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Abstract. We evaluate four high-resolution model simula-
tions of pollutant emissions, chemical transformation, and
downwind transport for the Athabasca oil sands using the
Global Environmental Multiscale – Modelling Air-quality
and Chemistry (GEM-MACH) model, and compare model
results with surface monitoring network and aircraft observa-
tions of multiple pollutants, for simulations spanning a time
period corresponding to an aircraft measurement campaign
in the summer of 2013. We have focussed here on the impact
of different representations of the model’s aerosol size distri-
bution and plume-rise parameterization on model results.

The use of a more finely resolved representation of the
aerosol size distribution was found to have a significant im-
pact on model performance, reducing the magnitude of the
original surface PM2.5 negative biases 32 %, from −2.62 to
−1.72 µg m−3.

We compared model predictions of SO2, NO2, and speci-
ated particulate matter concentrations from simulations em-
ploying the commonly used Briggs (1984) plume-rise algo-
rithms to redistribute emissions from large stacks, with stack
plume observations. As in our companion paper (Gordon et
al., 2017), we found that Briggs algorithms based on esti-
mates of atmospheric stability at the stack height resulted
in under-predictions of plume rise, with 116 out of 176 test
cases falling below the model : observation 1 : 2 line, 59 cases
falling within a factor of 2 of the observed plume heights,
and an average model plume height of 289 m compared to
an average observed plume height of 822 m. We used a high-

resolution meteorological model to confirm the presence of
significant horizontal heterogeneity in the local meteorologi-
cal conditions driving plume rise. Using these simulated me-
teorological conditions at the stack locations, we found that
a layered buoyancy approach for estimating plume rise in
stable to neutral atmospheres, coupled with the assumption
of free rise in convectively unstable atmospheres, resulted
in much better model performance relative to observations
(124 out of 176 cases falling within a factor of 2 of the ob-
served plume height, with 69 of these cases above and 55 of
these cases below the 1 : 1 line and within a factor of 2 of
observed values). This is in contrast to our companion paper,
wherein this layered approach (driven by meteorological ob-
servations not co-located with the stacks) showed a relatively
modest impact on predicted plume heights. Persistent issues
with over-fumigation of plumes in the model were linked to
a more rapid decrease in simulated temperature with increas-
ing height than was observed. This in turn may have led to
overestimates of near-surface diffusivity, resulting in exces-
sive fumigation.

1 Introduction

Forecast ensembles of regional air-quality models tend to
have relatively poor performance in their predictions of sul-
fur dioxide (SO2), with normalized mean biases in the range
±40 %, Pearson’s correlation coefficients (R) of less than
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0.21, and normalized mean errors of more than 75 % (Makar
et al., 2015b). These scores may be contrasted with those for
atmospheric ozone (O3) of±13 % for normalized mean bias,
R more than 0.6, and normalized mean errors less than 37 %.
SO2 is a primary emitted pollutant (it is not created by pho-
tochemical reactions in the atmosphere), with the majority
of anthropogenic SO2 emissions in the study region coming
from large smokestacks (Zhang et al., 2018). In North Amer-
ica, such “major point sources” are often outfitted with con-
tinuous emissions monitoring system (CEMS) instrumenta-
tion, which provides accurate hourly estimates of the emitted
mass of SO2, as well as estimates of parameters that gov-
ern the buoyancy- or momentum-driven rise of the resulting
plumes, such as the temperature of the emissions, and their
volume flow rate (volume emitted/unit time). Anthropogenic
SO2 emissions are the main source of most atmospheric sul-
fur deposition (Mylona, 1996) (reacting in the gas phase with
the OH radical to create sulfuric acid, and in cloud water
and rain via aqueous chemistry to create bisulfate and sul-
fate ions). The poor performance of SO2 predictions in air-
quality models is therefore a matter of concern and drives
the need to better understand its causes. Some of the poten-
tial reasons for this poor performance include (in-)accuracy
of the (i) emissions information (less likely in cases where
CEMS data are available); (ii) plume-rise parameterization
algorithms (which describe the vertical redistribution of the
emitted mass according to the stack parameters and meteo-
rological conditions – e.g., Briggs, 1984); (iii) errors in me-
teorological forecast variables (including wind speed and di-
rection, as well as those used in calculating plume rise); and
(iv) SO2 loss processes, such as oxidation (as noted above)
and the deposition algorithms and meteorological inputs used
for calculating the SO2 deposition rate. Furthermore, a com-
bination of these factors may drive the relative difference in
model performance between SO2 and O3; we note, for exam-
ple, that tropospheric O3 is a secondary pollutant (driven by
chemical formation and loss rather than direct emissions of
ozone) and hence will be more spatially homogeneous than
SO2, with the implication that forecast accuracy for very lo-
cal conditions will play more of a role in setting the ambient
concentrations of SO2 than O3.

The prevalence of CEMS for SO2 observations in both
Canada and the United States (EPA, 2018) implies that the
CEMS-derived emissions inputs available for model simula-
tions will be well characterized. However, reporting require-
ments vary between the countries. In Canada, emitting fa-
cilities are required to report estimates of their total annual
emissions, as well as typical stack parameters, to the federal
National Pollutant Release Inventory (NPRI, 2018), although
individual Canadian provinces may require more detailed re-
porting. In the United States, CEMS SO2 data are reported
at the national level to the U.S. EPA (EPA, 2015, 2018). In
both countries, estimates of the typical stack volume flow
rate (and/or the stack exit flow velocity) and effluent stack
exit temperatures are reported and used for modelling, in-

stead of hourly estimates recorded by CEMS. In the Cana-
dian province of Alberta, regulatory reporting requirements
include CEMS hourly observations of SO2 and NO2 emis-
sions from selected large stacks, as well as hourly informa-
tion on the stack effluent temperature and volume flow rate.

In our companion paper (Gordon et al., 2017) we note
that past and current regional air-quality transport mod-
els (Im et al., 2015a; Byun and Ching, 1999; Holmes and
Morawska, 2006; Emery et al., 2010) and emissions process-
ing models (CMAS, 2018; Bieser et al., 2011) describe the
buoyancy- and/or momentum-driven vertical redistribution
of emitted mass from stacks using variations on the work
of Briggs (1969, 1975, 1984). In the latter work, observa-
tions of plume rise, stack parameter information, and me-
teorological conditions were used to generate parameteriza-
tions, linking these data to the height gained by the center-
line of atmospheric plumes (the plume height), as well as
the vertical extent of the bulk of the emitted mass about that
centerline. However, subsequent early evaluations of the ac-
curacy of these parameterizations (see VDI, 1985) have had
mixed results, including parameterization estimates averag-
ing 50 % higher than observations (Gielbel, 1979), within
12 and 50 % of observations (Ritmann, 1982), 30 % higher
than observations (England et al., 1976), and 50 % higher
than observations (Hamilton, 1967). Recent studies using
Reynolds-averaged Navier–Stokes and large eddy simula-
tion modelling have shown that the integral model of Briggs
overestimates the plume rise and its overestimation error
increases as the role of atmospheric turbulence increases
(Ashrafi et al., 2017), as well as underestimates of plume rise,
inferred from excessively high predicted surface concentra-
tions (Webster and Thompson, 2002). Our companion paper
made use of different sources of meteorological observations
to drive the Briggs (1984) plume-rise algorithms, as well as
CEMS data and aircraft observations of SO2 plumes from
multiple sources over a 29-day period. There we found that
the Briggs (1984) plume-rise parameterization significantly
underpredicted plume heights in the vicinity of the multiple
large SO2 emissions sources in the Canadian Athabasca oil
sands, with 34 to 52 % of the parameterized heights falling
below half of the observed height, compared to 0 to 11 %
of predicted plume heights being above twice the observed
height, over conditions ranging from neutral through stable
to unstable.

However, in our companion paper we also noted the pres-
ence of considerable spatial heterogeneity in the meteorolog-
ical observations used for the algorithm tests. Temperature
profiles and other data used to define the input parameters for
the Briggs algorithms were taken from two tall meteorologi-
cal towers, a windRASS, and a research aircraft and showed
a substantial variation in the resulting plume height predic-
tions, despite relatively close physical proximity of these
sources of meteorological data (e.g., 8 km distance between
the two meteorological towers). The region under study is
subject to complex meteorological conditions due to the na-
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ture of the terrain (a river valley with up to 800 m of vertical
relief, as well as open pit mines and settling ponds which
may each be tens of km2 in spatial extent). This heterogene-
ity cast some uncertainty on the results of the companion
paper, in that the best application of the plume-rise algo-
rithms would be driven by the meteorology at the location
of the stacks, rather than the location of the available me-
teorological instruments, and the latter suggested substantial
local changes in meteorological conditions. As we show in
the sections which follow, the spatial heterogeneity of me-
teorological conditions has a controlling factor on the pre-
dicted plume rise, and, in contrast to our companion paper,
an approach making use of local temperature gradients be-
tween individual model layers has greatly improved accuracy
in comparison to those inferring atmospheric stability condi-
tions from the conditions at the top of the emitting stacks.

These underpredictions of plume rise are a potential source
of concern, given that they imply that the underlying algo-
rithms will bias SO2 towards lower concentrations. This will
lead to more local rather than long-range sulfur deposition.
Sulfur deposition is the focus of other work examining acid-
ifying deposition associated with emissions sources in Al-
berta (Makar et al., 2018).

The work reported here has four main foci, driven by
the need to evaluate and if possible improve the perfor-
mance of both the algorithms governing plume rise and our
air-quality model (Global Environmental Multiscale – Mod-
elling Air-quality and Chemistry; GEM-MACH) which em-
ploys those algorithms. The main objectives of this study in-
clude (1) an evaluation of the impacts of the plume-rise algo-
rithms on model performance, with the introduction of a new
approach to calculate plume rise being compared to the stan-
dard Briggs (1984) approach; (2) estimation of the impact of
hourly major point stack information on model results; and
(3) an overall evaluation of the model performance using dif-
ferent configurations for the representation of plume-rise and
particle size distributions.

2 Model description

2.1 Model overview

Global Environmental Multiscale – Modelling Air-quality
and Chemistry (GEM-MACH) is Environment and Cli-
mate Change Canada’s comprehensive online air-quality and
chemical transport modelling system, currently in its second
major revision. The model consists of an atmospheric chem-
istry module (Moran et al., 2010), tightly coupled with the
dynamical core and residing within the physics module of
the Global Environmental Multiscale (GEM) weather fore-
cast model (Côté et al., 1998a, b; Girard et al., 2014). Emis-
sions for the model are provided using an emissions pro-
cessing system based on SMOKE – Sparse Matrix Oper-
ator Kernel Emissions (Coats, 1996). GEM-MACHv2 is a

multiscale model designed and exercised in a wide range of
scales, from global chemical transport modelling to regional
air-quality modelling with direct and indirect feedbacks be-
tween (i) chemistry and meteorology (Makar et al., 2015a, b)
and (ii) urban-scale air-quality modelling (Munoz-Alpizar et
al., 2017). The physical and chemical processes represented
in the model regional air-quality prediction system are sum-
marized in Table 1. The main chemical components are the
ADOM-II gas-phase chemistry mechanism using the Young
and Boris solver and the aerosol module which includes pro-
cess representation for particle nucleation, condensation, and
coagulation (Gong et al., 2003a, b), and deposition (Zhang et
al., 2001). Additional aerosol processes include cloud scav-
enging and in-cloud aqueous-phase chemistry (Gong et al.,
2006), as well as equilibrium inorganic gas-aerosol parti-
tioning (HETV scheme; Makar et al., 2003). Eight aerosol
species are included in GEM-MACH: particle sulfate, ni-
trate, ammonium, primary organic carbon, secondary organic
carbon, elemental and/or black carbon, sea-salt, and crustal
material. The model also features experimental options for
feedback between weather and air quality in 12-bin mode
(Makar et al., 2015a ,b). More detailed descriptions of GEM-
MACH may be found in Makar et al. (2015a, b) and Im et
al. (2015a, b). We discuss elsewhere in this special issue the
use of GEM-MACH for acid deposition estimates (Makar
et al., 2018), bi-directional fluxes of ammonia to the boreal
forest (Whaley et al., 2018), the impact of updated emis-
sions of volatile organic compounds, and organic particulate
matter (Zhang et al., 2018) on model performance for these
species (Stroud et al., 2018). The vertical transport of heat,
moisture, and momentum by turbulent eddies are represented
by enhanced vertical diffusion and is based on the turbulent
kinetic energy (TKE) closure scheme (Mailhot and Benoit,
1982) in the GEM model physics module. The same numer-
ical scheme and coefficients of vertical diffusivity are used
for the diffusive transport of chemical species within GEM-
MACH. Table 1 provides an overview of the main processes
represented in the atmospheric physics components of the
GEM weather forecast model upon which GEM-MACH is
based.

