data across sites. Importantly, this
module assumes that the conversion from DICOM to NifTI
format was performed correctly. There should be no errors in
data storage and no missing information in the NifTI header.

The reorientation module first checks the orientation of the
T1 anatomical and lesion mask images. If they are already in
the radiological convention as indicated by the image header,
the image convention is conserved. If both T1 and lesion mask
images are found to be in the neurological convention, the
image data and image header for both the T1 anatomical image
and associated lesion masks are changed to the radiological
convention, using FSL commands fslswapdim and fslorient,
respectively3. If, however, the T1 and lesion masks are not in the
same convention, PALS flags the subject and does not perform

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2018 | Volume 12 | Article 63

https://github.com/npnl/PALS
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00063 September 20, 2018 Time: 13:53 # 6

Ito et al. Pipeline for Analyzing Lesions After Stroke (PALS)

subsequent analyses on that subject. We recommend that the user
perform a thorough check of all flagged subjects to verify that
image orientations are correct by running FSL command fslorient
on flagged images.

If the user has also provided additional optional inputs, such
as a skull-stripped brain and/or white matter mask, those images
are also reoriented to the radiological convention if they are not
already. Finally, the FSL command fslreorient2std is applied on all
images to reorient images to match the orientation of a standard
T1-weighted template image (MNI152).

Lesion Correction for Healthy White Matter Voxels
The basic steps that SRQL, the original toolbox we created for
lesion correction, implements for white matter lesion correction
are outlined elsewhere (Ito et al., 2017). However, as several steps
have been modified and updated for PALS, we describe the steps
in detail here.

First, the intensity of each subject’s T1 structural image is
scaled to a range within 0 to 255 (intensity normalization).
Skull stripping using FSL’s Brain Extraction Toolbox (BET) and
automated white matter segmentation using FSL’s Automated
Segmentation Tool (FAST) are then performed (Smith, 2002).
The user is given an option to skip the skull-stripping and
segmentation steps if he or she specifies that these steps have
already been performed. If skull-stripping and/or white matter
segmentation are performed, PALS will create a quality control
page and the program will pause for the user to perform a visual
inspection of each brain extraction/white matter segmentation.

Next, intensity normalized values from the T1 image
(step 1) are projected onto the white matter segmentation
as well as the binarized lesion mask, and the mean white
matter intensity value is calculated from the white matter
segmentation.

To calculate the upper and lower bounds for white matter
intensity removal, the percent intensity for removal is first
specified by the user. A default value of 5% is built into the
toolbox. The specified percentage for removal is then converted
to a 0 to 255 scale and divided by 2. This value is added to
and subtracted from the mean white matter intensity value, such
that:

Intensity values to be removed = mean±
(255∗specified percentage %)

2

Following this calculation, any voxels with intensity values within
this range in the T1-projected lesion mask are removed, thereby
removing voxels in the lesion mask that are within the specified
intensity range of healthy white matter for that individual. As the
last step, the white matter adjusted lesion mask file is binarized as
a final lesion mask.

After lesion correction has been completed for all subjects,
a CSV file containing information about the number of voxels
removed for each subject’s corrected lesion is created along with
a quality control page for visual inspection of the effect of lesion
correction on the lesion. The impact of using the lesion correction
module is reported in validation (section IV), where we show
that lesion correction decreases inter-individual variability on

manual segmentations, but does not improve upon automated
segmentations.

Lesion Load Calculation
The lesion load calculation module computes the amount of
lesion-ROI overlap with minimal input from the user. Notably,
the user does not need to register or reslice regions of interest
(ROI) to native space prior to using the lesion load module
in PALS—PALS automatically normalizes all native space lesion
masks and anatomical files to match that of the ROI. We offer
several options for selecting ROIs in calculating lesion load based
on commonly-used conventions for ROI analysis (Poldrack,
2007). (1) PALS comes with a set of default anatomical ROIs,
all of which have been converted to standard 2 mm MNI152
space, including bilateral corticospinal tract ROIs (Riley et al.,
2011), FreeSurfer subcortical and cortical ROIs (Fischl, 2012),
and sensorimotor area tract ROIs (S-MATT; Archer et al., 2017).
(2) We also allow calculation of lesion load using subject-specific
FreeSurfer cortical and subcortical segmentations, if the user
indicates that they have already performed FreeSurfer and have
FreeSurfer-derived aparc + aseg.mgz and T1.mgz files for each
subject. (3) Lastly, we give users the option of providing their own
regions of interest to calculate lesion load. This option requires
that the user also provides the standard space template of the
regions of interest so that PALS can convert subject files to the
ROI space.

