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Mammalian silent information regulator 1 (SIRT1) is reported to play a role in cancers of

the secretory organs, including thyroid, pancreatic endocrine, and ovarian tumors (1–4).

A recent meta-analysis conducted on 37 selected studies of human cancers analyzed the

correlations of overall survival (OS), disease-free survival (DFS) and relapse-free survival

(RFS) with SIRT1 expression (5). This study reported that SIRT1 overexpression was

associated with a worse OS in liver and lung cancers, while it was not correlated with OS

in breast cancer, colorectal cancer, or gastric carcinoma. Collectively, the meta-analysis

revealed that an unfavorable OS was associated with SIRT1 expression for solid

malignancies. Given the growing importance of this class of lysine/histone deacetylases

in human endocrine malignancies, a rational and focused literature assessment is

desirable in light of future clinical translations.
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INTRODUCTION

The epigenetic regulation of chromatin structure and gene expression represents a major field of
study and intervention for researchers focused on cancer. The class III lysine/histone deacetylases
are known as Sirtuins and are represented, in humans, by 7 members (6, 7). Silent information
regulator 1 (SIRT1) is the most studied and well characterized among the class III deacetylases
and its targets include p53, Ku70, peroxisome proliferator-activated receptor gamma (PPARγ),
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), Beclin 1 and
β-catenin, among others (8–13). A relevant group of SIRT1 targets is the Forkhead box O
(FOXO) family of transcription factors. FOXO3a hyperacetylationmediated by SIRT1 accompanies
apoptosis while FOXO4 deacetylation activates this target enhancing its transcriptional and
biological activity in the nucleus. FOXO4 activation enhances the cellular defenses against oxidative
stress and leads to apoptosis resistance (8, 14, 15). Fibrosis is another aging-related disease involving
FOXO1/3, well known modulators of aging and longevity playing a clear inhibitory effects on
fibrogenic effector cells and extracellular matrix production (16).

Furthermore, the epigenetic regulation and dysregulation of the hypermethylated in cancer1
(HIC1)/SIRT1/p53 axis is relevant for the development of malignancies (17). SIRT1 is also a target
for several miRNAs, small non-coding RNAmolecules known to be deregulated in various cancers,
whose expression is involved in tumorigenesis (18).

SIRT1, due to its NAD+ dependency, is also a metabolic sensor and its deacetylating activity
toward regulatory target proteins affects cell metabolism (19).

The focus of this review is the role and involvement of SIRT1 in secretory organ cancers since
the information recently gathered on this topic should bear new translational benefits. Correlations
between SIRT1 and nuclear receptors, transcription factors, master regulators of gene expression,
miRNAs and lncRNAs have been reported. The main glands in the body and the most recent
literature are taken into consideration.
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OVARIAN CANCER

Ovarian cancer is the fifth leading cause of female cancer
mortality in the United States (20). This type of cancer
is currently treated with a platinum and taxane-based
chemotherapy after surgical cytoreduction. However, the
rates of progression free survival (PFS) and OS for these patients
remain dismal and no benefits seem to arise by the introduction
of additional cytotoxic agents (21). Ovarian cancer is usually
regarded as a single entity and current treatment protocols for
the disease are not subtype specific. Actually, ovarian cancer is
a heterogeneous disease that is classified by histopathological
examination, including serous, clear cell, endometrioid, and
mucinous subtypes. These subtypes develop differently and
respond differently to chemotherapy (22).

SIRT1 overexpression is reported by many authors as
associated with poor outcome and chemoresistance in ovarian
cancer of epithelial origin (23–25). Ovarian cells (both normal
and tumoral) express two kinds of estrogen receptors (ER),
ERα and ERβ which play different roles in cell proliferation
and aggressiveness (4). Specifically, ERα is associated to a poor
outcome, while ERβ expression corresponds, on the contrary,
to a favorable outcome. ERα levels are closely associated
with estrogen-dependent growth and the increased metastatic
potential of ovarian epithelial carcinoma (OEC) through the
promotion of the epithelial to mesenchymal transition (EMT)
(26). ERβ, in contrast, inhibits EMT in presence of 17β-estradiol
(E2), thus mediating the opposite effect to ERα (26). SIRT1 is
inversely correlated to ERβ mRNA and protein levels, and the
specific ERβ activator KB9520 strongly inhibits SIRT1 mRNA
expression. These data collectively support the role of SIRT1 as
a tumor promoter in OEC (4).