2.2 Model setup and configurations

A 2-bin simulation of GEM-MACH running in a nested con-
figuration from a North American 10 km resolution forecast
to a 2.5 km Alberta and Saskatchewan domain has been in
continuous experimental forecast mode since October 2012,
and this configuration is also used for operational forecasts
by Environment and Climate Change Canada. While the 2-
bin simulation reduces computational processing time by
25 % in the current version of GEM-MACH, we investigate
here the effect of this configuration on model accuracy rela-
tive to observations, employing the GEM-MACHv2 model
in the oil sands 2.5 km nested system using the more de-
tailed 12-bin aerosol size distribution configuration. We have
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Table 1. A summary of the main physical and chemical processes represented in the GEM-MACH regional model.

Condensation
scheme

Convective
parameteriza-
tion

Aerosol scheme Radiative
transfer

Boundary layer
parameteriza-
tion

Surface
processes

Gas-phase mech-
anism

Gas-phase
deposition

Two-moment
cloud
microphysics
(Milbrandt and
Yau, 2005a, b)

Kain and
Fritsch (1990)
and Kain
(2004)

Canadian
Aerosol
Module (CAM);
sectional 2 or
12 bins (Gong et
al., 2003a, b)

Li and Barker
(2005

Moist-TKE
closure scheme
(Mailhot and
Benoit, 1982)

ISBA2 (Belair
et al., 2003a, b)

42-species
ADOM-II mech-
anism (Lurmann
et al., 1986)

Jarvis (1976),
Wesely (1989),
Zhang et al. (2002,
2003)

carried out a set of retrospective simulations targeting the
JOSM (the Governments of Canada and Alberta Joint Oil
Sands Monitoring program) summer 2013 intensive cam-
paign period (JOSM, 2011). The outer 10 km horizontal-
resolution domain, which covers most of continental Canada
and United States, was configured with 82 vertical levels and
a 5 min physics/15 min chemistry time step, with the chemi-
cal boundary and initial conditions provided by MOZART-
4 climatology (Emmons et al., 2010), and meteorological
boundary and initial conditions provided by the GEM-based
Regional Deterministic Prediction System (RDPS, Caron
and Anselmo, 2014). The RDPS itself was driven by mete-
orological analyses generated using data assimilation. The
RDPS was also used to drive a 2.5 km horizontal-resolution
regional weather-only simulation, using a modified GEM
High-Resolution Deterministic Prediction System configu-
ration (HRDPS, Charron et al., 2012). Both the modified
HRDPS and the 10 km resolution GEM-MACH produced
36 h simulations, the last 24 h of which were used to pro-
vide the respective meteorological and chemical boundary
conditions for a 24 h GEM-MACH 2.5 km resolution sim-
ulation (which was configured with 64 vertical levels, with
the underlying meteorology model operating on a 1 min time
step and the chemistry module being called every second
chemistry step). The use of the HRDPS in this fashion al-
lowed each GEM-MACH 2.5 km simulation to commence
from a spun-up state for its cloud variables. For the chemical
species, the last hour of each 24 h simulation was used to pro-
vide initial conditions for the subsequent GEM-MACH simu-
lation. This provided continuity of the chemical fields across
subsequent 24 h simulations. The GEM-MACH 10 km sim-
ulation and the HRDPS 2.5 km simulations, updated every
24 h, provided ongoing boundary conditions and hence con-
tinuity with the meteorological analysis, thus preventing the
high-resolution meteorology from drifting chaotically from
the analyses. The GEM-MACH 10km, HRDPS, and GEM-
MACH 2.5 km domains are shown in Fig. 1. The retrospec-
tive simulations were carried out for the period 1 August
2013 to 10 September 2013, with the first 7 days’ results dis-
carded as model spin-up time.

The emissions used in our simulations were processed
from inventory data from different sources, including the
Canadian National Pollutant Release Inventory and Air Pol-

lutant Emissions Inventory (APEI) data for 2013, within-
facility specific 2010 data from the Cumulative Environ-
mental Management Association (CEMA), and hourly con-
tinuous emissions monitoring observations for hourly major
point emissions of SO2 and NO2 for the province of Alberta
(Alberta Environment and Parks). The latter sources account
for 77 and 43 % of total SO2 and NOx emissions, respec-
tively, from all NPRI point sources in Alberta, and 99 and
39 %, respectively, for sources of these compounds solely
within the Athabasca oil sands area (Zhang et al., 2018). The
same set of emissions was used for all the simulation scenar-
ios carried out for this study. The emissions set is discussed
in detail in Zhang et al. (2015, 2018). In the emissions pro-
cessing, aerosols were chemically speciated for the 12-bin
size distribution; the resulting emissions files were summed
to the 2-bin distribution for the 2-bin simulations discussed
below.

For the purpose of this study we have carried out four sets
of model simulations in order to evaluate the impact of (oper-
ational) 2-bin versus 12-bin aerosol size distribution, and of
different algorithms for plume rise, on model performance.

2.2.1 The 2-bin versus 12-bin model scenarios

Gong et al. (2003a, b) showed that a 12-bin sectional model
is sufficient to accurately predict both aerosol number con-
centration and mass size distributions for most prevalent at-
mospheric conditions. However, because of the high compu-
tational cost and the requirement for a fast turnaround de-
manded in operational systems, the operational forecast con-
figuration of GEM-MACH employs a 2-bin aerosol size dis-
tribution (bins bordered by diameter size cuts 0.01, 2.56, and
10.24 µm), with sub-binning used for those aerosol micro-
physical processes requiring more detailed aerosol sizing,
such as nucleation (Moran et al., 2010). The 12-bin configu-
ration (bins bordered by diameter size cuts 0.01, 0.02, 0.04,
0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, and
40.96 µm) has been used for research purposes such as in-
vestigating aerosol–weather feedbacks (Makar et al., 2015a,
b). Here, both aerosol size distributions were used for 10 and
2.5 km resolution nested simulations. The first two of our
simulations are thus referred to as 2-bin and 12-bin, and both
make use of the original plume-rise algorithms employed
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Figure 1. Schematic diagram showing the model simulation domains in the nested 2.5 km resolution setup in the right panel. (a) Light
blue outermost domain: GEM-MACH 10 km resolution North American forecast. (b) Dark blue domain: HRDPS 2.5 km weather forecast.
(c) Green innermost domain: GEM-MACH 2.5 km forecast. Panel (b) is a Google-Earth-referenced image showing the locations of the
surface observations used in the study in coloured dots. Panel (c) is a Google-Earth-referenced image showing all 22 flight paths covered
during the JOSM 2013 flight campaign.

in GEM-MACH (and described below). These simulations
were compared to determine the relative impact of the more
detailed size distribution on model performance relative to
observations.

2.2.2 Plume-rise algorithms: two alternative
approaches

As noted earlier, the set of empirical formulations and algo-
rithms developed by Briggs (1984) for evaluating the plume-
rise height of major point source emissions has been the
basis of plume-rise calculations in several chemistry trans-
port models such as GEM-MACH (Moran et al., 2010) and
CMAQ/CMAx (Byun and Schere, 2006), as well as in regu-
latory air dispersion models such as AEROPOL (Kaasik and
Kimmel, 2003) and CALPUFF (Levy et al., 2002). However,
the details of how Briggs’ algorithms were implemented may
vary – we therefore provide the details of the GEM-MACH
implementation below. We follow with a revised plume-rise
calculation procedure which in our subsequent evaluation is
demonstrated to provide a more accurate estimation of final
plume height. Our 12-bin simulation noted above makes use
of the original algorithm, while we refer to the revised algo-
rithm as plume rise in our subsequent discussion.

The original implementation of the plume-rise algo-
rithm in GEM-MACH is based on the set of equations in
Briggs (1984) which calculate the plume-rise height above
the top of the emitting stack, 1h, based on the atmospheric
turbulence characteristics at the stack location. The formulae
rely on a local estimation of the state of the atmosphere in
the vertical at that location; the atmospheric stability, tem-
perature gradients, and resulting formulae for plume height
are predicated on the assumption that these stack height con-
ditions will continue throughout the atmospheric column un-
til the maximum plume height is reached. However, in cases
of more complex atmospheric conditions, where these con-
ditions change significantly with height, the formulae may
become inaccurate.

The equations depend on atmospheric stability param-
eters calculated in the meteorological module of the air-
quality model and include the boundary layer height (H ),
the Monin–Obhukov length (L), the surface wind friction
velocity (u∗), the atmospheric temperature (Ta) and its gra-
dient (1Ta/1z), and the wind speed (U ) at the stack height.
An important parameter in the plume-rise formulations is the
emitted plume’s initial buoyancy flux (Fb), which is depen-
dent on the stack exit temperature (Ts) and the stack’s exit
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volume flow rate (V ), and is given by

Fb =
g

π
V
Ts− Ta

Ts
, (1)

where g is the acceleration due to gravity. The emitted plume
is buoyant and rises if Ts > Ta; Fb is set to zero if Ts < Ta. If
the stack height is within the predicted boundary layer depth
(hs < h), the plume rise is calculated based on the stabil-
ity regimes at the stack height model level by the following
equations.
For unstable conditions (−0.25hs < L< 0),

1h=min

[
3
(
Fb

U

) 3
5
H
−

2
5

∗ , 30
(
Fb

U

) 3
5
]
. (2)

For stable conditions (0< L< 2hs),

1h= 2.6
(
Fb

Us

) 1
3
. (3)

And for neutral conditions (L > 2hs and L <−0.25hs),

1h=min

39
F

3
5

b
U
, 1.2

(
Fb

u2
∗U

) 3
5
(
hs+ 1.3

Fb

u∗U

) 2
5

 , (4)

whereH∗ =−2.5u3
∗/L is the convective-scale parameter and

s is the stability parameter approximated by

s =
g

Ta

(
1Ta

1z
+
g

cp

)
, (5)

where 1Ta/1z is the vertical temperature gradient between
the atmospheric temperature at the top of the stack and the
temperature at the top of the model layer. We note here that
some air-quality model implementations make use of one or
the other formula of Eqs. (2) and (4), as opposed to the min-
imum chosen here. In our companion paper (Gordon et al.,
2017) we show that these differences have little impact on
the calculated plume height.

The model also incorporates the potential for the buoyant
plume to penetrate the top of the boundary layer (Hanna and
Paine, 1988), which is accounted for by calculating the pen-
etration parameter P and using it to further adjust the plume-
rise 1h calculated through the above formulae as

P =


1,

H −hs

1h
≤ 0.5

1.5−
H −hs

1h
, 0.5<

H −hs

1h
≤ 1.5

0,
H −hs

1h
≥ 1.5

, (6)

where H is the height of the boundary layer. The plume rise
calculated earlier is then reset via

1h=min[(0.62+ 0.38P)(H −hs) , 1h] . (7)

Once the final value of the plume-rise 1h is calculated, the
vertical spread of the plume and the emitted mass is then
evaluated by using a common method from Briggs (1975) to
specify the height of the top and bottom of the plume as

ht = hs+ 1.51h,
hb = hs− 0.51h. (8)

In GEM-MACH, the plume top is further limited to the
height of the boundary layer (H ), if the penetration P > 0.
During unstable conditions, the plume bottom is set to zero
(the surface); that is, the plume is assumed to mix uniformly
throughout the boundary layer. We also note that the mass
emitted into the plume is assumed to mix uniformly between
ht and hb; this is in contrast to the approach of Turner et
al. (1991), wherein a top-hat distribution centred on hs was
assumed, or the Gaussian distribution based on unpublished
observations described in Byun and Ching (1999).

As described above, the original plume-rise algorithm im-
plemented in GEM-MACH does not account for potential
changes in plume rise associated with the vertical variation
in the atmospheric temperature and stability, which could
be important for plume buoyancy especially during unstable
conditions where the boundary layer depth could be much
higher than the stack height. Similarly, changes in stability
with height will affect plume rise. As reported in Gordon
et al. (2017), when meteorological observations collected at
oil sands sites are used to drive Eqs. (1) through (5), the es-
timated plume heights were often underestimated, with be-
tween 37 and 52 % of calculated values being less than 1/2
the observed height.