After the ROIs are specified by the user, all ROIs are binarized,
and lesion masks and T1 images are registered to the ROI space,
whether it is MNI152 (default ROIs), FreeSurfer space, or user-
defined. At this point, the program will pause again and have the
user perform a visual inspection of the registrations to confirm
that the normalization looks appropriate. Lesion masks are also
binarized (such that only voxels within the lesions have a value
of 1 and all other voxels have a value of 0), and summed with
the voxel values of each binarized ROI mask using the FSL
command fslmaths, so that regions that are overlapping between
the lesion and ROI have a value of 2. Next, to obtain the mask of
the lesion-ROI overlap, a threshold is applied to the combined
lesion-ROI mask, such that anything below a value of 2 is
zeroed. Finally, the lesion-ROI overlap mask is used to calculate
the total percentage of overlap between the lesion and ROI,
calculated as:

Percentage overlap =
(overlap volume between lesion and ROI)

ROI volume

The percentage overlap between the lesion and ROI is then saved
into a CSV file containing lesion load information for all subjects,
and a quality control page is created for visual inspection of lesion
load performance.

Quality Control Webpages
PALS uses the FSL module fsleyes4 to render screenshots of
each subject’s brain extraction overlaid on its corresponding T1-
weighted image. The screenshots will display the overlays along
the three orthogonal planes. These screenshots are concatenated

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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FIGURE 4 | Example of quality control page. The QC page shown above was used to assess the quality of CST lesion load calculations in the test dataset. Each
subject’s screenshot is displayed with a checkbox below for flagging subjects that do not pass visual inspection. Left, prior to performing QC; right, after correcting
brain extraction. The first subject in particular demonstrates the vast difference that quality inspection makes. Brown shows the CST ROI; blue shows the lesion
mask of each subject.

into a single HTML page for review. Below each screenshot is
a checkbox for the user to indicate whether the subject’s brain
extraction passes visual inspection.

The same process was used to create quality control pages
for each subject’s white matter segmentation mask and registered
brain masks. For lesion masks, both the final white matter
adjusted mask as well as the original manually traced lesion mask
were overlaid onto the T1-image for comparison of lesions before
and after lesion correction. For lesion load calculations, the lesion
mask is overlaid on the selected region of interest for calculating
the lesion load (see Figure 4).

VALIDATION

Reorient to Radiological
Here, we validated that this tool performs each function
correctly. For this evaluation, we simply wanted to test as
many cases as possible, and used a combined dataset of
355 MRIs and lesion masks from 12 research sites [11 from
the Anatomical Tracings of Lesions after Stroke (ATLAS)
database, and one additional from a collaborator; Liew et al.,
2018]. We checked that PALS correctly flagged all 30 subjects
whose lesion mask and anatomical T1 files had mismatching
orientations. For all other images that were not flagged,
the module corrected identified images in the neurological
orientation and transformed them to radiological orientation (see
Supplementary Table S1).

We next simulated cases to confirm that PALS also correctly
identified subjects with mismatched orientations in optional
inputs (e.g., where a brain mask and/or white matter mask file
are provided by the user in addition to the necessary T1 and
lesion mask files). Additionally, we created a case in which all but
one subject contained the additional optional inputs. We checked
that PALS was able to correctly identify when orientations of
inputs were mismatched for any subjects, and overrides the user
input to skip brain extraction and/or white matter segmentation
if a subject is missing those inputs (Table 1). For additional
simulation cases, see Supplementary Tables S2–S4.

Lesion Correction for Healthy White
Matter Voxels
Inter-Rater Reliability
For this module, we tested whether PALS could improve
inter-rater reliability on five manually segmented lesion masks
(Figure 5). Ten trained research assistants manually traced stroke
lesions from five separate brains with lesions of different sizes
(Liew et al., 2018). For each stroke brain, we calculated a
dice correlation coefficient (DC) for each pair among manual
tracings by 10 different trained individuals to evaluate agreement
between all raters. The dice correlation coefficient is a measure of
similarity between two images, and is defined as:

DC = 2 ∗
|X ∩ Y|
|X| + |Y|
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TABLE 1 | Validation for reorient to radiological module.

