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ABSTRACT: 

 

In this paper, we propose a spectral-spatial feature extraction framework based on deep learning (DL) for hyperspectral image (HSI) 

classification. In this framework, the variational autoencoder (VAE) is used for extraction of spectral features from two widely used 

hyperspectral datasets- Kennedy Space Centre, Florida and University of Pavia, Italy. Additionally, a convolutional neural network 

(CNN) is utilized to obtain spatial features. The spatial and spectral feature vectors are then stacked together to form a joint feature 

vector. Finally, the joint feature vector is trained using multinomial logistic regression (softmax regression) for prediction of class 

labels. The classification performance analysis is done through generation of the confusion matrix. The confusion matrix is then used 

to calculate Cohen’s Kappa (K) to get a quantitative measure of classification performance. The results show that the K value is higher 

than 0.99 for both HSI datasets. 

 

 

1. INTRODUCTION 

Hyperspectral imaging sensors have narrow continuous spectral 

channels from visible to IR wavelengths for the same spatial 

location. The information obtained from these sensors is in the 

form of grids where each element represents a pixel vector. The 

size of each vector is equivalent to the number of spectral 

channels or bands. Accurate spectroscopic information obtained 

from hyperspectral sensors increases the ability to distinguish 

between different land-cover classes with enhanced accuracy. 

Various hyperspectral imaging systems are currently available, 

providing an enormous amount of image data that finds 

application in diverse fields such as forestry, ecology, geology, 

hydrology, precision farming and military applications. These 

applications often require class recognition of each pixel with a 

small number of pixels as training samples. 

   

There are several important issues when it comes to HSI 

classification. Supervised classification methods face problems 

associated with an imbalance between the high dimensionality 

(Donoho et al., 2000) of data and limited access to the available 

training samples, the presence of highly correlated bands, and the 

presence of mixed pixels (Ghamisi et al., 2017). When 

dimensionality (number of bands) grows, keeping the number of 

training samples constant, the accuracy of statistical evaluation is 

reduced which leads to a reduction in the classification accuracy 

beyond some bands (Landgrebe, 2003). For classification, these 

problems relate to the so called curse of dimensionality (Hughes, 

1968). Also, with the increased spatial resolution of new 

hyperspectral imaging sensors, the intra-class variation increases 

and the inter-class- variation decreases both in the spatial and 

spectral domain, leading to lower interpretation accuracies. Due 

to these issues with HSI classification, it is necessary to utilize 

spatial information and to reduce data dimensionality without 

losing desirable information.  

 

* Corresponding Author 

In HSI, dimensionality reduction has two main categories, i.e., 

band selection and feature extraction. In-band selection, we 

obtain a subset of the original bands by minimizing spectral 

redundancy (Yang et al., 2011; Du et al., 2008). The process 

selects an appropriate band subset from the original bands, while 

feature extraction methods preserve essential features through 

mathematical transformations. Some of the most common feature 

extraction method for HSI include principal component analysis 

(PCA) (Rodarmel and Shan, 2002),  Fisher’s Linear discriminant 

analysis (FLDA) (Bandos et al., 2009) and Independent 

component analysis (IDA) (Villa et al., 2011). All these methods 

project the original data into a low-dimensional subspace. 

However, hyperspectral images are considered inherently non-

linear (Bachmann et al., 2005). These linear methods are not 

suitable for the analysis of such data (Han and Goodenough, 

2008). 

 

HSI classification is one of the active areas in the remote sensing 

community. Till the advent of deep learning (DL) in remote 

sensing, researchers have used pertinent machine learning 

algorithms prevalent in computer vision tasks for classifying 

HSI. Gaulteri (1998) carried out classification of HSI using 

SVM. Melagni and Bruzzone (2004) compared the classification 

performance of SVM with two non-parametric classifiers, k-NN 

and RBF kernel based ANN. Chen et al. (2014) first used DL in 

HSI classification where they extracted joint spectral-spatial 

features using multi-layered stacked autoencoders. For 

classification, a logistic regression based classifier was used 

which achieved 97-98% accuracy on the Pavia dataset. Hu et al. 

(2015) then proposed a simple CNN structure with five layers: 

one input, one convolutional, one max pooling, one fully 

connected and one output layer for spectral classification of HSI 

which achieved 90-92% overall accuracy for India Pines, Salinas 

and Pavia University datasets. Later, Chen et al. (2016) proposed 

a 3D CNN which could extract robust feature vectors by 

exploiting both spectral and spatial features of HSI. Mou et al. 