However, other approaches, which take into account the
variation in height associated with atmospheric conditions
in the vertical profile above the emitting stack, are avail-
able. Briggs proposed equations which would make use of
changes in stability between layers and calculate the residual
buoyancy flux between layers in the atmosphere – these are
particularly amenable to the layered structure of atmospheric
models (Briggs, 1984, Eqs. 8.84 and 8.85). This new algo-
rithm is similar to other layer-by-layer approaches available
in CMAQ (Byun and Ching, 1999), based on the hesitant-
plume algorithm described in Turner et al. (1991) and in dis-
persion modelling work by Erbrink (1994). In the new algo-
rithm (hereafter referred to as the revised Briggs plume rise
or simply plume rise) we utilized the model’s calculated ver-
tical profile of atmospheric temperature and wind speed to
estimate the plume height as the height at which the emit-
ted plume buoyancy flux dissipates totally. The initial plume
buoyancy flux (Fb) at the top of the stack is calculated using
Eq. (1) above, by using linear interpolation to evaluate the air
temperature (Ta) and wind speed (U ) at the stack height from
the model’s vertical profile. Under (locally) neutral and sta-
ble conditions, the buoyant plume is assumed to rise freely,
and the residual buoyancy flux (Fr) remaining after it as it
crosses the next atmospheric layer is given as follows.
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For vertical plumes,

Fj+1 = Fj − 0.015sjF
1
3
j−1

(
z

8
3
j+1− z

8
3
j

)
, (9a)

and for bent plumes,

Fj+1 = Fj − 0.053sjUj
(
z3
j+1− z

3
j

)
. (9b)

Here, sj is the local stability parameter for a given layer, cal-
culated using Eq. (5) and layer-specific temperature values,
and zj is the plume-rise height when the plume reaches the
bottom of the model’s j th layer. Briggs (1984) recommended
the use of both formulae of Eq. (9), with the formula with the
greatest decrease in flux being used as the final value. Briggs
also noted that the transition to bent plumes happens at a rel-
atively low height above the stack, implying that the residual
buoyancy between layers is lost faster under windy condi-
tions. At the stack height, Fj=0 = Fb and zj = 0 (that is, the
vertical distances are relative to the top of the stack). When
the residual buoyancy flux becomes negative in Eq. (9), in-
dicating that the plume height has been surpassed, the cal-
culation is repeated to find the value of z for which F = 0;
the sum of this and the layer thicknesses transitioned to this
height become the predicted plume rise. In our companion
paper (Gordon et al., 2017), this approach was found to pro-
vide similar results to the original Briggs algorithms when
driven by observations not co-located with the stacks. Our
work here indicates that this algorithm has the potential to
provide a more accurate estimate of plume rise, subject to
caveats described below.

We note that the numerical coefficients in Eq. (9), 0.015
and 0.053, stem from two parameters: the entrainment con-
stant for vertical rise conditions (α), which is the entrain-
ment coefficient for vertical plumes, nominally set to 0.08 by
Briggs based on observations published in 1975 – the param-
eter in the first equation of Eq. (9) is a non-linear function
of this α term; and β ′, the entrainment coefficient internal ra-
dius for bent-over plumes, set by Briggs to 0.4, though ranges
from 0.45 to 0.52 were quoted elsewhere in Briggs (1984).
The choice of these parameters is based on data which are
now over 40 years old and may present an opportunity for
future improvement of this revised plume-rise approach.

The above formula (9) was recommended by Briggs for
conditions which are stable to neutral at the stack height. We
have defined stability in this case by comparing the dry adi-
abatic lapse rate to the local temperature lapse rate predicted
by the model at the stack height and above. Briggs (1984)
provided no equivalent formula for unstable conditions at
the stack height, followed by stable profiles at higher ele-
vations. The approach taken here has been to assume under
convectively unstable conditions the plume rises without loss
of energy (that is, an assumption of zero entrainment) until
the predicted temperature profile once again falls below the
dry adiabatic lapse rate. Our first order approximation is thus
to assume that under unstable conditions there is minimal

mixing entrainment of the rising plume with the surround-
ing atmosphere. This approach differs from that of Turner
et al. (1991) and the layered approach described in Byun
and Ching (1999) where the residual buoyancy flux between
layers is determined using different formulae based on the
model-determined local atmospheric stability.

As in the original algorithm, the plume top and plume bot-
tom are evaluated using Eq. (8) after the final plume rise has
been evaluated. We do not apply the penetration equations
(Eqs. 6 and 7) since these corrections should be unnecessary
in an approach making use of local changes in residual buoy-
ancy. In our companion paper, this algorithm was referred to
as the layered approach.

2.2.3 Hourly emission stack temperature and volume
flow rate

We turn next to the available emissions data for driving the
plume-rise algorithms. Under Canadian federal reporting re-
quirements to the National Pollutant Release Inventory, an-
nual total emissions of SO2 and NOx from facilities are re-
ported, along with a single set of stack parameters (stack
height, stack diameters, average exit temperature, and aver-
age exit velocity) to represent emissions throughout the year.
In addition, hourly continuous emissions monitoring data
from large stacks are reported to the government of Alberta.
These data include the hourly mass of emissions of SO2 and
NO2, as well as hourly estimates of the time-varying stack
parameters (volume flow rates and temperatures).

2.2.4 Simulation scenarios

Our first two simulations use the standard annual NPRI re-
ported stack parameters and the original plume-rise algo-
rithm for the 2-bin and 12-bin aerosol size distributions,
while our second two simulations use the modified plume-
rise algorithm, first with the NPRI stack parameters and sec-
ond with emissions information derived from a combination
of CEMS hourly stack parameters as well as engineering es-
timates of emissions during upset conditions in which the
effluent is redirected to flare stacks (the latter estimates are
considerably more uncertain than the CEMS information but
are nevertheless included here since they result in substantial
changes in pollutant emissions and plume characteristics, see
Zhang et al., 2018). The four scenarios examined are thus de-
scribed as follows.

1. A 2-bin simulation: NPRI stack parameters, 2-bin
aerosol size distribution, and the original plume rise.

2. A 12-bin simulation: as in (1), but employing the 12-bin
aerosol size distribution. Differences between (1) and
(2) thus show the impact of the aerosol size distribution
on performance.

3. A plume-rise simulation: employing the layered plume-
rise algorithm, with emissions as in (2). Differences be-
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tween (2) and (3) thus show the impact of the revised
plume-rise algorithm alone.

4. An hourly simulation: employing the layered plume-
rise algorithm, with volume flow rates and tempera-
tures taken from the hourly CEMS data along with upset
conditions. Differences between (3) and (4) thus show
the impact of the initial buoyancy flux on the resulting
plume rise, using the revised algorithm.

All of these simulations make use of the CEMS-derived
mass of emitted SO2 and NOx .

3 Observations

The comparative statistics presented through this study were
computed using the modStat function from the openair R
package (Carslaw and Ropkins, 2012) for complete pairs of
valid model and observation data. The set of statistical mea-
sures and their formulas are presented in Table 2. Both sur-
face monitoring network and aircraft observations have been
used for model evaluation.

3.1 WBEA surface monitoring networks

For the purpose of model evaluation, we have used hourly
measurements of surface concentrations of PM2.5, SO2,
NO2, and O3 from a network of 10 air-quality monitoring sta-
tions in the province of Alberta managed by the Wood Buf-
falo Environmental Association (WBEA) (see Fig. 1b). The
observation data have been filtered to remove extreme single-
hour measurements that are greater than 150 ppbv for SO2,
NO2, and O3, and 150 µg m−3 for PM2.5 (single-hour spikes
of this nature in hourly records are assumed to correspond
to instrumentation errors or calibration times for the instru-
ments). Observations from 10 August 2013 to 10 September
2013 were selected for comparison to the model results to
align with the period covered by the JOSM 2013 intensive
aircraft measurement campaign.

3.2 JOSM summer 2013 intensive campaign

From 10 August to 10 September, 2013, the National Re-
search Council of Canada Convair aircraft was used as a
mobile measurement platform to sample atmospheric con-
stituents in the region of the Athabasca oil sands, with
22 flights taking place during the given time period (Fig. 1c).
These flights included flight paths designed for emission es-
timation for the study of downwind transport and chemical
transformation and for satellite validation. Emission estima-
tion flights took place around individual facilities at multi-
ple altitudes, with the concentration and meteorological in-
formation gathered subsequently used to estimate fluxes en-
tering and leaving the facility and hence estimate emissions
directly from aircraft observations (Gordon et al., 2015; Li
et al., 2017). Transformation flights were designed to follow

plumes downwind, with observations taken in cross sections
at set distances downwind perpendicular to the plume di-
rection in order to study chemical transformations between
point of emission and downwind receptors (see Liggio et al.,
2016). Satellite validation flights incorporated aircraft ver-
tical spirals at satellite overpass times in order to improve
satellite data retrieval algorithms (Whaley et al., 2018; Shep-
hard et al., 2015). Here, we compare model predictions for
our different simulations for SO2, NO2, and for PM1 sul-
fate, ammonium, and total organics to observations taken on-
board the Convair using TS43, TS42, and Aerodyne aerosol
mass spectrometer (AMS) instruments, respectively. In order
to allow for comparisons to the results from GEM-MACHv2
2.5 km oil sands model domain simulations, 10 s averages of
the aircraft’s positional data (latitude, longitude, elevation,
and time) were created for all 22 flights. These data were in
turn used to extract the corresponding linearly interpolated
values in time and space from the model’s 2 min time step
and 2.5 km resolution for each of the species observed aboard
the aircraft which were used for the model comparison. The
nominal cruise speed of the National Research Council Con-
vair 580 used in the experiment is 550 km h−1; a 10 s time
interval thus represents an observation integration distance
of 1.528 km, and a 2 min time interval represents an observa-
tion integration distance of 18.3 km.

4 Results and discussion

4.1 Spatial heterogeneity of meteorological conditions

We noted in our companion paper (Gordon et al., 2017) that
meteorological observations varied substantially in the study
region depending on location, citing this as a possible con-
founding factor on the results of tests of the plume-rise al-
gorithms. This spatial heterogeneity was well captured by
the high-resolution GEM-MACH simulations, as is demon-
strated by the example depicted in Fig. 2, which shows the
typical local variation in planetary boundary layer height
(Fig. 2a), ranging from about 1200 to 400 m, with the lower
values corresponding to the main cleared areas (open pit
mines, settling ponds) of the industrial facilities. The corre-
sponding temperature profiles in several locations marked in
Fig. 2a are given in Fig. 2b. These show a substantial differ-
ence in model-predicted stability at the three meteorological
observation locations of Gordon et al. (2017) (windRASS,
AMS03, and AMS05) and substantial differences between
these and the locations of the main stacks of some of the fa-
cilities (Syncrude 1, CNRL, and Suncor). The temperature
profiles show that the height and strength of the inversion
may vary by over 100 m in the vertical and that the profiles
do not merge with the larger-scale flow until an elevation of
750 m a.s.l. (450 m a.g.l.) is reached. Given this level of vari-
ation, we might expect potential errors in calculated plume
heights when applying the meteorological observations to
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Table 2. Statistical measures used in comparing model results with observations.

Statistic Formula
Mi =model time series; Oi = observation time series

Number of complete data pair n

Fraction of predictions within FAC2= 0.5≤ Mi
Oi
≤ 2.0

a factor of 2

Mean bias MB= 1
n

N∑
i=1

Mi −Oi

Mean gross error MGE= 1
n

N∑
i=1
|Mi −Oi |

Normalized mean bias NMB=

n∑
i=1

Mi−Oi

n∑
i=1

Oi

Normalized mean gross error NMGE=

n∑
i=1
|Mi−Oi |

n∑
i=1

Oi

Root mean squared error RMSE=


n∑
i=1

(Mi−Oi )
2

n


Correlation coefficient r = 1

(n−1)

n∑
i=1

(
Mi−M
σM

)(
Oi−O
σO

)

Coefficient of efficiency COE= 1.0−

n∑
i=1
|Mi−Oi |

n∑
i=1

∣∣Oi−O∣∣

Index of agreement IOA=



1.0−

n∑
i=1
|Mi−Oi |

c
n∑
i=1

∣∣Oi−O∣∣ , when
n∑
i=1
|Mi −Oi | ≤ c

n∑
i=1

∣∣Oi −O∣∣
c
n∑
i=1

∣∣Oi−O∣∣
n∑
i=1
|Mi−Oi |

− 1.0, when
n∑
i=1
|Mi −Oi |> c

n∑
i=1

∣∣Oi −O∣∣

plume rise at the stack locations, in turn suggesting that a re-
examination of plume rise using the model results is worth-
while.