Recently, another association between OEC and SIRT1 was
reported (27). These observations are relevant, because OEC
patients often acquire resistance to paclitaxel or cisplatin, and
the increased expression in SIRT1 and TWIST1 (two genes
associated with drug resistance) is observed in OVCAR-5 cells
that show increased cisplatin resistance, migration and invasion
potential (27).

SIRT1 is a downstream target of hypoxia inducible factor 1α

(HIF1α) (28). Hypoxia is a condition associated with several
types of tumors and, specifically, increased HIF1α expression
predicts the poor prognosis of ovarian cancer. Notably it has
been demonstrated that SIRT1 expression is induced by hypoxia
and that HIF1α silencing indirectly hampers SIRT1 expression.
Finally, the NF-κB signaling pathway is involved in hypoxia-
induced SIRT1 up-regulation, strengthening the link between
this class III lysine deacetylase and ovarian cancer (28).

THYROID CANCER

The incidence of thyroid cancer has increased over the
past few decades worldwide. This increase is mainly driven
by new cases of papillary thyroid cancer (29). SIRT1 is
reported to be oncogenic in thyroid and prostate murine
carcinomas initiated by PTEN deficiency (2). The mechanism
unveiled by mRNA transcriptional analysis revealed that SIRT1

drives oncogenesis through c-MYC regulation (Figure 1). Two
pathways upregulated via SIRT1 overexpression are related to
translation and ribosomal biogenesis, which are both controlled
by c-MYC. The protein product of the c-MYC oncogene lies at
the intersection of a transcriptional network regulating cellular
proliferation, replicative potential, cell–cell competition, cell size,
differentiation, metabolism, and apoptosis (30).

c-MYC increases in response to mitogenic stimuli, and this
is accompanied by SIRT1 upregulation. c-MYC activates SIRT1
by promoting NAMPT transcription and then the NAD-salvage
pathway. Furthermore, c-MYC can bind directly to DBC1 (that
is a SIRT1 inhibitor) thus preventing SIRT1 blockade (31, 32).
On the other hand, SIRT1 activation leads to p53 deacetylation
and consequent inactivation, decreasing the levels of PUMA and
p21 and eventually counteracting the pro-apoptotic effects of p53.
Finally, SIRT1 stabilizes c-MYC via lysine-specific deacetylation
and increases its transcriptional activity. Altogether, these data
demonstrate a positive feedback loop between c-MYC and
SIRT1 (31).

The translational significance of these findings is highlighted
by the consistent overexpression of SIRT1 in follicular and
papillary thyroid carcinomas, positively correlates with c-MYC
protein levels and stabilizes c-MYC (2).

The natural phytochemical resveratrol (RSV) is known to
affect mammalian cell metabolism and aging by modulating
SIRT1 (33, 34). Furthermore, SIRT1 is also a reported molecular
target of RSV in cancer cells of both lymphoid and epithelial
origin (35). RSV regulates thyroid stimulating hormone (TSH)
secretion via SIRT1 activation. RSV also arrests follicular thyroid
and papillary thyroid carcinoma growth by activating the
mitogen-activated protein kinase (MAPK) signal transduction
pathway and p53 phosphorylation (36, 37).

FIGURE 1 | The main SIRT1 molecular interactors (inhibitory or activatory)

cited in the text. Solid blue arrows represent an activation; yellow arrows

represent an interplay; blunt ended black lines represent an inhibition; red

arrow represents upregulation of gene expression.
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Among the few studies available, regarding the role of SIRT1
in the thyroid neoplasias, most report involvement as a direct
target for miRNAs. miR-212 is a tumor suppressor miRNA that
inhibits the proliferation, migration, and invasiveness of thyroid
cancer cells. SIRT1 is a direct target of miR-212 and is inversely
correlated to miR-212 expression in thyroid cancer tissues (42
samples of human thyroid cancer) (38).