(2017) used RNN with parametric rectified tanh activation  
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function for the first time in HSI data classification which tried 

to employ the sequential property of HSI data for classification.  

 

The rest of this paper is organized as follows: Section 2 presents 

the description of VAE that is used for extraction of spectral 

features. Section 3 presents the description of CNN and 

multinomial logistic regression that are used for spatial feature 

extraction and fine tuning of pre-trained model, respectively. The 

spectral-spatial feature extraction framework for HSI 

classification is introduced in section 4. The experimental results 

are reported in Section 5. We conclude this paper in Section 6 

with some discussions. 

  

2. VAE BACKGROUND 

2.1 Vanilla autoencoder 

A Vanilla autoencoder (figure 1) is an unsupervised neural 

network that attempts to encode input samples into some latent-

space representation so that the inputs can be rebuilt from these 

representations with minimal reconstruction error. It consists of 

three components- encoder, the latent feature vector, and 

decoder. The encoder transforms the input into a latent feature 

vector having lower dimensions than the original input (a form 

of compression) through an encoding function. The decoder then 

tries to reconstruct the initial input by using the latent feature 

vector through a decoding function. Autoencoder is a feed-

forward network which consists of two layers- a hidden layer and 

an output layer where the input and output layer have the same 

number of neurons. The hidden layer has less number of neurons 

than the input layer which forces the network to learn good 

representations of the input. The objective of an autoencoder is 

to regenerate the inputs with minimum reconstruction error.   

 

 

 

Figure 1. Vanilla autoencoder 

 

Suppose we have a set of ‘m’ data points, each having d 

dimensions i.e. (1) (i) ( )
{ ,...., ,...., }

m
x x x  and ( )i dx R . Each training 

sample (i)x  is encoded to a latent space representation (i)h using 

an encoding function. The latent space representation is 

converted back to original training sample (i)x̂ by using a 

decoding function. In neural network terminology, 

 

                (i) (i)
1 1( )h f W x b                                                   (1) 

               
(i) (i)

2 2ˆ ( )x g W h b                                                   (2) 

 

In the above equations 1 2,W W  denote input to hidden and hidden 

to output weights, respectively. b1.b2 denotes the bias of hidden 

and output units, and f(.),g(.) denotes the activation function for 

the encoder and decoder, respectively. As the goal of an 

autoencoder is to have 
(i)x̂  approximate (i)x , the objective 

function is set up as the sum of squared difference between 
(i)x̂

and (i)x  which is also called reconstruction loss: 
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 (3) 

 

which can be minimized using the stochastic gradient descent 

algorithm. (Amari, 1993) 

 

2.2 Variational autoencoder 

The Variational autoencoder (Kingma and Welling, 2013) is a 

generative model (Ng and Jordan, 2001) that allows us to sample 

from a distribution similar to the training data. This can be 

accomplished by specifying a joint distribution over all the 

dimensions of the input. The VAE approach is an extension of 

autoencoder where instead of forcing encoders to create a unique 

encoding, we force the encoder to generate latent feature 

representations that roughly follow a standard normal 

distribution over encodings. The decoder will then sample a 

latent feature vector from this probability distribution and try to 

reconstruct the original input. In practice, there is a trade-off 

between the accuracy of the network and the proximity of its 

latent variables to the standard Normal distribution. For 

evaluation of neural network performance, we sum up two 

distinct losses- a reconstruction loss, which is a mean squared 

error that measures how accurately the network reconstructs the 

input and a latent loss, which is KL divergence (Raiber and 

Kurland, 2017)  that measures to what extent the latent variables 

diverge from a standard normal distribution. The neural network 

aims to minimize these losses with each iteration. 

 

Consider a training dataset X which consist of ‘m’ samples of 

continuous or discrete variables (1) (i) ( )
{ ,...., ,...., }

m
x x x where each 

sample has d dimensions i.e. ( )i dx R . Suppose that the training 

data is generated by a random process involving unobserved 

(latent) continuous random variable z. The data generation 

process consists of two steps: 

(1)  A value (i)z is generated from some prior distribution 
* ( )p z


 

(2)  A value (i)x is generated from some conditional distribution 

* ( | )p x z


 

 

The true parameters θ* of the generative model have to be 

estimated in order to generate new data. So, to represent this 

model, select ( )p z


 to be simple, e.g. Gaussian. However,

( | )p x z


 is complex as it has to be used for image generation. A 

neural network is the best choice for representing this complex 

function which is called a decoder network. For training this 

neural network, we try to learn these model parameters in order 

to maximize the marginal likelihood of training data. 