4.2 The 2-bin versus 12-bin evaluation

We begin our evaluation by comparing the 2-bin and 12-bin
particle size distribution simulations using identical emis-
sions against the Wood Buffalo Environmental Association’s
surface monitoring network PM2.5 measurements. The sta-
tistical comparison between these observations and all the
four model scenarios is shown in Table 3, and the cor-
responding histograms of observations (blue), 2-bin model
simulated values (red), and 12-bin model simulation values
(purple) are shown in Fig. 3. The statistics of Table 3 show
that the 12-bin simulation provides an overall improvement
over the 2-bin model results across all metrics. For example,
the magnitude of the mean bias has decreased from −2.623
to−1.725 µg m−3, a reduction of 34 %, indicating that a size-
able fraction of particulate under-predictions in 2-bin sim-

ulations may be due to poor representation of particle mi-
crophysics through the use of the 2-bin distribution, despite
sub-binning being used in some microphysics processes. The
largest improvement in correlation coefficient and fraction
of predictions within a factor of 2 also takes place going
from the 2-bin to the 12-bin distribution. Figure 3 shows
that the model simulations are biased high for PM2.5 con-
centrations less than 5 µg m−3 and are biased low for higher
concentrations. The use of the 12-bin size distribution (pur-
ple histogram bars, Fig. 3) improves the fit to the observa-
tions (blue histogram bars) in comparison to the 2-bin distri-
bution results (red histogram bars), though significant over-
predictions of the frequency of low concentration events and
under-prediction of high-concentration events remain.

4.3 Plume-rise algorithm evaluation

The simulation with the largest number of highest scores
(boldface numbers in Table 3) is the plume-rise algorithm,
which made use of the revised plume-rise formulation,
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Figure 2. Examination of meteorological heterogeneity in the study area. (a) PBL heights (locations of large emitting stacks shown as circles
and meteorological observation sites as stars). (b) Predicted temperature profiles at these locations and times; symbols indicate locations of
model levels (a terrain-following coordinate system is used in GEM-MACH).

Table 3. Statistical comparison of GEM-MACH model simulation
of surface PM2.5 with measurements from the WBEA observations
between 10 August and 10 September, 2013. Boldface type indi-
cates best score; italics indicates second best score.

Statistic PM2.5 (µg m−3)

2-bin 12-bin Plume rise Hourly

n 6815 6815 6815 6815
FAC2 0.386 0.454 0.456 0.455
MB −2.623 −1.725 −1.813 −1.807
MGE 4.852 4.742 4.690 4.696
NMB −0.390 −0.257 −0.270 −0.269
NMGE 0.722 0.705 0.698 0.699
RMSE 8.447 8.442 8.359 8.363
r 0.122 0.151 0.154 0.155
COE −0.213 −0.185 −0.172 −0.174
IOA 0.394 0.407 0.414 0.413

though the differences in performance between the 12-bin,
plume rise, and hourly simulations are relatively small. The
latter small increment is expected, given that the observa-
tions are relatively close to the sources of primary particulate
emissions, largely from surface sources of fugitive dust (see
Zhang et al., 2018). However, an increment of PM2.5 will
be from secondary sources; about 99 % of the anthropogenic

Figure 3. Histogram of surface PM2.5 using Wood Buffalo Envi-
ronmental Association surface monitoring data (blue) and the 2-bin
(red) and 12-bin (purple) configurations of GEM-MACH. Both sim-
ulations make use of the original Briggs (1984) plume-rise formu-
lation.

SO2 and NH3 emissions and about 40 % of the NOx emis-
sions in the Athabasca oil sands region originate in major
point source stacks. The concentrations of these precursor
species will therefore be influenced by the plume-rise algo-
rithm employed in model simulations, and hence secondary
particulate species originating from these primary emissions
may also be affected by plume rise. The small improvements
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Table 4. Statistical comparison of PM1 sulfate, OA, and ammonium atmospheric concentration from the aircraft AMS with the 2.5 km
resolution GEM-MACH simulations between 13 August and 9 September 2013. Boldface type indicates best score; italics indicates second
best score.

Statistic SO4 (µg m−3) OA (µg m−3) NH4 (µg m−3)

12-bin Plume rise Hourly 12-bin Plume rise Hourly 12-bin Plume rise Hourly

n 24 523 24 523 24 523 24 522 24 522 24 522 24 523 24 523 24 523
FAC2 0.475 0.467 0.466 0.138 0.137 0.137 0.527 0.527 0.525
MB −0.445 −0.489 −0.435 −2.67 −2.669 −2.669 −0.014 −0.034 −0.023
MGE 0.964 0.925 0.959 2.725 2.727 2.727 0.272 0.252 0.261
NMB −0.397 −0.436 −0.388 −0.714 −0.713 −0.713 −0.051 −0.121 −0.081
NMGE 0.861 0.826 0.856 0.728 0.729 0.729 0.976 0.904 0.937
RMSE 4.629 4.592 4.608 3.773 3.773 3.773 1.176 1.124 1.141
r 0.148 0.171 0.175 0.552 0.548 0.549 0.149 0.175 0.178
COE 0.203 0.235 0.207 −0.111 −0.111 −0.111 0.061 0.13 0.099
IOA 0.601 0.618 0.603 0.445 0.444 0.444 0.53 0.565 0.549

in PM2.5 associated with the revised plume-rise algorithm
may thus represent the impact of secondary formation of par-
ticulate sulfate, ammonium, and nitrate from SO2, NH3, and
NOx – the latter having been influenced by the plume-rise
treatment. We examine this possibility using observations of
PM1 particle sulfate and ammonium taken with an aerosol
mass spectrometer aboard the NRCan Convair aircraft.

The aircraft’s AMS instrument measures speciated atmo-
spheric particle concentrations for particles less than 1 µm
size and therefore cannot be compared with the 2-bin model
results because the smaller size bin (with upper diameter size
cut 2.56 µm) will be biased high relative to the 1 µm size cut
of the AMS. While the modelled PM1 organic aerosols (OA)
compared similarly to the AMS measurements for all the
three model scenarios employing 12 particle bins, the PM1
sulfate and ammonium simulations with revised plume-rise
algorithm (plume-rise and hourly simulations) produced bet-
ter scores for most statistics than the simulation employing
the original plume-rise algorithm, as shown in Table 4. Par-
ticulate sulfate largely originates in atmospheric oxidation
of SO2 by the OH radical in these flights – relatively little
sulfate is emitted directly, and aqueous oxidation is largely
absent due to the flights being cloud-free. Particle ammo-
nium levels are closely linked to the sulfate through inor-
ganic chemistry in addition to being emitted by stacks in this
region, and hence the ammonia results are consistent with
the sulfate. The organic aerosols are at this distance down-
wind largely due to formation from area emissions sources
of primary organic aerosol and of precursor volatile organic
compounds to secondary organic aerosol formation, rather
than large stack emissions, and hence are less affected by
the plume-rise treatment. A larger influence of plume rise on
model results is expected for SO2 and NO2, due to the large
fraction of their emissions originating in the large stacks of
the Athabasca oil sands facilities.

The performance of the three model simulations using dif-
ferent plume-rise algorithms, for surface mixing ratios of

Figure 4. Histograms of hourly surface SO2 mixing ratios, in log-
arithmic mixing ratio bins, observations (blue), original plume-rise
algorithm (red), revised plume-rise algorithm (dark purple), revised
plume-rise algorithm driven by hourly CEMS stack data (light pur-
ple). (a) All values; (b) 0.8 to 300 ppbv; (c) 30 to 300 ppbv.

SO2 observed at WBEA stations, is shown in Fig. 4. The
model simulations are biased low for zero concentration lev-
els (first bin, Fig. 4a), are biased high from 0.0 to 0.3 ppbv,
biased low from 0.3 to 1.0 ppbv (Fig. 4a), and biased high for
all concentrations above 1 ppbv (Fig. 4b, c). These last two
ranges (Fig. 4b, c) result from surface fumigation of high-
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Table 5. Statistical comparison of SO2, NO2, and O3 surface volume mixing ratio measurements from the WBEA surface observation
network with the 2.5 km resolution GEM-MACH simulations between 10 August and 10 September 2013.

Statistic SO2 (ppbv) NO2 (ppbv) O3 (ppbv)

12-bin Plume rise Hourly 12-bin Plume rise Hourly 12-bin Plume rise Hourly

n 9457 9457 9457 6516 6516 6516 4384 4384 4384
FAC2 0.226 0.239 0.238 0.324 0.328 0.329 0.778 0.777 0.777
MB 1.215 0.476 0.631 1.006 0.919 0.910 −0.977 −0.907 −0.898
MGE 2.41 1.756 1.906 4.456 4.388 4.384 7.239 7.269 7.271
NMB 1.133 0.444 0.588 0.262 0.239 0.237 −0.051 −0.047 −0.047
NMGE 2.247 1.637 1.777 1.159 1.141 1.140 0.375 0.376 0.377
RMSE 8.99 6.291 7.018 7.742 7.656 7.651 9.690 9.750 9.771
r 0.179 0.227 0.218 0.287 0.287 0.286 0.617 0.613 0.612
COE −0.648 −0.201 −0.304 −0.264 −0.244 −0.243 0.220 0.217 0.217
IOA 0.176 0.399 0.348 0.368 0.378 0.378 0.610 0.609 0.608

concentration plumes in the region studied. While all model
simulations are biased high for these fumigating plumes,
the plume rise and hourly simulations have a reduced bias
compared to the original 12-bin plume-rise algorithm. The
use of the hourly stack parameters derived from continuous
emissions monitoring (hourly) has somewhat worse perfor-
mance than the same plume-rise algorithm driven by annual
reported stack parameters (plume rise).

The SO2 statistics of Table 5 show sometimes substantial
improvements in model performance with the use of the re-
vised plume-rise algorithms, with the mean bias being re-
duced by 61 %, the mean gross error by 27 %, the correla-
tion coefficient increasing by 26 %, and the index of agree-
ment increasing by a factor of 2.26 between the 12-bin and
plume-rise algorithms, and the second best score (italics) out
of the three simulations being the hourly simulation employ-
ing the revised volume flow rates and stack temperatures. For
NO2, the hourly values (employing the hourly volume flow
rates and temperatures) tend to have the best scores, though
the differences between hourly and plume-rise simulations,
where the only difference in the plume treatment is in the
source of data for the initial buoyancy flux, are relatively
small. Both of the primary pollutants have shown a notice-
able improvement in performance with the new plume-rise
treatment, with the pollutant for which most emissions are
from stacks (SO2) having the most noticeable changes.

Ozone, in contrast, is created or destroyed through sec-
ondary chemistry over relatively longer time spans than the
transport time from the sources in this comparison (spatial
scales on the order of tens of kilometres). Accordingly, the
impact of the plume rise of NOx on ozone formation is rela-
tively minor, usually in the third decimal place (though first
decimal place improvements occur for the mean bias with the
use of the new plume-rise algorithm).

Overall, these results suggest that the revised plume-rise
algorithm improves the model surface performance for pri-
mary pollutants largely emitted from stack sources (SO2)

or for which a large proportion of the emitted mass is via
stack sources (NO2). Also, the impact of the hourly volume
flow rates and temperatures versus typical annual values is
relatively small, though it results in a degradation of perfor-
mance.

Statistical comparisons of model results computed against
aircraft observations for SO2, NO2, and O3 for all the flights
in the aircraft campaign are shown in the Table 6. Histograms
of model performance for SO2 aloft are shown in Fig. 5. With
the exception of more negative biases, the two sets of atmo-
spheric SO2 concentrations calculated by the new plume-
rise algorithm driven using annual reported stack parame-
ters again give the best results when compared to the air-
craft measurements, for all statistical measures aside from
the biases (the plume-rise and hourly simulations are biased
lower than the 12-bin simulation). The variations in the sta-
tistical performance between different plume-rise algorithms
aloft are larger than those noted above for the surface obser-
vation comparisons, for the model scenario with plume-rise
and hourly scenarios, with the former having the best overall
performance. A more substantial improvement for NO2 with
the revised plume-rise algorithm may be seen in comparison
to the surface observation evaluation, with larger decreases
in the mean bias, mean gross error, and root mean square
error, and increases in the scores for correlation coefficient,
coefficient of error, and index of agreement, between the 12-
bin and plume-rise simulations. The results for the two sim-
ulations using the new plume-rise algorithm however remain
similar for NO2. It should be noted as well that the model
generally performs better against the aircraft measurements
than the comparisons to the surface observations across all
the statistical measures for NO2, reflecting the aircraft sam-
pling a greater proportion of NO2 mass originating from el-
evated plumes as opposed to surface sources. Similar to the
surface observation comparisons, the atmospheric O3 con-
centration calculated by the various model scenarios shows
very minimal variation in the comparative statistics with the
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Table 6. Comparison of statistical measures of SO2, NO2, and O3 measurements from the aircraft campaign against the 2.5 km resolution
GEM-MACH simulations between 13 August and 10 September 2013.