PANCREATIC CANCER

Pancreatic cancer (PC) is one of the most deadly tumors in
western countries and the 10th most common cancer in the
United States. Pancreatic ductal adenocarcinoma is the most
common subtype and is recognized as “incurable” due to its
aggressive clinical course and resistance to available therapies (39,
40). miR-494 is specifically involved in PC proliferation (41). The
overexpression of miR-494 inhibits PC cell proliferation in vitro
and in vivo in addition to inhibiting invasion. The c-MYC/SIRT1
axis is a direct target of miR-494 and there is an inverse
correlation between the two. The simultaneous interference of c-
MYC and SIRT1 synergistically reduces the expression of these
two targets and inhibits PC proliferation, eventually stimulating
miR-494 expression (41). The interplay between c-MYC and
SIRT1, therefore, plays a relevant role during PC tumorigenesis
and should be taken into account when designing strategies
aimed at combating this cancer.

Recent studies on the miRNA-mediated regulation of
autophagy in PC have been published (42). Since it is known
that hypoxia induces autophagy, PC cells were cultured under
normoxic and hypoxic conditions. miR-138-5p emerged among
the most down-regulated miRNAs in the hypoxia-grown cells.
Targets can analysis further revealed that the SIRT1 gene contains
a classical and conserved domain that binds miR-138-5p.
Notably, miR-138-5p specifically binds to the 3′-UTR of SIRT1
and its overexpression leads to SIRT1 protein downregulation
(42). Finally, the authors demonstrated that miR-138-5p also
counteracts the hypoxia induction in cancer cells through SIRT1
inhibition in tumor xenografts.

Another player that emerged recently is miR-601, which
suppresses PC proliferation andmigration (43). The target of this
miRNA’s activity was identified, oncemore, as SIRT1. This Sirtuin
is downregulated by miR-601 and its overexpression reverses the
effect of miR-601 on PC cells (43).

miR-217 also directly targets SIRT1, it is inversely correlated to
SIRT1 expression and is down-regulated in chronic pancreatitis
and PC (44).

The Ex-527 synthetic inhibitor, which inhibits pancreatic cell
proliferation in vitro and in combination with the first-line
drug for this pathology, gemcitabine, is considered one of the
most specific SIRT1 inhibitors currently available (45). The same
inhibitor was shown to promote PC xenograft tumors in SCID
mice and did not synergize with gemcitabine. Therefore, caution
should be used when dealing with Ex-527 inhibitor to target
SIRT1 in vivo.

The role of histone deacetylases (HDACs) is poorly
understood in pancreatic neuroendocrine tumors (pNETs).

A comprehensive expression pattern of all the five classes (I,
IIa, IIb, III, and IV) of HDACs was recently described (3). The
gene expression profiles of a total of n = 57 patients revealed a
significant upregulation of all the HDAC classes in pNETs over
controls with increased levels ranging from 1.5- to 7-fold. The
expression of several HDACs, including SIRT1, correlates to the
G3 stage and, thus, to pNETs tumor grading (3).

GASTRIC CANCER

Gastric cancer (GC) is among the most prevalent malignancies of
the upper gastrointestinal tract. It is a solid aggressive carcinoma
where new therapeutic options are warranted (46). Autophagy in
GCmay have the dual role of promoting the activity of irradiation
and anticancer drugs or, on the contrary, may function as a
protective mechanism for cancer cells (47–49).

SIRT1 plays a confirmed role in autophagy (50, 51). In GC,
it has been demonstrated that SIRT1 deacetylates autophagy-
related gene products (ATGs) and a series of histonic and
non-histonic targets, eventually interfering with the autophagic
process (Figure 1) (52).