 

         ( ) ( ) ( | )p x p z p x z dz
  

                                              (4) 

 

Here, ( )p z


is Gaussian prior and ( | )p x z


is decoder neural 

network. But the marginal likelihood ( )p x


is intractable so we 

cannot evaluate ( )p x
. Also the true posterior density 

( | ) ( | ) ( ) ( )p z x p x z p z p x    is intractable due to presence of 

( )p x


in it. These intractabilities appear due to complex 

likelihood function ( | )p x z


which is represented as a neural  
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network with non-linear hidden layer. To solve these 

intractibilities problems, an additional encoder network ( | )q z x


 

(also called variational posterior) is defined that approximates the 

true intractable posterior ( | )p z x


. To know how well the 

variational posterior approximates the true posterior, the KL 

divergence is used which measures the loss in information when 

variational posterior is used to approximate true posterior.  

 

( | )( ( | ) || ( | )) E [log ( | ) log ( , )] log ( )
KL z q z xD q z x p z x q z x p x z p x

      

 (5) 

 

Our goal is to find the variational parameters ϕ that minimize this 

divergence. This allows us to derive a lower bound on the 

marginal likelihood that is tractable and can be optimized. The 

optimal variational posterior is therefore 

 

 *
min ( ( | ) || ( | ))| arg

KL
q D q z x p z xz x

     (6) 

 

However it is intractable due to the presence of ( )p x
 in KL 

divergence. As KL divergence is always ≥ 0, we get 

                       

(z|x) (log ( ) ( , ) E log (x,z) log ( | ))z qp x L p q z x
                   (7) 

 

where L (θ, ϕ) is the variational lower bound on the marginal 

likelihood which can also be written as: 

                    

( | )( , ) E [log ( | )] ( ( | ) || ( ))
KLz q z xL p x z D q z x p z

                 (8) 

 

So, minimizing the intractable KL divergence is equivalent to 

maximizing the variational lower bound on the marginal 

likelihood that is computationally tractable and is our objective 

function. The first part of the objective function (denoted by 

equation 9) represents the quality of reconstruction and the 

second term regularizes the latent space towards the true 

posterior. To optimize the variational lower bound, a Stochastic 

Gradient Variation Bayes (SVGB) estimator is formulated that 

includes a reparameterization trick to allow the SVGB estimator 

to be differentiable (Kingma and Welling, 2013). A basic 

variational encoder network architecture is shown in figure 2. 

 

 
 

Figure 2. Variational autoencoder architecture 

 

3. CONVOLUTION NEURAL NETWORK AND 

MULTINOMIAL LOGISTIC REGRESSION 

BACKGROUND 

3.1 Convolution neural network 

Convolution neural network (CNN) (Lawrence et al., 1997) is 

composed of alternate convolutional and max-pooling layers 

optionally followed by one or more fully connected layers as in  

 

standard multilayer neural network. First, the convolution layer 

extract features through filtering process resulting in a feature 

map. The feature map generated is sub-sampled by the pooling 

layer to generate more general and abstract features. In the final 

stages, various fully connected layers are utilized to generate 

deep features. 

 

The convolution layer takes an image X of dimension m x n x c 

as input where m represents height, n represents width and c 

represents number of spectral channels in an image. For an RGB 

image, the value of c is 3 whereas for HSI, it is in order of 

hundred. The convolution layer consists of k filters or kernels 

denoted as W of size p x p x q such that p is smaller than image 

dimension (both m and n) and q is equal to the number of 

channels. Each kernel is convolved with the input to produce k 

features maps of dimension (m-p+1) x (n-p+1). An additive bias 

denoted as b and a non-linear activation function denoted as f(.) 

are then applied to every feature map. The output of convolution 

layer can be calculated as: 

 

                   
1

( )
c

j i j j

i

a f x w b


   [1, ]j k                             (9) 

 

where wj and bj denotes the jth component of W and b respectively, 

the operator   denotes convolution operation, xi denotes the ith 

feature map of X and aj denotes the jth output of convolution layer 

(Song et al., 2018).  

 

Each feature map is then sub-sampled with either max or mean 

pooling over r x r contiguous regions where r typically ranges 

from two to five. Finally, after a series of successive convolution 

and pooling operations, the resultant features are combined into 

one dimensional feature vector which is passed to the fully 

connected layers and then to the softmax layer (multinomial 

logistic regression) for classification. CNN architecture for 

image classification is shown in figure 3. 

