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In the last decade, the cellular Potts model has been extensively used to model

interacting cell systems at the tissue-level. However, in early applications of this model,

cell movement was taken as a consequence of membrane fluctuations due to cell-cell

interactions, or as a response to an external chemotactic gradient. Recent findings have

shown that eukaryotic cells can exhibit persistent displacements across scales larger

than cell size, even in the absence of external signals. Persistent cell motion has been

incorporated to the cellular Potts model by many authors in the context of collective

motion, chemotaxis and morphogenesis. In this paper, we use the cellular Potts model

in combination with a random field applied over each cell. This field promotes a uniform

cell motion in a given direction during a certain time interval, after which the movement

direction changes. The dynamics of the direction is coupled to a first order autoregressive

process. We investigated statistical properties, such as the mean-squared displacement

and spatio-temporal correlations, associated to these self-propelled in silico cells in

different conditions. The proposed model emulates many properties observed in different

experimental setups. By studying low and high density cultures, we find that cell-cell

interactions decrease the effective persistent time.

Keywords: cell motility, cellular Potts model, cell-cell interactions, random walk, cell adhesion

1. INTRODUCTION

Biological development is a clear example of a complex system and is the result of several
morphogenetic processes such as: cell adhesion, cell division, migration, among others [1].
Important insights about the principles involved in the biological development can be extracted
from mathematical models used in many works over the last decade [2]. However, there is still
no standard model to describe interacting cells in all scales. A suitable approach depends on the
spatial and temporal scale associated to the question under study [3, 4]. Continuous models to
study combinations of chemical reaction kinetics and cell mobilities through diffusional processes
have been useful at tissue-level scales [5, 6]. Also, simplified continuous models of self-propelled
particles have been useful to uncover a new kind of phase transition in collective motions [7–12],
(see [13] for a review of motility-induced phase separation).

However, these models could not be adequate to analyze biological processes involving adhesion
and/or changes in cell shapes. On the other hand, cell-based models, such as the lattice-gas
cellular automaton [14, 15] or cellular Potts models (CPM) [16, 17] offer a better choice to
analyze interacting cell systems at the tissue-level. These discrete models usually do not incorporate
physical-chemical processes in detail, since it would imply covering a broad range of scales, and
are not amenable to mathematical analysis. However, particularly CPM has been shown to be
suitable for studying very complex phenomena, via computer simulations. In this sense it has
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been applied successfully in the study of cell sorting in
cellular aggregates [16, 18], morphological development of the
Dictyostelium discoideum slug [19–21], and tumor growth and
angiogenesis [22, 23]. Recently, a continuum limit of the CPM
was proposed to study the role of membrane elasticity on the
migration potential of cancer cells [24].

CPM was introduced by Glazier and Granier in ’90 [16,
18], as an extended large-Q Potts model. CPM considers
individual cells, which can suffer small deformations and volume
changes according to a free energy minimization principle which
drives its dynamics. As a consequence of the small changes
resulting from cell interactions with elements of their immediate
surrounding, the cells perform small displacements (≪ cell size
[25]). Statistical properties of this “passive" movement of in silico
cells in aggregates have also been studied [26, 27]. With this
model, cells perform a randomwalk; i.e., the position and velocity
power spectra correspond to Brownian motion and the velocities
are time-uncorrelated. Although some correlations have been
detected both in Hydra cell aggregates [28] and in Madin-Darby
canine kidney cells [29, 30], this finding is in agreement with
experiments performed with pigmented retinal cells [26].

Cell motion is usually influenced by processes that involve
several components of the cellular migration machinery,
resulting in cell polarization. When the direction of polarization
is maintained in time the cell can perform a persistent
movement. This active movement has been observed in collective
migration both in response to external chemotactic gradients
[31], as well as in the absence of external signals [29, 30, 32–
34]. Persistent polarization, intermittency and changes in the
movement direction are consequently reflected in strong spatial
and temporal correlations [29, 30]. In order to direct cell motion
in the CPM framework, researchers have added terms to the
differential of the Hamiltonian that drive a directional bias of
cell movement. Thus, a term has been introduced to model the
chemotactic response of Dictyostelium cells in response to cAMP
signaling during the slug morphogenesis [35]. Similar bias terms
have been proposed for making cell motility dependent on a
propensity vector, thus modeling persistent, active cell motility
in absence of external fields [33, 36].