GC is among the few human tumors where SIRT1 is
downregulated, and in one study, the prognosis of low-
SIRT1 expressing GC patients was good (52, 53). However,
other authors reported a meta-analysis of SIRT1 expression in
gastrointestinal cancer in which the results were heterogeneous
(54). The overall results from 15 studies showed an association
between worse OS and high SIRT1 expression in gastrointestinal
cancer. The subgroup analysis revealed that this association was
particularly strong in non-colorectal gastrointestinal cancers,
especially GC and hepatocellular carcinoma (54). Therefore,
SIRT1 is a promising prognostic factor in GC but not in colorectal
tumors.

In contrast with the abovementioned results, a study of
the clinicopathological parameters in GC patients was analyzed
using the Kaplan-Meier plotter (55). Here, the data concerning
the seven human Sirtuins were extrapolated from NCBI GEO
databases containing mRNA profiles and the corresponding
clinical data of a large number of GC patient samples. The
Kaplan-Meier plotter was used to investigate the predictive value
of mRNA expression of the Sirtuins for the OS of GC patients.
Among a total of 631 available cases for SIRT1 expression, the
survival curves suggested that a high expression of SIRT1 mRNA
was favorable for OS and that different Sirtuins had diverse
correlations with OS. Furthermore, the first progression (FP) was
positively correlated with SIRT1 expression: in other words, a
longer FP time was associated with a higher SIRT1 level (55).

Opposite evidence was reported from the
immunohistochemical (IHC) staining of primary GC tissues.
High SIRT1 expression, by IHC, was associated with lymphatic
invasion (p = 0.028), vessel invasion (p = 0.016) and lymph
node metastasis (p = 0.014) and tended to be associated with
more advanced disease stages (56).

Clearly, no consistent data on the exact role of SIRT1 in GC
are available at present. The evidence available thus far points
to a dual role for SIRT1 (that is to say it may act as a tumor
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promoter as well as a tumor suppressor), possibly depending on
its sub-cellular localization, p53 status, and microenvironmental
conditions (57, 58).

ADRENAL GLANDS

The function of SIRT1 in the adrenal glands has been investigated
the least. One study reports the researches performed on human
adrenal NCI-H295R cells (59) and, in this setting, Sirtuins
(including SIRT1) did not seem to be involved in the RSV-
mediated lowering of androgen production.

Moreover, steroidogenesis in H295R cells was not affected
by Sirtuins, even when SIRT1/3/5 are overexpressed through
transgenesis, strengthening the fact that RSV-dependent effects
in this setting are SIRT-independent (59).

HEPATIC CANCER

Hepatocellular carcinoma (HCC) is a highly malignant tumor
with a higher frequency in East Asia than in Europe and
North America (60). HCC is the predominant malignancy in
the liver and recent evidence shows a role for SIRT1/PGC-
1alpha/mitochondrial biosynthesis pathway in protecting the
liver against lipid accumulation and mitochondrial dysfunction

(61, 62). Senescence induction is a recently proposed strategy
with the aim of counteracting HCC (63). Metformin, for
instance, induce senescence via the activation of AMP-activated
protein kinase (AMPK) when used at low doses. This effect is
accompanied by the phosphorylation of SIRT1 as well as p53-
acetylation (Figure 1). The prolonged exposure to low doses of
metformin leads to humanHCC senescence inmurine xenografts
via modulation of the AMPK-SIRT1 axis (63).

The long non-coding RNA (lncRNA) metastasis associated
lung adenocarcinoma transcript 1 (MALAT1) was recently
discovered to interfere with SIRT1 activity in hepatocellular
cancer (64). MALAT1 is frequently upregulated in several types
of cancers and contributes functionally to the development
and malignancy of tumor cells (65). MALAT1 is, among
lncRNAs, a stable and highly transcribed molecule localized in
the nucleus, and it has been reported that, in breast cancer
cells expressing ERα, 17β-estradiol treatment negatively regulates
MALAT1 transcription, thus inhibiting proliferation, migration
and invasion (66). MALAT1 is also regulated during endothelial
differentiation in that hypoxia induces its transcription leading
to the proliferation of the vasculature (67). In HCC specifically
this lncRNA promotes aggressiveness in that releases SIRT1 by
sponging miR-204 (64). SIRT1 is a direct downstream target of
miR-204 and results inhibited by this interaction. MALAT1 can
release the suppression on SIRT1 by base-pairing with miR-204
and leading to its post-transcriptional downregulation (64).