 

 
Figure 3. Convolution neural network (Gandhi, 2018) 

 

3.2 Multinomial logistic regression 

Multinomial logistic regression also called softmax regression is 

a generalization of logistic regression to classification problems 

where the output classes are more than two. It takes the numeric 

features of the dataset as input. For categorical features, suitable 

technique has to be implemented for its conversion to numerical 

features. 

Consider a training set  (1) (1) ( ) (
( , ),..., ( , )

m m
x y x y  of m training 

samples where the input features are 
( )

R
i n

x  and the class 

labels are 
( )

{1, 2,...... }
i

y c where c denotes number of classes. 

For a given test input x, the hypothesis estimates  ( )
|

i
P y c x

for each c value i.e. the probability of the class label taking each 

of the c possible class outcomes. The hypothesis thus gives a c 

dimensional vector containing the c estimated probabilities 
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(which sums up to one) as output. The hypothesis hθ(x(i)) takes 

the form (Vryniotis, 2013) 
(1) (i)(i)

(i) (2) (i)

( ) (i)

1
(i) ( ) (i)

(i)

exp( )( 1 | ; )
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

     (10)       

 

where (1) (2) ( ), ,.... c nR    are the model parameters and 
( )n cR  denotes all the parameters collectively by 

concatenating (1) (2) ( ), ,.... c   in a column wise manner. 

The Multinomial logistic regression model is formally given by 

(Böhning, 1992) 

         ( ) ( )
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1
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                                  (11) 

And the cost function is defined as: 

   ( ) ( ) ( )
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                          (12) 

where 1{.} is the indicator function such that 1{a true statement} 

= 1 and 1{a false statement} = 0 (Vryniotis, 2013) 

4. METHODOLOGY 

The proposed spectral-spatial framework can be divided into 3 

steps as indicated through flowchart in figure 4. 

1) Extraction of spectral features using variational autoencoder 

described in section 2.  

2) Extraction of spatial features using Convolution neural 

network described in section 4. 

3) Stacking of spectral and spatial features to form a joint 

feature followed by softmax regression for classification. 

 

 
 

           Figure 4. Flowchart for proposed framework 

 

4.1 Spectral feature extraction using VAE 

The first step is an unsupervised pre-training step using VAE for 

extraction of spectral features. The VAE model consist of 3 

hidden encoder layers and 3 hidden decoder layers. The hidden 

layer neurons are 150, 100, 60 respectively. The framework for 

spectral feature extraction is shown in fig-7. The network is 

trained using exponential linear unit (ELU) (Clevert et al., 2016) 

activation function and using cross entropy loss function. After 

training, the extracted spectral features are obtained from the last  

hidden encoder layer. 

  

4.2 Spatial feature extraction using CNN 

The steps involved in extraction and processing of hyperspectral 

data are as follows: 

1)  PCA is performed on whole image data and PCs are obtained 

by setting 99.9 percent variance preserving criteria. 

2)  The image obtained after PCA and ground reference image is 

then padded with size 15 at the top, bottom, left and right 

such that the last element along a direction is replicated along 

the whole padding area in that direction. 

3)  A fixed window is selected centred on the non-zero ground 

truth pixels to generate training samples (patches). The 

patches will be sub-images having ground reference 

information corresponding to the centred ground truth pixel. 

(Zhao and Du, 2016) 

 

The CNN model consist of two alternating convolution and 

pooling layers followed by three fully connected layers. The first 

convolution layer has 30 kernels of size 5 x 5 with a stride of 2 

and the second convolution layer has 30 kernels of size 3 x 3 with 

a stride of 2. The number of neurons in fully connected layers are 

1000, 400 and 60 respectively.  

 

Suppose there are M training patches selected randomly from the 

input image and Ti denotes a training sample where 

[1,2,... ]i M whereas li denotes the class label corresponding to 

training patch Ti. The training objective of CNN is to learn the 

filters W and the bias parameter b by minimizing the cross 

entropy loss (Nasr et al., 2002) function using back-propagation 

algorithm. 

 

     
1

min log( ) (1 ) log(1 )
M

i i i i

i

J l y l l


                                    (13) 

 

where      yi = predicted class label for training patch Ti.  

 

In order to avoid overfitting in the model, drop out regularisation 

(Srivastava et al., 2014) is used with 70% retain probability. After 

training, the extracted spatial features are obtained as an output 

of the last fully connected layer. 