In the same direction, it has been used more recently in the
context of collective cell migration or activematter [37, 38]. These
simplified models consider persistent cell motion externally
embedded in the CPM. In contrast, some efforts have been
devoted to build models that include an actin-based mechanism
resulting in cell protrusions and, consequently, in active cell
movement [39], or even more detailed models that integrate the
biochemical reactions and cytoskeleton dynamics to cell motion
[40]. These multiscale models can be used to understand how
molecular-based mechanisms give rise to the epiphenomenon of
persistent cell motion in the absence of external signals.

In this paper, we study the effects of low and high density
cultures in persistent cell movement when external signals are
absent. For this purpose we use the CPM, which considers
cell adhesion and deformation, to better describe cell-cell
interactions. Alternatively, one can use a particle-based model
with volume exclusion, but in our opinion this is not the best way
to consider interaction between cells. Therefore, we propose a
modification in the dynamics of the directional propensity vector

introduced in previous works that consider active cell movement
in the absence of external cues [33, 36]. In this sense, we link the
polarization direction of the cell to an autoregressive process that
changes the migration direction after some characteristic time
τ , and study the dynamics of the resulting cell movements. We
perform computer simulations for different parameter values and
find that the dynamics of these in silico-cell movements resembles
the behavior observed experimentally in the absence of external
signals [34, 41]. We believe that the present modeling approach
can fill the gap between interesting characteristics of the cell
motility (correlations, velocity distributions) and key ingredients,
such as persistence time and cell density.

2. METHODS

2.1. The Model
The CPM has been introduced as an extension of the Potts
model, which is a generalization of the Ising model. The CPM
has been used in literature by many authors to study a wide
range of phenomena, ranging from critical behaviors of bubbles
to cellular arrangements [42]. The model basically consists of a
system of interacting spins σ on a lattice, where the set of all
(adjacent) sites with the same spin defines a cell. Different terms
of energy can be considered according to the purpose of each case
study. In the basic model, the energy E0 is associated with the
cell-cell interaction, cell volumes [18], and cell perimeters [27].
Fluctuations of the membrane allow the cells to explore their
neighborhood. Thus, if the total number of cells is Q, all sites i
where σi = M, with 1 ≤ M ≤ Q, belong to the cell labeled asM.
The energy of any configuration of cells is given by

E0 = −
∑′

i,j

Jσiσj
(

1− δσiσj

)

+

Q
∑

M = 1

κ (AM − A0)
2 +

+

Q
∑

M = 1

Ŵ (LM − L0)
2 , (1)

where the primed sum runs over neighboring site pairs and
δσiσj is the Kronecker delta, and equals one if σi = σj and
zero otherwise. Thus, the first sum is over all neighboring site
pairs of adjacent cells, and represents the boundary energy of
the interacting cells. The second and third sums represent the
energies of area and perimeter elasticities of the cells, respectively,
and are related with the constants κ and Ŵ. In this way, a target
area A0 and a target perimeter L0 are introduced and the sums
are over all cells on the lattice, being AM and LM the area and
perimeter of the cellM. The second and third terms on Equation
(1) are required to generate domains of spins resembling cells,
that will not break nor disappear, in a sustained manner over
time [27]. As we will see later, the presence of a medium, which
interacts with the cells, can also be considered by assigning zero
value to the spin variable σi = 0. Obviously, the medium has
neither target area nor target perimeter.

The system evolves using standardMetropolis algorithm, with
the following variant: a lattice site i is randomly chosen and if it
belongs to the boundary of the cell M, then the site assumes the
spin value of its neighboring cellM′ with probability proportional
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to the Boltzmann factor e(−1E0/kBT), where 1E0 is the change
of energy involved in the proposed update and kBT simulates
the energy associated to membrane fluctuations driven by the
cytoskeleton [18]. At each Monte Carlo step, the total number of
sites is randomly chosen and the probability of the configuration
update is evaluated in each case. Thus, according to Equation
(1), changes in cell shape and cell displacement are a result of
membrane fluctuations alone.