Statistic TS43 – SO2 (ppbv) TS42 – NO2 (ppbv) TS49 – O3 (ppbv)

12-bin Plume rise Hourly 12-bin Plume rise Hourly 12-bin Plume rise Hourly

n 29 313 29 313 29 313 28 114 28 114 28 114 29 263 29 263 29 263
FAC2 0.233 0.249 0.243 0.300 0.306 0.306 0.953 0.950 0.949
MB −0.186 −0.795 −0.444 0.097 −0.007 −0.007 −1.729 −1.539 −1.536
MGE 4.031 3.438 3.705 1.482 1.362 1.366 8.842 8.915 8.919
NMB −0.057 −0.244 −0.136 0.065 −0.005 −0.005 −0.056 −0.050 −0.050
NMGE 1.237 1.055 1.137 0.988 0.908 0.911 0.287 0.290 0.290
RMSE 14.332 11.153 12.345 3.521 2.951 2.957 11.757 11.961 11.982
r 0.234 0.34 0.317 0.416 0.493 0.491 0.477 0.469 0.468
COE 0.142 0.268 0.211 0.177 0.244 0.241 −0.171 −0.180 −0.181
IOA 0.571 0.634 0.606 0.589 0.622 0.621 0.415 0.410 0.410

Figure 5. Histograms comparing SO2 and NO2 simulations mixing ratios (ppbv) with aircraft observations. (a) All SO2 values. (b) Higher
SO2 mixing ratios. (c) All NO2 values. (d) Higher NO2 mixing ratios. Leftmost histogram bin in panels (a) and (c) correspond to values of
zero.

aircraft observation, with the exception of a marginally bet-
ter correlation coefficient (r = 0.477) for original plume-rise
scenario compared to the result (r = 0.6947) for the new
plume-rise scenarios.

Figure 5 shows the histograms comparing aircraft obser-
vations with the results of the three variations of plume-rise
algorithms for SO2 (Fig. 5a, b) and NO2 (Fig. 5c, d). In con-
trast to Fig. 4, all model simulations for SO2 aloft are biased
low between mixing ratios of 0.3 and 50 ppbv and remain
biased low above 50 ppbv for the plume-rise and hourly sim-
ulations. Thus, model estimates of surface SO2 mixing ratios
(Fig. 3) are biased high, while aloft (Fig. 5a, b) SO2 mixing
ratios are biased low. A similar, though less pronounced, pat-
tern may be seen for NO2 (Fig. 5c, d), with model mixing
ratios aloft biased low for histogram bins between 0.1 and
10 ppbv. All versions of the model thus have a tendency to

underpredict the height of the plumes, overestimating surface
fumigation events and underestimating occurrences when the
plume remains aloft.

The results across the different simulations suggest that the
overall model performance may be hampered by a tendency
to place too much emitted mass close to the surface and in-
sufficient mass aloft. In order to determine possible causes
for this behaviour, we carried out several additional analy-
ses.

First, we examined the 12th flight of the observation study,
which took place between 16:30 and 20:30 UTC (10:30 to
14:30 local time) on 24 August, as a case study to show the
differences between the three simulations examining the im-
pacts of the choice of plume-rise algorithm and its input pa-
rameters. Flight 12 was an emissions flight, with the aircraft
flying around the boundary of a single facility (Syncrude),
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with elevations gradually increasing in two successive sets of
passes around the boundary. Data collected during flights of
this nature were used to estimate emissions from the facility
via calculation of the fluxes into and out of the facility from
the collected data (Gordon et al., 2015). During flight 12, the
aircraft carried out two successive sequences circling the fa-
cility boundaries in gradual upward spirals (between 17:00
to 18:15 and 18:45 to 19:45 UTC), starting at the lowest air-
craft altitude above the surface and gradually increasing in
elevation on each pass around the facility. The SO2 plume
was thus intersected at multiple times and multiple heights
during each of these periods. Figure 6a, b, and c depict the
model-derived SO2 mixing ratio profiles at 10 s intervals in-
terpolated from the aircraft positions as a function of time, as
mixing ratio contours, for the 12-bin, plume-rise, and hourly
scenarios, respectively. The aircraft locations are shown as
coloured dots over-plotted on the background model mixing
ratio contours. Each high mixing ratio spike in the panels
of Fig. 6 thus represents a successive pass through the model
SO2 plume – the change in these plumes as a function of time
may be seen by following the changes in the plume cross
sections in each panel along the x-axis timeline, from left to
right. Between 17:00 and 18:15 UTC, the simulated plumes
are mostly aloft. The 12-bin simulation employing the orig-
inal Briggs algorithm (Fig. 6a) begins to fumigate signifi-
cantly by 17:30 UTC, with higher concentrations reaching
the surface, while for the plume-rise simulation (Fig. 6b) the
plume both reaches higher elevations and experiences sig-
nificantly less fumigation. The hourly simulation (Fig. 6c) is
intermediate between the other two simulations. In the sec-
ond period (18:45 to 19:45 UTC), the fumigation behaviour
becomes more pronounced for all three simulations and once
again is strongest for the 12-bin simulation (Fig. 6a), weakest
for the plume-rise simulation (Fig. 6b), and intermediate for
the hourly simulation (Fig. 6c).

While the aircraft values are difficult to discern in Fig. 6,
the collected aircraft SO2 observation data at successive
plume intersections during each of the two intervals were ex-
tracted from the data record, arranged so that “first plume
intersection” values were vertically aligned, and the vertical
intervals between these successive aircraft passes were lin-
early interpolated in the vertical to yield observation-based
cross sections of SO2 mixing ratios for each of the two time
intervals. These are compared to the model plumes between
17:42 and 17:54 and between 19:08 and 19:20, in Fig. 7a
and b, respectively. In the first interval (Fig. 7a), the ob-
served plume (far right profile) can be seen to be completely
detached from the surface, with concentrations < 3 ppbv lo-
cated below a > 100 ppbv region between 460 and 520 m el-
evation. All three model plumes show more fumigation than
the observations, with the plume-rise simulation showing the
least fumigation of the three simulations and the 12-bin sim-
ulation showing the most fumigation. In the second interval
(Fig. 7b), the observed plume is located significantly higher
than the model plumes (the plume-rise simulation plume is

Figure 6. Model SO2 profile along the aircraft path for flight 12:
(a) 12-bin simulation (original plume-rise algorithm), (b) plume-
rise simulation (revised plume-rise algorithm), and (c) hourly simu-
lation (revised plume-rise algorithm combined with hourly data for
volume flow rates and stack temperatures). Panels (a–c) show model
predictions in the column of the aircraft trajectory as concentration
contours – aircraft-observed values at the aircraft locations at the
given time (in UTC) – are shown as coloured dots over-plotting the
background contours.

the closest of the three in terms of elevation, but all three
model plumes underestimate the plume height by several
hundred metres). While the observed plume during this sec-
ond interval shows some signs of fumigation at the lowest
elevation, the observed concentrations at the lowest aircraft
elevation are less than 30 ppbv, while the lowest model mix-
ing ratios in the fumigation region are approximately 70 ppbv
for the plume-rise simulation and above 100 ppbv for the
other two simulations. The case study thus echoes the sta-
tistical analysis of Figs. 4 and 5: all model simulations tend
to under-predict the plume top and overpredict the extent of
fumigation for flight 12.

While the comparison is encouraging in that both of
the simulations employing the new plume-rise algorithm
(Fig. 7b, c) out-perform the original (Fig. 7a) for most
metrics (Fig. 6f), the use of the CEMS-observed volume
flow rates and temperatures with the new algorithm result
in a degradation of performance, relative to the simulation
making use of annual averages for these parameters. That
is, the believed-to-be-more-realistic stack parameters result
in slightly worse performance, which is a cause for con-
cern. The average of the hourly observed volume flow rates
and temperatures for this facility’s stack during flight 12
are 581.5 m3 s−1 and 472.69 K, respectively, while the cor-
responding annual reported values are 1174.5 m3 s−1 and
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Figure 7. Zoomed-view of Fig. 5. (a) 17:42–17:54 UTC: observa-
tions interpolated from successive flight passes between 17:00 and
18:19 UTC. (b) 19:08–19:20 UTC: observations interpolated from
successive flight passes between 18:42 and 19:45 UTC.

513.2 K. With respect to Eq. (1), the relative ratio of the
buoyancy flux with these two sets of parameters will be

R =
VrTs,o

(
Ts,r− Ta

)
VoTs,r

(
Ts,o− Ta

) , (10)

where the subscripts “r” and “o” indicate the annual reported
and hourly observed values of each quantity. Assuming an
ambient temperature at stack height of 291 K, the value of
R is 2.28; that is, the initial buoyancy flux of the plume-rise
simulation is over double that of the hourly simulation. The
hourly values are believed to be more realistic during the pe-
riod simulated (though include engineering emissions esti-
mates during upset conditions) – the revised algorithm, while
providing better results than the original, thus still has a ten-
dency to under-predict the plume heights. In our companion
paper, we found that the revised algorithm (therein referred to
as the layered approach) had no significant advantages over
the original Briggs algorithms – here we have found this re-
vised approach has considerable benefit, while showing the
same overall tendency to under-predict plume heights as in
our companion paper.

In order to demonstrate the extent to which the plume-
rise values themselves differ between flights, we have com-
pared the calculated plume heights from each of the three
algorithms examined here for eight stacks (located at the
Syncrude, Suncor, and CNRL facilities) against observations
during the course of the study (Fig. 8). The observed plume-
rise values here were derived from estimates of the SO2
plume centres from the aircraft campaign’s emission box
flights as estimated in our companion paper (Gordon et al.,
2017). Despite the differences visible in Figs. 6 and 7, for
flight 12, Fig. 8 shows that the revised algorithm has a sig-
nificant impact on calculated plume heights, greatly increas-
ing the number falling within a factor of 2 of the observa-
tions, while the original algorithm has the majority of cal-

culated plume heights falling below the 1 : 1 line, in accord
with Gordon et al. (2017). However, the impact of the dif-
ferences in volume flow rates and temperatures (Fig. 8b ver-
sus Fig. 8c) is usually relatively minor, with the exception
of a few additional points falling below the 1 : 2 line for the
hourly (Fig. 8c) simulation. Table 7 shows the relative dis-
tribution of the 176 test cases compared in terms of their
distribution about the 1 : 2, 1 : 1, and 2 : 1 lines of the scat-
ter plots of Fig. 8. The revised plume-rise approach results
in a significant improvement in the distribution, and the use
of CEMS data results in a slight further improvement in the
average predicted plume height. We note that the relatively
small differences between Fig. 8b and c, and between the
last two columns of Table 7, imply that the residual buoyancy
approach of Eq. (9) was relatively insensitive to the range of
the initial buoyancy flux resulting from the two sets of emis-
sions data used here, compared to the temperature gradients
in Eq. (5). The large deviation between the annual reported
and measured stack parameters for flight 12 may thus be an
anomaly relative to the entire record across all eight stacks
examined here. Nevertheless, Figs. 4 to 7 suggest that all of
model simulations have a tendency to overestimate fumiga-
tion, so we continued our examination using flight 12 as a
case study.

The model concentrations of primary pollutants are also
modified by vertical diffusion and advection. The use of a
plume-rise algorithm simultaneously with vertical diffusion
implies the potential for double-counting of some proportion
of the vertical mixing, in that the observation-based plume-
rise algorithms de facto incorporate vertical diffusion in their
estimates of plume rise, while air-quality models must apply
diffusion at all model grid-squares, including those in which
plume-rise algorithms have already distributed emitted mass
in the vertical. If the relative impact of vertical diffusion ver-
sus buoyant plume rise is strong, this may result in excessive
vertical mixing, with the model effectively double-counting
the vertical diffusion component of the net rise. The poten-
tial for overestimates of model diffusivity magnitudes result-
ing in excessive vertical mixing to the ground was investi-
gated by carrying out a sensitivity run for flight 12 in which
diffusivities in the column were halved prior to their use in
calculating vertical diffusion. This sensitivity run showed a
minimal impact on model results – the magnitude alone of
vertical diffusion did not influence the fumigation noted be-
low. However, this test did not examine the potential changes
associated with different magnitude changes in diffusivity as
a function of height.