CONCLUSIONS

SIRT1 should be regarded as a multi-faceted enzyme and, as
already suggested by several authors, studied in a context-
dependent fashion. Secretory organs are no exception

TABLE 1 | Cancer models of the secretory organs in which SIRT1 has been

studied.

Experimental models and

specimens

References

Ovarian cancer of

epithelial origin

Normal ovaries, endometriosis

with/without carcinoma, OvCa

(endometrioid; clear cell; mucinous;

serous). OvCa cell lines. Serous EOC.

(4, 23–28)

Thyroid carcinoma Murine thyroid cancers. Thyroid cell

lines. Nude mice models. Human

normal and tumor thyroid specimens

(2, 37, 38)

Pancreatic cancer Confirmed human PC and non-tumor

pancreatic specimens. PC cell lines.

Normal human pancreatic ductal

epithelium. PC xenografts. Human

chronic pancreatitis specimens

(41–45)

Pancreatic

neuroendocrine

tumors

Formalin fixed paraffin-embedded

human samples

(3)

Gastric cancer Human primary GC specimens. GC

cell lines. Clinical trials concerning

gastrointestinal cancers, overall

survival and SIRT1.

NCBI GEO databases of mRNA

profiles. Formalin fixed

paraffin-embedded human samples

(52–56)

Hepatic cancer Primary liver cancer organoids

(hepatocellular carcinoma;

cholangiocarcinoma; combined

HCC/CC; healthy liver). HCC mouse

xenografts. HCC cell lines and

primary human tissues

(61, 63, 64)

to this. Table 1 summarizes the secretory organ tumors
in which SIRT1 has been investigated, with the relevant
experimental models. Themost recent publications are taken into
account.

SIRT1 plays a confirmed role in ovarian, thyroid, and
pancreatic cancers, while its role in GC is yet to be definitely
established. The evidence available in thyroid cancer confirms
that c-MYC and SIRT1 are valuable therapeutic targets,
encouraging translational researches aimed at the related
pathways. The recent meta-analysis spanning 37 selected studies
on human solid cancers demonstrates a correlation between
higher SIRT1 expression and worse OS in liver and lung cancers
(5). These clinical data are consistent with the experimental
ones reported for HCC where SIRT1 activation correlates to
malignancy through MALAT1, a lncRNA highly expressed in
various cancers including HCC (64, 68).

Furthermore, colorectal and GC do not show the correlation
between OS and SIRT1 expression (5). SIRT1 overexpression has
been reported either positively associated to FP or negatively
associated to OS. Contradictory results also concern SIRT1
IHC and mRNA expression and prognosis of GC, suggesting
that this class of lysine-deacetylases is not a reliable biomarker
for GC.

In contrast, little evidence is available in the literature
concerning the role (if any) of SIRT1 in the pituitary gland. In
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the testis, the role of SIRT1 is reported to be associated with
spermatogenesis, fertility, and differentiation, but not testicular
cancer (7).

In light of the literature presented here, further basic research
is warranted in order to establish possible therapeutic strategies
for ovarian, thyroid and pancreatic cancer, where a pro-
tumorigenic role for SIRT1 has been established. Particular
attention should be paid to the role of miRNAs in regulating
SIRT1 levels (miR-212 in thyroid cancer; miR-494, miR-138-5p,
miR-601, and miR-217 in PC; miR-204 in HCC). Furthermore,
given the growing importance of lncRNAs in cancer pathology,
the involvement of MALAT1 should be exploited. For instance,
by measuring its levels in HCC biopsies and, possibly, by

monitoring its expression during therapy administration or
disease progression.
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