 

4.3 Stacking of spectral and spatial feature vectors 

The spectral and spatial feature vectors obtained are stacked 

together to generate the joint feature vector which is passed as an 

input to the softmax layer for calculation of conditional 

probabilities for each class. For a joint feature vector z, the 

probability distribution is calculated (Song et al., 2018). 

 

                   

1

i

i

z

i C
z

i

e
p

e






, i = 1,2,….,C  for C classes.         (14) 

5. RESULTS 

5.1 Dataset description 

For various investigations, two hyperspectral datasets with 

different themes are utilized to validate the proposed spectral-

spatial feature extraction based classification method. The first 

dataset is a mixed vegetation site acquired by the AVIRIS sensor 

over Kennedy Space Centre (KSC), Florida containing 13 land 

cover classes in 224 spectral bands of 10 nm width with a spatial 
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resolution of 18 m. After removal of water absorption and low 

signal to noise ratio (SNR) bands, 176 bands are used for 

classification. The dataset is a 512 × 614 pixels image, in which 

ground reference information of 5211 pixels is available. The 

second dataset is an urban site imaged by the ROSIS sensor over 

the University of Pavia, Italy having nine land cover classes in 

103 spectral bands of 4 nm width with a spatial resolution of 1.3 

m. It is a 610 × 340 pixels image, in which ground reference 

information of 42776 pixels is available. 

 

5.2 Classification accuracy analysis  

For both hyperspectral datasets, we split the image into two sets, 

i.e., training, and testing data, with a split ratio 1:9 i.e., we 

randomly select 10% of the labelled samples as the training set, 

and remaining 90% for the testing sets, respectively. During 

training, we use the training set to learn weights and biases of 

each neuron and the test set is used to produce final classification 

results. In order to quantitatively compare and estimate the 

capabilities of the proposed models, overall accuracy (OA) and 

Kappa coefficient and z-scores are used as performance 

measurement (Congalton and Green, 2009). To perform 

statistical evaluation, we conduct five independent replications of 

the whole process and use the average Kappa coefficient to 

compare the performance among various DL based methods like 

SAE-LR (Chen et al., 2014) and CNN. The accuracy analysis is 

shown in Tables 1 and 2 for Kennedy Space Centre and Pavia 

University images respectively and figures 5 and 6 show the 

classification maps obtained by different methods. The 

classification performance comparison of the proposed 

(VAE+CNN)-LR method with the two other methods is done 

based on the one tailed hypothesis testing, the results of which 

are shown in Table 3. From one tailed test with 95% confidence 

interval, it can be concluded that the proposed method performs 

significantly better than the two other DL methods. 

 

 

 
                               (a)                                                                            (b) 

 

 
                                  (c)                                                                  (d)                                                                      (e) 

Figure 5. Best classification results of the Kennedy Space Centre scene. (a) FCC. (b) Reference map (c)-(e) classification results by 

using SAE-LR, CNN, (VAE+CNN)-LR 

 

 
             (a)                                         (b)                                      (c)                                     (d)                                          (e) 

Figure 6. Best classification results of the Pavia University scene. (a) FCC (b) Ground reference map (c)-(e) classification results by 

using SAE-LR, CNN, (VAE+CNN)-LR 
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SAE - LR CNN (VAE+CNN )- LR 