The energy above has been broadly used in CPM to drive
the cell movement [26, 42–44]. However, the terms in Equation
(1) are insufficient to describe active cell motility, characterized
by a persistent direction of cell movement. In order to simulate
the active cell movement we consider an additional term in the
energy, promoting a bias in the cell extensions toward a given
direction, as originally proposed in Savill and Hogeweg [35]. This
term has been broadly used in modeling active cell motion both
in the presence and absence of external cues [21, 33, 36, 37, 45],
acting as a source of energy that drives motility of a given cell M

preferentially along the direction of a driving force
−→
F M . Thus,

the overall energy variation at each Monte Carlo step can be
written as:

1E = 1E0 +

Q
∑

M = 1

−→
F M · 1

−→r M , (2)

where1E0 is the change of energy due to Equation (1) and1
−→r M

represents the displacement of the center of cellM.

The driving force is characterized by a strength F = |
−→
F M|

and a direction denoted by 2M . Here, while the strength is equal
for all cells and constant over time, the driving force direction
is different for each cell and evolves independently of the others.
In fact, 2M is actualized according to the following first-order
autoregressive process:

2M

(

t∗
)

= φ2M

(

t∗ − 1
)

+ 12ǫ
(

t∗
)

, (3)

where t∗ refers to the time of actualization of 2M , which is
different from the Monte Carlo time step used to update the
configuration of the cells. φ and 12 are constant parameters,
that can take values between (0, 1) and (0,π), respectively. ǫ (t)
is a white noise with zero mean and unit variance (σ 2

ǫ = 1).
The stochastic difference Equation (3) can be reinterpreted
in terms of the Ornstein-Uhlenbeck process with media zero,
dx(t) = −λx(t)dt − σdW(t), where dW(t) denotes the Wiener
process. In fact, setting the friction coefficient λ = 1 − φ and
σ = 12, Equation (3) becomes the discrete-time counterpart
of the Ornstein-Uhlenbeck process. Over time, the mean value
and the variance of 2 are 〈2〉 = 0 and σ 2

2 = 122σ 2
ǫ /(1 −

φ2), for φ < 1, respectively. On the other hand, the temporal
autocorrelation of the angle2M , defined by the quotient between
the autocovariance and the variance σ2, is given by

R2 =
〈2(t∗) 2 (t∗ + n)〉

σ 2
2

∼ en lnφ with n = 1, 2, . . . . (4)

Thus, the expected overall time decay for a cell movement in
a given direction is −τ/ lnφ. When φ closes to 0, the time
decay tends to zero and the angle dynamics looks like white

noise. But when φ approaches 1, σ 2
2 → ∞ and the temporal

autocorrelation is large. Equation (3) expresses a putative
dynamics for the driving force direction. Different update rules
have been considered in previous works [33, 36, 37]. In fact we
also explore an alternative one, that includes a positive feedback
loop, in the Results section.

The movements of the cells do not necessarily have the
same direction of the driving force, due both to the stochastic
fluctuations and to cell-cell interactions. For example, if the
driving force is applied on two adjacent cells in opposite
directions and one of them attempts to move in the direction
of the other, there is no contribution to the energy variation. In
order to avoid confusion, we refer to the angle of the driving force
and of displacement of the cellM as 2M and αM , respectively.

2.2. Simulation Details
To compute the energy contribution associated with cell-cell and
cell-medium interactions we consider a neighbor range greater
than one lattice site. Thus, the primed sum in Equation (1)
considers 1st, 2nd, 3rd, and 5th neighbors, which contribute to
the energy Jσiσj with weights proportional to the inverse of their
distances di,j. In short, if σi 6= σj 6= 0, the surface energy Jσiσj =
Jcell−cell/di,j, where Jcell−cell is the cell-cell adhesion constant. On
the other hand, if one of the neighboring sites, i or j, belongs to the
medium, the surface energy is given by Jσiσj = Jcell−medium/di,j,
where Jcell−medium is cell-medium adhesion constant. Therefore,
the first term of Equation (1) contributes to the energy if the sites
i and j belong to different cells or one of them belongs to a cell
and the other to the medium, representing the cell-cell or cell-
medium adhesion, respectively. As cells tend to stick together, we
chose Jcell−cell > Jcell−medium in our simulations, as we will see
next.