All of the plume-rise algorithms are limited by the ac-
curacy of the online model to accurately predict the mete-
orological quantities required in Eqs. (1) through (9). We
note that the original Briggs algorithms (Eqs. 1 through 8)
are more strongly dependent on the model’s ability to ac-
curately predict meteorological conditions close to the sur-
face, at stack height, as well as bulk parameters such as the
Obukhov length, while the revised algorithm (Eqs. 1, 5, and
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Figure 8. Observed plume-rise heights during aircraft emission box flights compared to model calculated plume-rise using (a) the original
plume-rise algorithm, (b) new plume-rise algorithm, and (c) new plume-rise algorithm and CEMS hourly stack temperature and volume flow
rate.

Table 7. Comparison of model plume-rise performance.

Number (model : observed) Original plume- New plume-rise algorithm New plume-rise algorithm
Total number of comparisons: 176 rise algorithm (layered approach) driven by CEMS data

Below 1 : 2 line 116 24 29
Between 1 : 2 and 1 : 1 line 44 54 55
Between 1 : 1 and 2 : 1 line 15 75 69
Above 2 : 1 line 10 22 22
Average plume height (m) (observed: 822 m) 289 935 914
Ratio of average simulated to observed plume height 0.35 1.13 1.11

9) are more strongly dependent on the model’s ability to ac-
curately predict the temperature profile throughout the col-
umn.

We examined the model’s temperature predictions and
compare them to observations aboard the aircraft in Fig. 9.
Figure 9a shows the model-predicted temperatures in the
columns around the Syncrude facility as colour contours in
height versus time, similar to the mixing ratio cross sec-
tions of Fig. 6. The corresponding aircraft temperatures are
over-plotted on Fig. 9a as coloured dots employing the same
temperature scale as the model values. The aircraft values,
particularly in the first of the two emissions spiral periods
(bracketed by vertical dashed lines in Fig. 9), suggest that
the model temperatures are biased high in the lowest part of
the atmosphere. Fig. 9b shows the temperature cross sections
interpolated from aircraft observations collected during the
portion of the aircraft flight track crossing the SO2 plume to
represent the average temperature profiles in each of the two
regions. The first of these two cross sections shows an ob-
served temperature inversion at the lowest aircraft altitudes,
absent in the model temperature profile. In the second profile
of Fig. 9b, the inversion is no longer apparent. The model-
predicted temperatures in the lowest part of the atmosphere
are also biased high relative to both observation-based tem-
perature cross sections (compare Fig. 9b, which corresponds

to the dashed-line bordered regions of Fig. 9a). Figure 9c and
d show the variation between model and observed tempera-
tures in two other ways: as a pair of temperature time series
during the model flight (Fig. 9c) and as a scatter plot show-
ing the differences in temperature (observed – model) as a
function of height (Fig. 9d).

All of these temperature comparisons suggest that, for
flight 12, the model tended to have positive temperature bi-
ases near the surface – biases which gradually decreased with
height (Fig. 9d). The model atmosphere would thus be ex-
pected to be less stable than the observed atmosphere, with
temperature gradients reduced in magnitude relative to ob-
servations. The model also reported positive values of the
Obukhov length during the period (neutral to stable atmo-
spheres; the Briggs formula employed would be Eqs. 3 or
4), while the smaller magnitude temperature gradients in the
model drives parameter s (Eq. 5) to smaller values. While s
features in the stable atmosphere formula (3), it does not fea-
ture in the neutral atmosphere formula. That is, the original
Briggs formulae are relatively insensitive to errors in the tem-
perature profile in near-neutral conditions, with only a weak
influence via the Fb term. However, the revised algorithms
(Eqs. 9, 1, and 5) will be influenced by the accuracy of the
temperature gradient at every point throughout the temper-
ature profile. This analysis suggests that the original Briggs
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Figure 9. Model versus observed temperatures, flight 12. (a) Background model-predicted temperature profiles with observed temperatures
overlaid (dots) with the same colour scale. (b) Observed temperatures along the portion of the transect containing the plumes, between 17:00
and 18:18 and between 18:32 and 19:45 UTC. (c) Model (red) and observed (black) temperatures as a function of time; (d) temperature
deviation (observations – model) as a function of height, with the red line showing the mean deviation at every 100 m.

algorithms (the 12-bin simulations) will be less influenced
by the temperature errors shown in Fig. 9d, while the revised
approach (plume rise and hourly) will be more influenced by
them, contributing to higher estimates of plume heights.

This particular case study thus places an important caveat
on our results – while the revised plume-rise approach pro-
vides better results and a better estimate of plume rise relative
to the observations, it may be doing so in part in response to
a model overestimate of surface heating and the correspond-
ing reduction in the magnitude of the temperature gradient,
to which the latter algorithm is sensitive and to which the
original Briggs algorithms are less sensitive.

Our final analysis examines the effects of the differ-
ent plume-rise algorithms on the broader region through
comparisons of multi-week average differences of surface
and downwind vertical cross-section mixing ratios of SO2
(Fig. 10). The change in SO2 (plume rise− 12-bin) aver-
age surface mixing ratio and a representative cross section
are shown in Fig. 10a and b, while the corresponding dif-

ferences for the two simulations employing the revised algo-
rithm (hourly− plume rise) are shown in Fig. 10c, d. The first
comparison (Fig. 10a) shows the substantial impact of the
revised plume-rise algorithm relative to the original Briggs
formulation; surface concentrations of SO2 have decreased
over most of the domain, by up to 50 %. The corresponding
cross section (Fig. 10b) shows that most of the SO2 removed
from the surface is transported aloft, resulting in substantial
relative increases in SO2 mixing ratios throughout the lower
troposphere. The second comparison (Fig. 10c, d) shows that
the use of hourly CEMS stack parameter data results in sub-
stantial local increases and decreases – changes in plume
height associated with the use of the hourly stack parame-
ters are sometimes responsible for both positive and negative
changes between +50 and −50 %, relative to the simulation
driven by annual reported stack parameters. The SO2 mass
formerly being carried aloft now fumigates downwind in the
hourly cross section.
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Figure 10. Comparison of model-generated average mixing ratios: percent differences in multi-week averages. (a) Average surface mixing
ratio percent differences for plume rise–12-bin. (b) Average cross-section percent differences along cross-section A→B→C→D for plume
rise–12-bin. (c) Average surface mixing ratio percent differences for hourly–plume rise. (d) Average cross-section percent differences along
cross-section A→B→C→D for hourly–plume rise.

In similar evaluations for NO2 (not shown), percentage
differences of up to 10 % in NO2 surface mixing ratio and
less than 1 % maximum difference in surface ozone mixing
ratio for the 30-day average period were found. The choice
of a plume-rise algorithm thus has a substantial impact on av-
erage surface and lower troposphere concentrations of those
species predominantly emitted from large stacks.

5 Conclusions

We have carried out a set of four model scenarios for a 2.5 km
resolution nested domain using the GEM-MACH air-quality
forecast model for the Athabasca oil sands region of Alberta,
Canada. These scenarios have allowed us to examine the rela-
tive impacts of aerosol size distribution and plume-rise algo-

rithms on model performance, relative to surface and aircraft
observations of multiple chemical species.

While a 2-bin configuration with sub-binning of micro-
physical processes has been employed in the past for opera-
tional forecasting due to computational processing time con-
straints (Moran et al., 2010), we find that the 12-bin configu-
ration has better performance for all surface PM2.5 prediction
metrics, including an overall 34 % reduction in the magnitude
of the bias of PM2.5, for a 25 % increase in processing time.

Comparisons with the model and observed stack plumes
showed that all algorithms tended to under-predict plume
heights, in accord with our companion measurement-driven
investigation of plume rise using the Briggs (1984) plume-
rise algorithm (Gordon et al., 2017). However, in contrast to
that work, significant improvements to model performance
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were found with the adoption of a revised plume-rise algo-
rithm, also based on Briggs (1984), in which local changes
in stability in individual model stable and neutral model lay-
ers are used to calculate the fractional reduction in buoy-
ancy of the rising plume. Tests of the revised algorithm using
annually reported stack parameters and hourly parameters
from a combination of continuous emissions monitoring and
engineering estimates both resulted in significant improve-
ments in model performance in comparison to the original
approach. However, the latter approach was also shown to be
relatively insensitive to the range of initial buoyancy fluxes
resulting from the two different emissions estimates, with the
use of hourly observed (and presumed more accurate) stack
parameters resulting in a slight degradation of performance
relative to the use of annual reported values for these param-
eters. Further investigation using a specific case study sug-
gested that the improvements associated with the revised al-
gorithm may in part be due to model positive biases in lower
atmospheric temperature, resulting in model underestimates
in the magnitude of atmospheric temperature gradients. Nev-
ertheless, the revised approach was found to correct much
of the predominantly negative bias in predicted plume height
seen for Briggs’ original algorithms, correcting the biases in
plume height noted in our companion paper, in which the al-
gorithms were driven using observed meteorology.

Despite these improvements, and the tendency of the
model to underestimate temperature gradients, the model still
over-predicts the extent of fumigation for all plume-rise al-
gorithms tested, implying the need for further work. The re-
vised approach found to be the most favourable in the current
work is based on two key parameters – entrainment coeffi-
cients determined by Briggs from data collected in 1975 to
be approximately 0.08 and 0.4, respectively; we recommend
that these coefficients be re-estimated using more recent data.

Our simulations have shown that the choice of a plume-
rise parameterization has a very significant impact on down-
wind concentrations of SO2 from the oil sands sources, with
the approaches having the more accurate plume heights also
resulting in significant reductions in surface SO2 and in-
creases in SO2 aloft, helping to correct pre-existing posi-
tive and negative biases in the model at these elevations.
Smaller impacts were found for NO2, and minimal impacts
were found for ozone.

Code and data availability. The aircraft observations used in this
study are publicly available on the ECCC data portal (ECCC, 2018).
The hourly surface monitoring network data are from the pub-
lic website of the Wood Buffalo Environmental Monitoring As-
sociation (WBEA, 2018). The model results are available upon
request to Ayodeji Akingunola (ayodeji.akingunola@canada.ca).
GEM-MACH, the atmospheric chemistry library for the GEM nu-
merical atmospheric model (©2007–2013, Air Quality Research
Division and National Prediction Operations Division, Environment
and Climate Change Canada), is a free software which can be re-

distributed and/or modified under the terms of the GNU Lesser
General Public License as published by the Free Software Foun-
dation – either version 2.1 of the license or any later version.
The specific GEM-MACH version used in this work may be ob-
tained on request to ayodeji.akingunola@canada.ca. Much of the
emissions data used in our model are available online: Executive
Summary, Joint Oil Sands Monitoring Program Emissions Inven-
tory report (JOSM, 2016a, b); and Joint Oil Sands Emissions In-
ventory Database (JOSM, 2018). More recent updates may be ob-
tained by contacting Junhua Zhang or Michael D. Moran (jun-
hua.zhang@canada.ca, mike.moran@canada.ca).

Author contributions. AA and PAM were responsible for the study
design and methodology, model simulations, comparison to obser-
vations, and the writing of the manuscript and modifications of the
same. JZ, MDM, and QZ contributed emissions data used in the
modelling. AD and SML contributed aircraft observation data used
for model evaluation. MG contributed aircraft plume height anal-
yses, contributed information on the companion paper, and con-
tributed to the text and revisions of the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue “At-
mospheric emissions from oil sands development and their trans-
port, transformation and deposition (ACP/AMT inter-journal SI)”.
It is not associated with a conference.

Acknowledgements. This project was jointly supported by the
Climate Change and Air Quality Program of Environment and
Climate Change Canada, Alberta Environment and Parks, and the
Oil Sands Monitoring program. The figures in this work were
created using a combination of Environment Canada and Climate
Change software and the openair graphics package (Carslaw and
Ropkins, 2012).

Edited by: Randall Martin
Reviewed by: two anonymous referees

References

Ashrafi, K., Orkomi, A. A., and Motlagh, M. S.: Direct effect of
atmospheric turbulence on plume rise in a neutral atmosphere,
Atmos. Pollut. Res., 8 640–651, 2017.

Belair, S., Crevier, L.-P., Mailhot, J., Bilodeau, B., and Delage, Y.:
Operational implementation of the ISBA land surface scheme in
the Canadian regional weather forecast model, J. Hydrometeo-
rol., 4, 352–370, 2003a.