Cases Input orientations Output
orientations

Case 1 Lesion: neurological Radiological

T1: neurological Radiological

Brain: neurological Radiological

WM: neurological Radiological

Case 2 Lesion: radiological Radiological

T1: radiological Radiological

Brain: radiological Radiological

WM: radiological Radiological

Case 3 Lesion: neurological Flagged

T1: neurological

Brain: radiological

WM: neurological

Case 4 Lesion: neurological Flagged

T1: neurological

Brain: radiological

WM: radiological

Case 5 Lesion: neurological Flagged

T1: radiological

Brain: radiological

WM: radiological

Case 6: Optional Lesion: neurological Radiological

input missing T1: neurological Radiological

Brain: missing Brain extraction set
to run on all
subjects

WM: missing WM segmentation
set to run for all
subjects

Simulated cases including subjects with T1, lesion mask (Lesion), brain mask
(Brain), and white matter segmentation (WM) inputs with varying orientations. PALS
correctly flagged cases in which orientations of input files were mismatched.

where DC ranges between 0 (no overlap) and 1 (complete
overlap), and X represents voxels in the first lesion volume,
and Y represents voxels in the second lesion volume. For each
stroke brain, the average of all DC values from all 45 pairwise
comparisons of manual segmentations was calculated as a mean
inter-rater DC score, and then mean inter-rater DC scores across
the five stroke brains was again averaged for an overall inter-
rater DC score. We then ran both SRQL, our previous version
of lesion correction, and PALS-lesion correction on all manual
segmentations, using the default value of 5% lesion white matter
intensity removal, to compare which performed better, and
recalculated the overall inter-rater dice coefficient score on white
matter adjusted lesion masks (Table 2).

We next performed a one-way repeated measures ANOVA on
the mean inter-rater DC scores averaged over the five lesions
to determine whether there were any differences between inter-
rater scores without any correction, with lesion correction from
SRQL, and with the new PALS lesion correction. Mauchly’s test
indicated that the assumption of sphericity had been violated
(p < 0.001), therefore Greenhouse–Geisser corrected tests are
reported (ε = 0.514). We found a significant difference among

the inter-rater DC scores (F = 5.91, p = 0.0183); Tukey
post hoc comparisons with Bonferroni correction showed that
inter-rater DC scores, the average number of voxels overlapping
between manual segmentations of the tracers (see above for
description), were significantly higher after lesion correction
with PALS compared to lesion masks without any adjustment
(z = 3.43, p = 0.0018); other pairwise comparisons did not reach
significance (p > 0.18). In other words, the lesion correction
module in PALS significantly improved the similarity between
manual tracings across the 10 tracers. We thus recommend using
the PALS lesion correction module when analyzing manually
traced lesions.

Automated vs. Manual Lesion Segmentations
We were also interested in assessing whether lesion correction
could improve similarity between automated segmentations and
manual segmentations, the latter considered the gold standard
for lesion segmentation. For this evaluation, we used 90 stroke
T1-weighted MRIs from the publicly-available ATLAS database
(Liew et al., 2018). The ATLAS database consists of chronic
stroke (>6 months) MRIs obtained across 11 research groups
worldwide, and also includes manually segmented lesion masks
for each MRI, created by a team of trained individuals (for further
information on the full lesion dataset and labeling protocol, see
Liew et al., 2018). The 90 brains included for this evaluation
consisted of 34 cortical, 54 subcortical, and 2 cerebellar lesions on
both left (n = 36) and right (n = 54) hemispheres. Lesion volume
ranged from 386 to 164,300 mm3 (M = 31,578.41, SD = 38,582.13)
based on manual segmentations.

We used the manually segmented lesions included in the
ATLAS database as our gold standard of manually traced lesion
masks. We then used the lesion identification with neighborhood
data analysis (LINDA) approach to automatically segment the
90 stroke T1-weighted MRIs (Pustina et al., 2016). Finally, we
calculated the dice DC between each automated segmentation
and manually traced lesion and obtained an average DC of
0.58± 0.25 (range 0.006 to 0.88).

We note that a DC value of 0.58 is relatively low considering
that DC ranges between 0 and 1. However, given that limitations
still exist with performance of automated lesion segmentation
algorithms, particularly for single-modality data and for data that
have been pooled together from different sites, such as the ATLAS
database, an average DC of 0.58 is fairly standard (Ito, Kim, and
Liew, under review; for a representative example, see Figure 6).