The initial configuration is generated by partitioning the
lattice into equal-sized square domains, corresponding to the
cells, each cell containing 16 × 16 lattice sites. The squares
alternate offsets in every other row, so the pattern resembles a
brick wall arranged in common bond. This situation corresponds
to a dense aggregate of cells which have been adopted in most
previous studies. As the diameter of the cell is about 16 pixels,
the parameter L0 and A0 have been set to π × 16 and π × 64,
respectively. For comparison purposes, taking into account that
most eukaryotic animal cells have a diameter between 10 and 30
µm, we can establish the equivalence µm =pixel.

In order to understand the role of cell-cell interactions on the
statistical characterization of locomotion activity, we also study
cellular movement at low and high density cell cultures. To this
end, we assign the same spin value to a number of randomly
chosen cells, σi = 0 associated with the medium. Thus, the zero
spin domain represents the medium, whereas the group of spins
σi = M with 1 ≤ M ≤ Q values, belong to the cell labeled
as M. The density ρ is defined as the quotient between the area
occupied by cells with σi 6= 0 and the total area, thus ρ = 1
implies a lattice fully populated with cells.

Simulations start with a given cell density ρ, allowing for
a “thermalization” time interval on the dynamics to obtain
adequate cellular shapes, during which no motility forces are
applied on cells. In this thermalization interval, of the order of
100 MCS, the configuration is updated through calculating the
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Boltzmann factor e−1E0/kBT according to Equation (1). Once the
system thermalizes, we establish the starting time t = 0 (see
Figure 1). At this point the dynamics starts, with the presence
of the motility force on the cells with constant strength and angle
given by Equation (3). The initial angle of each cell, 2M (0), is
chosen randomly. At each Monte Carlo step the driving force
direction for each cell changes with probability 1/τ according
to Equation (3), where 2M(t∗ − 1) indicates the direction
previous to the actualization. Thus, the change in the driving
force direction 2M occurs at a mean time τ .

For all simulations in this paper, we used periodic boundary
conditions and a square lattice of size 512 × 512 sites. We have
also fixed the parameter values Jcell−cell = 0.1, Jcell−medium = 0.01,
Ŵ = 0.2, κ = 1, 12 = π/3, F = 10, and T = 2; while
we vary the values of parameters ρ, τ and φ in order to study
the dynamics of the resulting cell movement. Figure 1 illustrates
two instances of the simulation at low density culture (ρ = 0.2),

with a driving force
−→
F of constant module and whose direction

is governed by Equation (3). Additionally, the dynamics of the
resulting simulation for low and high density cultures can be seen
in the Supplementary Movies 1, 2, respectively.

Our selection for 12 avoids a preferential rotation of cells,
since the stochastic term in Equation (3) blurs the angle of the
previous time. Then, cells perform randomwalks in the long time
scale as we will show in subsection III-C. For small values of 12

cells can display a preferential rotation, which has been observed
for cells confined in circular micropatterns [38, 46]. However,
the study of geometrical confinement into well-defined circles is
outside the scope of this work.

3. RESULTS

Figure 2 shows four different simulated cell trajectories and
their associated angles on a 2D substrate using our model
with the same parameter values as those used in Figure 1 A
combination of persistent and random cell displacements can be
seen in Figure 2A. These trajectories resemble those traced by
Dictyostelium cells [34], which travel much longer distances than
the typical cell size. It is important to note that a constant driving
force, when applied to an isolated cell, originates a movement of
constant velocity [36]. In this way, the persistent movement in
our model is due to the driving force, that has a constant strength
and is applied with constant direction during a mean time τ , as
discussed before.

The panels of Figure 2B depict the cumulative cell
displacement angle and were obtained by tracking the cell
displacement angles with reference to a fixed system. In general,
over a short time scale, cells move in a certain direction around
which the instantaneous angle direction fluctuates. These
fluctuations are due to the cell membrane movement driven
by the cytoskeleton and also by cell interactions. At large time
scales (> τ ) random changes in the cell direction become more
apparent and they are promoted by the driving force whose
angle actualization is given by Equation (3). Over time, the
cumulative cell displacement angle, in addition to offering the
instantaneous direction of the cell at a given time, also tracks the
entire history of the cell’s directional changes. Therefore, periods

of persistent cell displacement correspond to constant average
angles, while large turns in the cell trajectories are related to large
increases or decreases in the average angles. In this way, cell 4
maintains a relatively persistent movement between 30 and 200
MCS (Figure 2A) which is accompanied by a cell displacement
angle that fluctuates around the constant value α ∼ −0.8π rad
(Figure 2B); and cell 2 presents marked increases and decreases
in α around the first 100 MCS (Figure 2B) that correspond to
different turns in its trajectory (Figure 2A).