Producer’s 

Kappa 

User’s Kappa Producer’s 

Kappa 

User’s  Kappa Producer’s 

Kappa 

User’s Kappa 

Scrub 0.9121 
0.0115 

0.9151 
0.0114 

0.9679 
0.0074 

0.8990 
0.0121 

0.9962 
0.0021 

0.9945 
0.0027 

Willow swamp 0.7669 
0.0271 

0.8933 
0.0214 

0.9498 
0.0154 

0.9265 
0.0182 

0.9989 
0.0010 

0.9920 
0.0053 

CP hammock 0.9089 
0.0193 

0.9047 
0.0197 

0.9170 
0.0186 

0.9386 
0.0164 

0.9990 
0.0009 

0.9990 
0.0009 

CP/Oak 0.7242 
0.0307 

0.7041 
0.0309 

0.8135 
0.0261 

0.9274 
0.0186 

0.9861 
0.0077 

0.9971 
0.0022 

Slash pine 0.6761 
0.0383 

0.7097 
0.0381 

0.9283 
0.0217 

0.9557 
0.0176 

0.9940 
0.0040 

0.9776 
0.0108 

Oak/Broadleaf 0.7224 
0.0326 

0.6823 
0.0329 

0.7442 
0.0313 

1.0000 0.9862 
0.0061 

0.9910 
0.0039 

Hardwood 

swamp 
0.8582 
0.0415 

0.6472 
0.0492 

0.9457 
0.0235 

1.0000 0.9978 
0.0021 

1.0000 

Graminoid 

marsh 
0.8755 
0.0171 

0.9074 
0.0153 

0.8495 
0.0189 

0.9403 
0.0132 

0.9937 
0.0041 

0.9914 
0.0047 

Spartina marsh 0.9184 
0.0129 

0.9902 
0.0048 

0.9732 
0.0079 

0.8714 
0.0155 

0.9918 
0.0031 

0.9951 
0.0030 

Cattail marsh 0.9906 
0.0053 

0.9328 
0.0134 

0.9662 
0.0099 

0.8973 
0.0161 

0.9981 
0.0010- 

0.9993 
0.0006 

Salt marsh 0.9827 
0.0069 

0.9827 
0.0069 

0.9970 
0.0029 

0.9685 
0.0093 

1.0000 1.0000 

Mud flats 0.9281 
0.0132 

0.8681 
0.0167 

0.8690 
0.0166 

0.9336 
0.0127 

1.0000 1.0000 

Water 0.9854 
0.0045- 

0.9840 
0.0047 

0.9970 
0.0020 

0.9671 
0.0067 

1.0000 1.0000 

OA 0.9095  0.0041 0.9388  0.0035 0.9966  0.0008 

Kappa 0.8993  0.0046 0.9317  0.0039 0.9962  0.0069 

 

Table 1. Class-wise accuracies of the Kennedy Space Centre (KSC) image  

 

 

Class SAE - LR CNN (VAE+CNN) - LR 

Producer’s 

Kappa 

User’s Kappa Producer’s 

Kappa 

User’s Kappa Producer’s 

Kappa 

User’s Kappa 

Asphalt 0.8633 
0.0048 

0.8403 
0.0050 

0.9695 
0.0024 

0.9304 
0.0035 

0.9967 
0.0007 

0.9956 
0.0009 

Meadows 0.9617 
0.0020 

0.7986 
0.0038 

0.9921 
0.0009 

0.9753 
0.0015 

0.9980 
0.0004 

0.9992 
0.0002 

Gravel 0.5616 
0.0115 

0.6566 
0.0120 

0.8117 
0.0091 

0.8979 
0.0074 

0.9785 
0.0033 

0.9960 
0.0014 

Tree 0.8401 
0.0071 

0.9409 
0.0048 

0.9283 
0.0050 

0.9812 
0.0027 

0.9957 
0.0012 

0.9904 
0.0019 

Metal sheets 0.9867 
0.0033 

0.9991 
0.0008 

0.9956 
0.0019 

0.9939 
0.0022 

0.9981 
0.0012 

0.9967 
0.0016 

Soil 0.5947 
0.0074 

0.9086 
0.0055 

0.9597 
0.0030 

0.9684 
0.0027 

0.9981 
0.0005 

0.9992 
0.0003 

Bitumen 0.5386 
0.0145 

0.8006 
0.0143 

0.9602 
0.0057 

0.9728 
0.0048 

0.9945 
0.0016 

0.9964 
0.0012 

Bricks 0.8553 
0.0064 

0.7405 
0.0073 

0.9584 
0.0036 

0.9344 
0.0044 

0.9969 
0.0010 

0.9907 
0.0017 

Shadow 1.0000 0.9976 
0.0016 

0.8823 
0.0110 

0.9841 
0.0045 

0.9997 
0.0024 

0.9877 
0.0033 

OA 0.8726  0.0016 0.9690  0.0008 0.9971  0.0002 

Kappa 0.8278  0.0022 0.9589  0.0011 0.9962  0.0003 

 

Table 2. Class-wise accuracies of the University of Pavia (PU) image  
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Table 3. Classification performance comparison using kappa coefficient and Z-score 

 

 

6. CONCLUSION 

In this paper, a novel DL-based spectral-spatial framework is 

presented for HSI classification. The proposed method can 

extract more in-depth features. On the basis of z-score, the results 

on two hyperspectral datasets have demonstrated the superiority 

of the proposed method over other widely used DL methods like 

SAE-LR and CNN. For the future works, we propose to 

investigate more DL-based methods for spectral feature 

extraction methods and classification performance analysis both 

in terms of accuracy and time for hyperspectral images of 

different themes.  
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