Removing White Matter FromManual Tracings
We next performed lesion correction on manually traced lesions,
using the default 5% white matter intensity removal, and re-
calculated DC to determine whether lesion correction improved
similarity between the manual and automated segmentations.
We found that lesion correction on manual lesions made no
difference on similarity between manual and automated lesions
(average DC before and after correction: 0.58 ± 0.24; t = 1.59,
p = 0.11).

Removing White Matter From Automated Segmentations
Finally, we assessed whether lesion correction on automated
segmentations could improve similarity to manually traced
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FIGURE 5 | Inter-tracer heat maps of five stroke lesions with and without lesion correction. Brighter colors indicate greater overlap between tracers; as shown above
in regions with less bright colors and greater dark red, PALS improves similarity between inter-rater tracings, particularly when lesion correction is included.

TABLE 2 | Inter-rater Dice Correlation Coefficient values with and without lesion correction.

Lesion A Lesion B Lesion C Lesion D Lesion E Average

No correction 0.84 ± 0.006 0.62 ± 0.03 0.66 ± 0.02 0.93 ± 0.002 0.81 ± 0.01 0.77 ± 0.009

SRQL 0.87 ± 0.006 0.63 ± 0.03 0.69 ± 0.01 0.93 ± 0.002 0.82 ± 0.01 0.79 ± 0.009

PALS-LesionCorr 0.87 ± 0.006 0.65 ± 0.03 0.72 ± 0.014 0.94 ± 0.002 0.84 ± 0.009 0.80 ± 0.009

Average dice coefficient values (mean ± standard deviation) for manual tracings across 10 trained individuals. 1, perfectly overlapping; 0, no overlap. PALS-Lesion
correction consistently improved the dice coefficient across all lesions compared to no correction or the earlier SRQL toolbox.

lesions. We thus applied lesion correction using default values
on lesions automatically segmented using LINDA, and calculated
DC between manual segmentations (without lesion correction)
and white matter corrected automated segmentations for the
90 brain lesions. Here, we found that lesion corrections did
not improve similarity between manual and automated lesions
and actually significantly decreased similarity by a small amount

(average DC before: 0.58 ± 0.03; average DC after correction:
0.57± 0.24; t = 2.58, p = 0.01).

Lesion Load Calculation and Quality
Control
We validated our lesion load calculation module with a CST
lesion load calculation tool implemented by a separate research
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FIGURE 6 | Representative case of automated versus manual lesion segmentation. Left, an individual’s T1w anatomical MRI; Right, the manual lesion mask in blue
overlaid on automated lesion mask produced by the LINDA algorithm, in red (Pustina et al., 2016). DC, 0.57 for this lesion.

group (Riley et al., 2011). As their group divided up their CST
ROI into 16 longitudinal strings to obtain the lesion-to-CST
percentage overlap (see Riley et al., 2011 for methods), we also
tested the PALS lesion load calculation module with identical ROI
input, courtesy of Riley et al. (2011).

For this evaluation, we implemented both lesion load
calculation tools on 122 brains from the ATLAS dataset. These
brains were made up of 40 cortical, 67 subcortical, 12 brainstem,
and 3 cerebellar strokes. To validate that the lesion load tool
correctly assesses the hemisphere of the lesion, we included both
left (n = 70) and right (n = 40) hemisphere lesions (and 12
brainstem lesions). Lesion volume ranged from 27 to 62,460 mm3

(M = 7,391.48 mm3, SD = 9,060.82 mm3).
We used the left CST ROI, and found a strong significant

correlation between the PALS method and the previously
described method from Riley et al. (2011) (PALS average CST
lesion load percentage: 44.96 ± 44.70%; Riley CST lesion load:
43.75 ± 44.30%; r = 0.87, p < 0.0001). We also verified that
the CST lesion load percentage was equal to 0% on all right
hemisphere lesions. However, the correlation was lower than
expected. Using our QC tool, we visually inspected the quality
of the intermediary outputs created by PALS and identified seven
cortical stroke brains that performed poorly on brain extraction
and registration. We cleaned up the brain extractions using
additional features in FSL’s BET (e.g., bias field and neck cleanup),
and reran these brains through the PALS pipeline, feeding in
the cleaned-up brain extractions (Figure 4). As expected, this
substantially improved registration. We then re-calculated the
CST lesion load as well as the correlation between the values
obtained through PALS and the method described above from
Riley et al. (2011). Doing so resulted in a stronger correlation
between the two lesion load calculation tools (PALS average CST
lesion load percentage: 47.33± 45.24%; r = 0.96, p < 0.0001). This

demonstrates the importance of performing a thorough quality
inspection on each processing step and overall confirms that
our tool accurately calculates lesion overlap in accordance with
previous work.