3.1. Cell Displacement
We studied several statistical properties associated to the cell
displacement which can be compared with the ones derived
from experimental measures. In this sense, we define the cell
displacement of a cell M, 1

−→r M(t) in a time interval 1t, as
(−→r M(t + 1t)−−→r M(t)

)

. Associated with this cell displacement,
there is a displacement angle αM (t) and a mean velocity
−→v M(t) = 1

−→r M(t)/1t during this interval.
First of all we consider the cell displacement angle α by

using 1t = 1. As shown in the histogram of Figure 3A, cells
can move in any direction with similar probabilities, putting in
evidence that there is not a preferential direction. This histogram
was computed over all cells during a simulation with the same
parameter values as those used in
flreffig1Figure 1. Figure 3B depicts the temporal autocorrelation
function of α, defined as Cα(t) = Zα(t)/Zα(0) where Zα(t) =
〈

αM(t0 + t)αM(t0)
〉

, and the averaging was performed over all
cells. Besides, the dynamics of α has a characteristic time, which
depends on the parameters τ and φ, as suggested by expression
(4) for 2. The characteristic time computed in the exponential
decay region (inset of Figure 3B) is 194 MCS, in agreement with
the theoretical prediction associated to the driving force angle,
−τ/ lnφ = 195 MCS.

Figure 3C depicts a 2D-histogram of the recurrent plot of the
turn angles 1θ(t) vs. 1θ(t + 1), where 1θ(t) = θ(t) − θ(t −
1). This plot shows that two consecutive turn angles are anti-
correlated. This feature of cell motility has also been observed in
experiments with Dictyostelium cells [34].

As observed by Cox [34], some statistical properties associated
with cell movements depend on the time interval 1t considered.
We studied the distribution of the cell velocity components vx
and vy for different time intervals 1t = 1, 3, 10, and 60 MCS.
Figure 4 illustrates the distribution of cell velocities for φ =

0.95, τ = 10 and two different densities: ρ = 0.2 (Figure 4A)
and ρ = 0.9 (Figure 4B). These distributions were obtained by
tracking 51 cells (chosen at random). For 1t = 1, the velocity
distributions for both densities are quite similar, resembling
Gaussian distributions, but with small gaps in the centers of
the plots. However, as 1t increases, the difference between the
distributions of the cell velocity components obtained at low and
high densities becomes more apparent. When 1t approaches to
τ , the gap in the center increases for ρ = 0.2, but not for ρ = 0.9,
where it is quite smaller and only apparent for 1t = 3. In fact,
the difference between low and high densities is more evident
when 1t = τ , indicating that this is an adequate time interval
size to characterize the underlying dynamics. Similar results were
obtained from simulations by using τ = 50 (Supplementary
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FIGURE 1 | Typical snapshots of a simulation carried out on a lattice of 512× 512 sites at two different times: (A) initial time (t = 0) in which the dynamic starts with

the presence of driving forces acting on each cell, (B) after t = 2, 000 MCS the cells have moved on the medium. For example, gray colored cell has displaced across

scales much larger than the cell size. The parameter values used for this simulation were ρ = 0.2, τ = 10 MCS, and φ = 0.95.

FIGURE 2 | (A) The trajectories are marked off with red circles each 100 MCS and the squares correspond to the positions of each cell at t = 0 MCS. (B) Temporal

course of the cell displacement angles α associated with the trajectories depicted on the left panels. Parameters used: ρ = 0.2, τ = 10 MCS, and φ = 0.95.

Figure 1), where the main difference between high and low
densities is also found for 1t = τ .