Belair, S., Brown, R., Mailhot, J., Bilodeau, B., and Crevier, L.-
P.: Operational implementation of the ISBA land surface scheme
in the Canadian regional weather forecast model. Part II: cold
season results, J. Hydrometeorol., 4, 371–386, 2003b.

www.atmos-chem-phys.net/18/8667/2018/ Atmos. Chem. Phys., 18, 8667–8688, 2018



8686 A. Akingunola et al.: A chemical transport model study of plume-rise and particle size distribution

Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Denier van
der Gon, H. A. C.: Vertical emission profiles for Europe based
on plume rise calculations, Environ. Pollut., 159, 2935–2946.
https://doi.org/10.1016/j.envpol.2011.04.030, 2011.

Briggs, G. A.: Plume rise. Report for U.S. Atomic Energy Com-
mission, Critical Review Series, Technical Information Division
report TID-25075, National Technical Information Service, Oak
Ridge, Tennessee, USA, 1969.

Briggs, G. A.: Plume rise predictions, Lectures on air Pollu-
tion and environmental impact analyses, in: Workshop Proceed-
ings, 29 September–3 October, American Meteorological Soci-
ety, Boston, MA, USA, 59–111, 1975.

Briggs, G. A.: Plume rise and buoyancy effects, atmospheric
sciences and power production, in: DOE/TIC-27601
(DE84005177), edited by: Randerson, D., TN, Technical
Information Center, U.S. Dept. of Energy, Oak Ridge, USA,
327–366, 1984.

Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA
Models-3 community multiscale air quality (CMAQ) model-
ing system, US EPA, Office of Research and development,
EPA/600/R-99/030, Washington, D.C., USA, 1999.

Byun, D. W. and Schere, K. L.: Review of the governing equations,
computational algorithms, and other components of the Model-3
Community Multiscale Air Quality (CMAQ) Modeling System,
Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636,
2006.

Caron, J.-F. and Anselmo, D.: Regional Deterministic Pre-
diction System (RDPS) Technical Note, Environment
Canada, Dorval, Quebec, Canada, 40 pp., available at:
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/
docs/lib/technote_rdps-400_20141118_e.pdf (last access:
15 June 2018), 2014.

Carslaw, D. C. and Ropkins, K.: openair – an R package for air qual-
ity data analysis, Environ. Modell. Softw., 27–28, 52–61, 2012.

Charron, M., Polavarapu, S., Buehner, M., Vaillancourt, P. A.,
Charette, C., Roch, M., Morneau, J., Garand, L., Aparicio, J.
M., MacPherson, S., Pellerin, S., St-James, J., and Heilliette, S.:
The Stratospheric Extension of the Canadian Global Determin-
istic Medium-Range Weather Forecasting System and Its Impact
on Tropospheric Forecasts, Mon. Weather Rev., 140, 1924–1944,
https://doi.org/10.1175/MWR-D-11-00097.1, 2012.

CMAS: https://www.cmascenter.org/smoke/, last access: 15 June
2018.

Coats, C. J.: High-performance algorithms in the sparse matrix op-
erator kernel emissions (SMOKE) modeling system, Proceed-
ings of the Ninth AMS Joint Conference on Applications of
Air Pollution Meteorology with AWMA, 28 January–2 Febru-
ary 1996, Atlanta, GA, USA, American Meteorological Society,
584–588, 1996.

Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Stani-
forth, A.: The operational CMC/MRB global environmental mul-
tiscale (GEM) model. Part 1: design considerations and formula-
tion, Mon. Weather Rev., 126, 1373–1395, 1998a.

Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch,
M., and Staniforth, A.: The operational CMC-MRB global envi-
ronment multiscale (GEM) model. Part II: results, Mon. Weathre
Rev., 126, 1397–1418, 1998b.

ECCC: Monitoring air quality in Alberta oil sands, Envi-
ronment and Climate Change Canada, available at: https:

//www.canada.ca/en/environment-climate-change/services/
oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.
html, last access: 15 June 2018.

Emery C., Jung, K., and Yarwood, G.: Implementation of an Alter-
native Plume Rise Methodology in CAMx. Final Report, Work
Order No. 582-7-84005-FY10-20, Environ International Corpo-
ration, Austin, Texas, USA, 41 pp., 2010.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfis-
ter, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison,
D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and eval-
uation of the Model for Ozone and Related chemical Trac-
ers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.

England, W. G., Teuscher, L. H., and Synder, R. B.: A measure-
ment program to determine plume configurations at the Beaver
Gas Turbine Facility, Port Westward, Oregon, J. Air. Poll. Contr.
Assoc., 26, 986–989, 1976.

EPA: Plain English Guide to the Part 75 Rule, available at:
https://www.epa.gov/sites/production/files/2015-05/documents/
plain_english_guide_to_the_part_75_rule.pdf (last access:
15 June 2018), 2015.

EPA: EMC: Continuous Emission Monitoring Sys-
tems, available at: https://www.epa.gov/emc/
emc-continuous-emission-monitoring-systems, last access:
1 February 2018.

Erbrink, H. J.: Plume rise in different atmospheres: A practical
scheme and some comparisons with LIDAR measurements, At-
mos. Environ., 28, 3625–3636, 1994.

Gielbel, J.: Messungen der Abgasfahnenüberhöhung eines
Steinkohlekraftwerkes mit Hilfe von LIDAR (Plume Rise
measurements of a pit coal power plant by means of LIDAR).
Schriftenreihe der Landesanstalt fur Immissionsschutz des
Landes NRW, Essen, Germany, Heft 47, pp. 42/59, 1979 (in
German).

Girard, C., Plante, A., Desgagné, M., Mctaggart-Cowan, R., Côté,
J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A.,
Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and
Zadra, A.: Staggered vertical discretization of the canadian en-
vironmental multiscale (GEM) model using a coordinate of the
log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183–
1196, 2014.

Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian Aerosol
Module (CAM): a size-segregated simulation of atmospheric
aerosol processes for climate and air quality models 2. Global
sea-salt aerosol and its budgets, J. Geophys. Res., 107, 4779,
https://doi.org/10.1029/2001JD002004, 2003a.

Gong, S. L., Barrie, L. A., Blanchet, J.-P., von Salzen, K., Lohmann,
U., Lesins, G., Spacek, L., Zhang, L. M., Girard, E., Lin, H.,
Leaitch, R., Leighton, H., Chylek, P., and Huang, P.: Cana-
dian Aerosol Module: A size-segregated simulation of atmo-
spheric aerosol processes for climate and air quality mod-
els, 1, Module development, J. Geophys. Res., 108, 4007,
https://doi.org/10.1029/2001JD002002, 2003b.

Gong, W., Dastoor, A. P., Bouchet, V. S., Gong, S. L., Makar, P. A.,
Moran, M. D., Pabla, B., Menard, S., Crevier, L.-P., Cousineau,
S., and Venkatesh, S.: Cloud processing of gases and aerosols in
a regional air quality model (AURAMS), Atmos. Res., 82, 248–
275, 2006.

Atmos. Chem. Phys., 18, 8667–8688, 2018 www.atmos-chem-phys.net/18/8667/2018/

https://doi.org/10.1016/j.envpol.2011.04.030
https://doi.org/10.1115/1.2128636
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_rdps-400_20141118_e.pdf
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_rdps-400_20141118_e.pdf
https://doi.org/10.1175/MWR-D-11-00097.1
https://www.cmascenter.org/smoke/
https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.html
https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.html
https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.html
https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.html
https://doi.org/10.5194/gmd-3-43-2010
https://www.epa.gov/sites/production/files/2015-05/documents/plain_english_guide_to_the_part_75_rule.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/plain_english_guide_to_the_part_75_rule.pdf
https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems
https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems
https://doi.org/10.1029/2001JD002004
https://doi.org/10.1029/2001JD002002


A. Akingunola et al.: A chemical transport model study of plume-rise and particle size distribution 8687

Gordon, M., Li, S.-M., Staebler, R., Darlington, A., Hayden, K.,
O’Brien, J., and Wolde, M.: Determining air pollutant emission
rates based on mass balance using airborne measurement data
over the Alberta oil sands operations, Atmos. Meas. Tech., 8,
3745–3765, https://doi.org/10.5194/amt-8-3745-2015, 2015.

Gordon, M., Makar, P. A., Staebler, R. M., Zhang, J., Akingunola,
A., Gong, W., and Li, S.-M.: A Comparison of Plume Rise Algo-
rithms to Stack Plume Measurements in the Athabasca Oil Sands,
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-
1093, in review, 2017.

Hamilton, P. M.: Plume height measurements at Northfleet and
Tilbury power stations, Atmos. Environ., 1, 379–387, 1967.

Hanna, S. R. and Paine, R. J.: Hybrid Plume Dispersion Model
(HPDM) Development and Evaluation, J. Appl. Meteorol., 28,
206–224, 1988.

Holmes, N. S. and Morawska, L.: A review of dispersion modelling
and its application to the dispersion of particles: An overview
of different dispersion models available, Atmos. Environ.,
40, 5902–5928, https://doi.org/10.1016/j.atmosenv.2006.06.003,
2006.

Im, U., Roberto Bianconi, R., Efisio Solazzo, E., Kioutsioukis, I.,
Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D.,
Chemel, C., Curci, G., Flemming, J., Forkel, R., Giordano, L.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba,
O., Knote, C., Kuenen, J.J.P, Makar, P.A., Manders-Groot, A.,
Neal, L, Perez, J.L., Pirovano, G., Pouliot, G., San Jose, R., Sav-
age, N., Schroder, W., Sokhi, R.S., Syrakov, D., Torian, A., Tuc-
cella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang,
Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of oper-
ational on-line-coupled regional air quality models over Europe
and North America in the context of AQMEII phase 2. Part I:
Ozone, Atmos. Environ., 115, 404–420, 2015a.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A.,
Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C.,
Curci, G., van der Gon, H.D., Flemming, J., Forkel, R., Gior-
dano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak,
L., Jorba, O., Knote, C., Makar, P. A., Manders-Groot, A., Neal,
L., Perez, J. L., Pirovano, G., Pouliot, G., San Jose, R., Savage,
N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella,
P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y.,
Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of oper-
ational on-line-coupled regional air quality models over Europe
and North America in the context of AQMEII phase 2. Part II:
Particulate Matter, Atmos. Environ., 115, 421–411, 2015b.

Jarvis, P. G.: The interpretation of the variations in leaf water po-
tential and stomatal conductance found in canopies in the field,
Philos. T. R. Soc. Lon. B, 273, 593–610, 1976.

Joint Oil Sands Monitoring Plan (JOSM): Integrated Mon-
itoring Plan for the Oil Sands: Air Quality Component,
72 pp., available at: http://publications.gc.ca/site/eng/394253/
publication.html (last access: 26 January 2018), 2011.

JOSM: Environment and Climate Change Canada and
Alberta Environment and Parks, Executive Summary,
Joint Oil Sands Monitoring Program Emissions In-
ventory report, available at: https://www.canada.ca/en/
environment-climate-change/services/science-technology/
publications/joint-oil-sands-monitoring-emissions-report.html
(last access: 15 June 2018), 2016a.

JOSM: Environment and Climate Change Canada, AEMERA,
and Alberta Environment and Parks, Joint Oil Sands Mon-
itoring Program Emissions Inventory Compilation Report,
available at: http://aep.alberta.ca/air/reports-data/documents/
JOSM-EmissionsInventoryReport-Jun2016.pdf (last access:
15 June 2018), 2016b.

JOSM: Environment and Climate Change Canada and Alberta
Environment and Parks, Joint Oil Sands Emissions Inventory
Database, available at: http://ec.gc.ca/data_donnees/SSB-OSM_
Air/Air/Emissions_inventory_files/, last access: 15 June 2018.

Kaasik, M. and Kimmel, V.: Validation of the improved AEROPOL
model against the Copenhagen data set, Int. J. Environ. Pollut.,
20, 114–120, https://doi.org/10.1504/IJEP.2003.004256, 2003.

Kain, J. S.: The Kain–Fritsch convective parameterization: an up-
date, J. Appl. Meteorol., 43, 170–181, 2004.

Kain, J. S. and Fritsch, J. M.: A one-dimensional entrain-
ing/detraining plume model and its application in convective pa-
rameterizations, J. Atmos. Sci., 47, 2784–2802, 1990.