We additionally assessed whether the accuracy of lesion load
calculation differed between cortical and subcortical lesions. As
such, we split these 122 validation cases by category (40 cortical,
67 subcortical, excluding brainstem and cerebellar lesions). We
then calculated the Pearson’s correlation coefficient by stroke
category, to assess how well the PALS method compares to the
method implemented by Riley et al. (2011). For cortical strokes,
we obtained a correlation coefficient of r = 0.73, p < 0.0001; 95%
CI [0.54, 0.85]. However, after correcting for image processing
errors that occurred for the seven brains mentioned above, we
obtained the following values for cortical strokes: r = 0.98,
p < 0.0001; 95% CI [0.97, 0.99]. For subcortical strokes, we
obtained a correlation coefficient of r = 0.95, p < 0.0001; 95% CI
[0.93, 0.97]. Again, this demonstrates the susceptibility of larger,
cortical strokes to image processing errors and highlights the
importance of quality control.

DISCUSSION

Despite the recent surge of interest in big data neuroimaging,
the infrastructure and image processing pipelines necessary to
support it, particularly for stroke lesion analysis, are still severely
lacking. To this end, we created an open-source toolbox with
a user-friendly GUI to help standardize stringent stroke lesion
analyses. A detailed manual and source code can be downloaded
from our github repository5.

5https://github.com/npnl/PALS
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To demonstrate some of the key features of the toolbox,
we validated use with multi-site data. We demonstrated that
PALS successfully harmonizes data to be in the same orientation
convention across sites. We also showed that PALS increases
inter-rater reliability of manual tracings: applying the lesion
correction module in PALS significantly increased similarity
between manually segmented lesions compared to no lesion
correction and our previous version of lesion correction from
the SRQL toolbox. However, we found that similarity between
manual segmentations and automated segmentations, in cases
where groups might try to use manual segmentations for a
subset of the data and automated segmentation in another
subset of data, did not improve when applying PALS lesion
correction on either the manual segmentations or the automated
segmentations. A likely explanation for this is that the automated
segmentations algorithm we used (LINDA; Pustina et al., 2016)
already included a tissue classification step in the derivation of
features, which would prevent white matter voxels to be classified
as lesion tissue. We thus recommend that research groups do
not mix different lesion segmentation methods (e.g., a subset
manually and a subset with an automated algorithm) for the PALS
lesion correction module, but rather use lesion correction only
for datasets with all manual lesion segmentations. This is because
applying white matter intensity removal to human errors in
manual segmentations would provide a systematic way to remove
voxels within the designated healthy white matter intensity range
that might be missed due to human bias (Riley et al., 2011).
Finally, we also showed that PALS lesion load calculation module
is comparable to another CST lesion load calculator implemented
by a different research group.

Limitations and Future Directions
PALS was created to respond to the need for reliable
image processing pipelines for collaborative efforts in stroke
neuroimaging. PALS integrates multiple functions into a single
analysis pipeline to facilitate lesion analysis and quality control.
However, the PALS toolbox has a few limitations. First, as PALS
was created to address the need for lesion analysis software that
takes a single modality, we have only tested the toolbox on T1w
MRI data. We hope to expand these tools for other types of
multimodal stroke imaging, such as T2 or FLAIR sequences, in
the future. However, we will plan to retain the option for using

a single channel input so that users will not be required to have
multi-modal data to use PALS. Additionally, in the reorient to
radiological module, the PALS toolbox makes the assumption
that the input files are in valid NifTI format, which requires
proper user input.

We plan to continue to refine our software in the future based
on feedback and comments from users6, and hope to expand
these tools for other multimodal stroke imaging data types. We
hope our toolbox will be useful to clinicians and researchers,
and foster greater collaboration leading to the discovery of new
clinical insights.
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