It is important to note that the gap in the velocity distribution
was not observed in simulations performed when the persistence
time is absent (i.e., τ = 1, Supplementary Figure 2). Thus, the
presence of a gap in the center of the velocity distribution is
associated with effective persistent cell movement, in agreement
with Maiuri et al. (Figure 4D of [47]). On the other hand, in
high density simulations the crater-like effect is less evident
(Figure 4B and Supplementary Figure 1). Note that for ρ = 0.9
and 1t = τ the velocity distribution resembles a Gaussian
one, indicating that cell-cell interactions, massively present
in these cases, contribute to decrease the effective persistent
movement of the cells. Large enough values of 1t (> τ )

blur the instantaneous direction of cell, and distributions are
characterized by a bell shape independently of the densities.
Similar results were obtained for φ = 0.99 (Supplementary
Figure 3), where the behavior of the distributions tails for ρ = 0.9
are more Gaussian than for φ = 0.95.

Themovement ofDictyostelium cells in the absence of external
signals presents a sequence of velocity distributions by varying1t
[34] similar to that obtained from our model, for ρ = 0.2.

3.2. Velocity Correlation
Many studies on cell motility have considered both temporal
and spatial correlation functions of the cell velocity for
statistical characterization of locomotion activity [25, 28–
30, 34]. The temporal autocorrelation function is defined as
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FIGURE 3 | (A) Frequency distribution of cell displacement angle α for all cells during 4,000 MCS. (B) The autocorrelation of α, Cα , as a function of time. Inset: log

scale of Cα showing the region of exponential decay (short times). (C) 2D-histogram of the turn angle (1αt versus 1αt+1), showing that two consecutive turn angles

are anti-correlated. Parameters used: ρ = 0.2, τ = 10 MCS, and φ = 0.95.

FIGURE 4 | Cell velocities vx vs vy calculated for different values of the time interval 1t (upper panels). Histogram of the cell velocity component vx computed over the

vy window indicated by red bars (lower panels). Two different values of densities were used: ρ = 0.2 (A) and ρ = 0.9 (B). All other parameters are equal to Figure 2.

C(t) = Z(t)/Z(0) where Z(t) =
〈−→v M(t0 + t) · −→v M(t0)

〉

[25]. The cell velocities −→v M were computed using 1t =

1 MCS, and 〈. . .〉 indicates the average over all cells and
over t0.
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Figure 5A depicts the behavior of C(t) at low density (ρ =

0.2), for three values of the parameter τ = 10, 50, and 100, and
two values of φ = 0.95 and 0.99. As expected, the correlation
decay increases with τ . For φ = 0.99 (dashed lines) C(t) exhibits
a single exponential decay, which is consistent with an Ornstein-
Uhlenbeck process. However, for φ = 0.95 (solid lines) C(t)
exhibits a more complex behavior: a double exponential decay
with a slower decrease at long time scales, independent of the
τ value. Moreover, as expected, the autocorrelation function
associated to the driving force with φ = 0.95 is greater than that
obtained from the more random driving force, φ = 0.99. We also
notice that the behavior of C(t), obtained with the same φ but
different τ values, coalesces when it is scaled with the parameter
τ (Figure 5C).

However, the effects of the cell-cell contact on the
autocorrelation function are much more complex. Similar
simulations to those used in Figure 5A but at a higher density,
ρ = 0.9, show that C(t) does not exhibit a single exponential
decay in none of the cases studied (Figure 5B). On the other
hand, the effect of the density on the decay of the autocorrelation
function depends on the value of the persistence time τ . In
this sense, when comparing short and long-time behavior, we
can observe that the decay rate increases at long time scales
for τ = 10, while it decreases for τ = 100. Consequently,
the behavior of C(t) for different τ values does not coalesce
when scaled with τ (Figure 5D). We found that the temporal
autocorrelation obtained at high density cultures is smaller than
at low density cultures. This fact can be understood in terms of
the decrease of the effective persistence time of cell movements
due to a crowded neighborhood, as seen also in Figure 4.

Spatial correlations of the cell velocities have also been used
to characterize the dynamics [25, 28, 29]. The spatial correlation
is defined as C(r) =