Levy, J. I., Spengler, J. D., Hlinka, D., Sullivan, D., and Moon, D.:
Using CALPUFF to evaluate the impacts of power plant emis-
sions in Illinois: mode sensitivity and implications, Atmos. Env-
iron., 36, 1063–1075, 2002.

Li, J. and Barker, H. W.: A radiation algorithm with correlated k-
distribution. Part I: local thermal equilibrium, J. Atmos. Sci., 62,
286–309, 2005.

Li, S.-M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D.,
Wang, D., Hayden, K., Darlington, A., Gordon, M., Staebler, R.,
Makar, P. A., Stroud, C. A., McLaren, R., Liu, P. S. K., O’Brien,
J., Mittermeier, R. L., Zhang, J., Marson, G., Cober, S. G., Wolde,
M., and Wentzell, J. J. B.: Differences between measured and re-
ported volatile organic compound emissions from oil sands facil-
ities in Alberta, Canada, P. Natl. Acad. Sci. USA, 114, E3756–
E3765, 2017.

Liggio, J., Li, S. M., Hayden, K., Taha, Y. M., Stroud, C., Dar-
lington, A., Drollette, B. D., Gordon, M., Lee, P., Liu, P.,
Leithead, A., Moussa, S. G., Wang, D., O’Brien, J., Mitter-
meier, R. L., Brook, J. R., Lu, G., Staebler, R. M., Han,
Y., Tokarek, T. W., Osthoff, H. D., Makar, P. A., Zhang, J.,
Plata, D. L., and Gentner, D. R.: Oil sands operations as a
large source of secondary organic aerosols, Nature, 534, 91–94,
https://doi.org/10.1038/nature17646, 2016.

Lurmann, F. W., Lloyd, A. C., and Atkinson, R.: A chemical mech-
anism for use in long range transport/acid deposition computer
modeling, J. Geophys. Res., 91, 10905–10936, 1986.

Mailhot, J. and Benoit, R.: A finite-element model of the atmo-
spheric boundary layer suitable for use with numerical weather
prediction models, J. Atmos. Sci., 39, 2249–2266, 1982.

Makar, P. A., Bouchet, V. S., and Nenes, A.: Inorganic Chemistry
Calculations using HETV – A Vectorized Solver for the SO2−

4 -
NO−3 -NH+4 system based on the ISORROPIA Algorithms, At-
mos. Environ., 37, 2279–2294, 2003.

Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci,
G., Zabkar, R., Im, U., Balzarini, A., Baro, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, H., Honzak, L., Hou,
A., Jimenz-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Perez, J. L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution
and weather, part 1: Effects on weather, Atmos. Environ., 115,
442–469, 2015a.

www.atmos-chem-phys.net/18/8667/2018/ Atmos. Chem. Phys., 18, 8667–8688, 2018

https://doi.org/10.5194/amt-8-3745-2015
https://doi.org/10.5194/acp-2017-1093
https://doi.org/10.5194/acp-2017-1093
https://doi.org/10.1016/j.atmosenv.2006.06.003
http://publications.gc.ca/site/eng/394253/publication.html
http://publications.gc.ca/site/eng/394253/publication.html
https://www.canada.ca/en/environment-climate-change/services/science-technology/publications/joint-oil-sands-monitoring-emissions-report.html
https://www.canada.ca/en/environment-climate-change/services/science-technology/publications/joint-oil-sands-monitoring-emissions-report.html
https://www.canada.ca/en/environment-climate-change/services/science-technology/publications/joint-oil-sands-monitoring-emissions-report.html
http://aep.alberta.ca/air/reports-data/documents/JOSM-EmissionsInventoryReport-Jun2016.pdf
http://aep.alberta.ca/air/reports-data/documents/JOSM-EmissionsInventoryReport-Jun2016.pdf
http://ec.gc.ca/data_donnees/SSB-OSM_Air/Air/Emissions_inventory_files/
http://ec.gc.ca/data_donnees/SSB-OSM_Air/Air/Emissions_inventory_files/
https://doi.org/10.1504/IJEP.2003.004256
https://doi.org/10.1038/nature17646


8688 A. Akingunola et al.: A chemical transport model study of plume-rise and particle size distribution

Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar,
R., Milbrandt, J., Im, U., Balzarini, A., Baro, R., Bianconi, R.,
Cheung, P., Forkel, R., Gravel, S., Hirtl, H., Honzak, L., Hou,
A., Jimenz-Guerrero, P., Langer, M., Moran, M. D., Pabla, B.,
Perez, J. L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn,
J., Zhang, J., and Galmarini, S.: Feedbacks between air pollution
and weather, part 2: Effects on chemistry, Atmos. Environ., 115,
499–526, 2015b.

Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-
A., Zhang, J., Wong, I., Hayden, K., Li, S.-M., Kirk, J., Scott,
K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah,
P., Pabla, B., Cheung, P., Zheng, Q., and Jeffries, D. S.: Esti-
mates of Exceedances of Critical Loads for Acidifying Deposi-
tion in Alberta and Saskatchewan, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2017-1094, in review, 2018.

Milbrandt, J. A. and Yau, M. K.: A multimoment bulk microphysics
parameterization. Part I: analysis of the role of the spectral shape
parameter, J. Atmos. Sci., 62, 3051–3064, 2005a.

Milbrandt, J. A. and Yau, M. K.: A multimoment bulk microphysics
parameterization. Part II: a proposed three-moment closure and
scheme, J. Atmos. Sci., 62, 3065–3081, 2005b.

Moran, M. D., Ménard, S., Talbot, D., Huang, P., Makar, P. A.,
Gong, W., Landry, H., Gravel, S., Gong, S., Crevier, L.-P.,
Kallaur, A., and Sassi, M.: Particulate-matter forecasting with
GEM-MACH15, a new Canadian air-quality forecast model, in:
Air Pollution Modelling and Its Application XX, edited by:
Steyn, D. G. and Rao, S. T., Springer, Dordrecht, the Nether-
lands, 289–292, 2010.

Munoz-Alpizar, R., Stroud, C., Ren, S., Belair, S., Leroyer, S., Sou-
vanlasy, V., Spacek, L., Pavlovic, R., Davignon, D., and Moran,
M.: Towards an operational high-resolution air quality forecast-
ing at ECCC, 19th EGU General Assembly, EGU2017, 23–
28 April 2017, Vienna, Austria, p. 3063, 2017.

Mylona, S.: Sulphur dioxide emissions in Europe 1880–1991 and
their effect on sulphur concentrations and depositions, Tellus
B, 48, 662–689. https://doi.org/10.1034/j.1600-0889.1996.t01-2-
00005.x, 1996.

NPRI: National Pollutant Release Inventory, available at:
https://www.canada.ca/en/environment-climate-change/
services/national-pollutant-release-inventory/report.html,
last access: 1 February 2018.

Rittmann, B. E.: Application of two-thirds law to plume rise from
industrial-sized sources, Atmos. Environ., 16, 2575–2579, 1982.

Shephard, M. W., McLinden, C. A., Cady-Pereira, K. E., Luo,
M., Moussa, S. G., Leithead, A., Liggio, J., Staebler, R. M.,
Akingunola, A., Makar, P., Lehr, P., Zhang, J., Henze, D. K.,
Millet, D. B., Bash, J. O., Zhu, L., Wells, K. C., Capps, S.
L., Chaliyakunnel, S., Gordon, M., Hayden, K., Brook, J. R.,
Wolde, M., and Li, S.-M.: Tropospheric Emission Spectrome-
ter (TES) satellite observations of ammonia, methanol, formic
acid, and carbon monoxide over the Canadian oil sands: valida-
tion and model evaluation, Atmos. Meas. Tech., 8, 5189–5211,
https://doi.org/10.5194/amt-8-5189-2015, 2015.

Stroud, C. A., Makar, P. A., Zhang, J., Moran, M. D., Akingunola,
A., Li, S.-M., Leithead, A., Hayden, K., and Siu, M.: Air Quality
Predictions using Measurement-Derived Organic Gaseous and
Particle Emissions in a Petrochemical-Dominated Region, At-
mos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-
93, in review, 2018.

Turner, D. B., Bender, L. W., Paumier, J. O., and Boone, P. F.:
Evaluation Of The TUPOS Air Quality Dispersion Model Us-
ing Data From The EPRI Kincaid Field Study, Atmos. Environ.,
25A, 2187–2201, 1991.

VDI: VDI, Ausbreitung von Luftverunreinigungen in der Atmo-
sphäre; Berechnung der Abgasfahnen-überhöhung (Dispersion
of air pollutants in the atmosphere; determination of plume rise)
1985-06, Kommission Reinhaltung der Luft (KRdL) im VDI und
DIN, 1985 – Normenausschuss, available at: http://www.vdi.de
(last access: 15 June 2018), 1985 (in German/English).

WBEA: Historical monitoring data, Wood Buffalo Environmen-
tal Monitoring Association, available at: http://www.wbea.
org/network-and-data/historical-monitoring-data, last access:
15 June 2018.

Webster, H. N. and Thomson, D. J.: Validation of a Lagrangian
model plume rise scheme using the Kincaid data set, Atmos. En-
viron., 36, 5031–5042, 2002.

Wesely, M. L.: Parameterization of surface resistances to gaseous
dry deposition in regional-scale numerical models, Atmos. Envi-
ron., 23, 1293–1304, 1989.

Whaley, C. H., Makar, P. A., Shephard, M. W., Zhang, L., Zhang,
J., Zheng, Q., Akingunola, A., Wentworth, G. R., Murphy, J. G.,
Kharol, S. K., and Cady-Pereira, K. E.: Contributions of natural
and anthropogenic sources to ambient ammonia in the Athabasca
Oil Sands and north-western Canada, Atmos. Chem. Phys., 18,
2011–2034, https://doi.org/10.5194/acp-18-2011-2018, 2018.

Zhang, J., Zheng, Q., Moran, M. D., Makar, P. A., Akingunola,
A., Li, S.-M., Marson, G., Gordon, M., Melick, R., and Cho,
S.: Emissions preparation for high-resolution air quality mod-
elling over the Athabasca oil sands region of Alberta, Canada,
21st Intern. Emissions Inventory Conference, 13–17 April 2015,
San Diego, USA, 18 pp., available at: http://www.epa.gov/
ttn/chief/conference/ei21/session1/zhang_emissions.pdf (last ac-
cess: 18 June 2018), 2015.

Zhang, J., Moran, M. D., Zheng, Q., Makar, P. A., Baratzadeh,
P., Marson, G., Liu, P., and Li, S.-M.: Emissions Prepara-
tion and Analysis for Multiscale Air Quality Modelling over
the Athabasca Oil Sands Region of Alberta, Canada, Atmos.
Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1215, in
review, 2018.

Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated par-
ticle dry deposition scheme for an atmospheric aerosol module,
Atmos. Environ., 35, 549–560, 2001.

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong,
S.: Modelling gaseous dry deposition in AURAMS: a unified re-
gional air-quality modelling system, Atmos. Environ., 36, 537–
560, 2002.

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization
for gaseous dry deposition in air-quality models, Atmos. Chem.
Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003,
2003.

Atmos. Chem. Phys., 18, 8667–8688, 2018 www.atmos-chem-phys.net/18/8667/2018/

https://doi.org/10.5194/acp-2017-1094
https://doi.org/10.1034/j.1600-0889.1996.t01-2-00005.x
https://doi.org/10.1034/j.1600-0889.1996.t01-2-00005.x
https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/report.html
https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/report.html
https://doi.org/10.5194/amt-8-5189-2015
https://doi.org/10.5194/acp-2018-93
https://doi.org/10.5194/acp-2018-93
http://www.vdi.de
http://www.wbea.org/network-and-data/historical-monitoring-data
http://www.wbea.org/network-and-data/historical-monitoring-data
https://doi.org/10.5194/acp-18-2011-2018
http://www.epa.gov/ttn/chief/conference/ei21/session1/zhang_emissions.pdf
http://www.epa.gov/ttn/chief/conference/ei21/session1/zhang_emissions.pdf
https://doi.org/10.5194/acp-2017-1215
https://doi.org/10.5194/acp-3-2067-2003

	Abstract
	Introduction
	Model description
	Model overview
	Model setup and configurations
	The 2-bin versus 12-bin model scenarios
	Plume-rise algorithms: two alternative approaches
	Hourly emission stack temperature and volume flow rate
	Simulation scenarios


	Observations
	WBEA surface monitoring networks
	JOSM summer 2013 intensive campaign

	Results and discussion
	Spatial heterogeneity of meteorological conditions
	The 2-bin versus 12-bin evaluation
	Plume-rise algorithm evaluation

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