〈−→v M ·
−→v M′/

(∣

∣

−→v M

∣

∣

∣

∣

−→v M′

∣

∣

)〉

, with r =
∣

∣

−→r M −
−→r M′

∣

∣ the distance between mass center of cells M and
M′ [25]. Figure 6 shows C(r) for two different cell densities
on the substrate, ρ = 0.2 and 0.9 (solid and dashed lines,
respectively), and three different values of τ . These curves
display a peak around 14–16 pixels, close to the diameter of
a non-interacting cell. Since the in silico cells have an elastic

membrane, they can be deformed to reach intercellular distances
smaller than the cell diameter. This can occur when the cells
travel in opposite directions or in order to increase the contact
area. In Figure 6 one can observe that at very short distances
(r < 8 pixels) cells are anti-correlated. The negative values
for the spatial correlation correspond to cell-pairs in collision,
i.e., cells traveling in opposite directions. These cell-pairs are
also present, in less extent, in the range 8 ≤ r . 14 pixels,
contributing to lower the correlation. Thus, in this range, one
can observe that C(r) obtained for simulations at low density
are higher than the ones obtained at high densities, in particular
for τ = 10. However, for longer distances (r & 16 = cell
diameter) this relationship is inverted, i.e., cells in high density
configurations are more correlated. Besides, C(r) in high density
simulations approaches zero very slowly, as r increases. These
results are independent of the τ -value, indicating that the cell-
cell contact induces long-range spatial-correlation of cell velocity.
Interestingly, highly correlated motions have been found in
crowded tissues [6] and in cells in different aggregate types [28].
Experimentally, high spatial correlations have been found in cell
aggregates moving together collectively [29].

At intermediate distances C(r) decays exponentially allowing
to define a correlation length. We found that, the correlation
lengths obtained for ρ = 0.9 are larger than those obtained
using ρ = 0.2, independently of the τ -value. Also, for ρ = 0.9,
simulations with τ = 10 present a slightly smaller correlation
length than simulations with τ = 50 and 100 (9.1, 10.2, and
11.0, respectively). This means that correlation length increases
with cell velocity, as cell velocity also increases with τ . This fact
is in agreement with previous findings reporting the increase of
correlation length with cell velocities [48]. On the other hand, for
ρ = 0.2, all simulations present similar values for the correlation
length (5.2, 5.4, and 5.4 for τ = 10, 50, and 100, respectively).

Note that, according to Equation (3) the angle of the driving
force 2M depends on its previous value but does not depend
on the direction of the cell movement αM . Other authors
have considered the presence of a positive feedback loop in
cell polarization dynamics, in which cell produces its own
chemotactic signal [33, 36, 37]. In order to take into account this

FIGURE 5 | Semi-log plot of the temporal autocorrelation function C(t) averaged over all cells in the simulation. The plots correspond to three different values of τ , two

values of φ (0.95 solid lines and 0.99 dashed lines) and for two different densities: ρ = 0.2 (A) and ρ = 0.9 (B). (C,D) Shows the collapse of the curves by rescaling

the horizontal axes by τ , for the simulations at low and high density, respectively. All other parameters values are the same as in Figure 2.
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FIGURE 6 | Average spatial correlation function of the velocities, C(r), as a

function of the distance r between cell pairs, for two different densities,

ρ = 0.2 and 0.9 (continuous and dashed lines, respectively) and different

values of τ , as indicated, and φ = 0.95. The vertical dashed line represents the

average cell diameter equal to 16 µm as discussed in section 2.2. Data was

obtained by averaging between 0 and 4,000 MCS and over 50 and 10

samples, for ρ = 0.2 and 0.9, respectively.

feedback loop, an alternative way to update the angle 2M is:

2M

(

t∗
)

= φαM (t∗) + 12ǫ
(

t∗
)

, (5)

where αM (t∗) is the mean displacement angle over the last τ

MCS, and the other parameters are the same as in Equation (3).
Thus, according to Equation (5) the angle of the driving force
depends on the earlier cell displacements with a weight given by
the parameter φ.

We observe that, for any cell density, both the temporal
and spatial correlations of the cell velocities are higher when
using Equation (5) instead of Equation (3) (see Supplementary
Figures 4, 5). In particular, the increment in the correlations
is more evident for ρ = 0.9, indicating that the differences
between the angle update rules are more apparent in crowded
cell cultures. C(t) obtained when considering Equation (5) for
ρ = 0.2 is almost independent of the parameter φ, whereas
for ρ = 0.9 short and long-time behavior of C(t) depends on
τ and φ in a non trivial manner (see Supplementary Figure
4). Again, the correlation length obtained with Equation (5)
increases with τ , reaching 1.6-fold of the cell size when τ = 100
(see Supplementary Figure 5). However, this value is smaller than
the correlation length of 2–3 cell size, reported in Garcia et al.
[48]. Interestingly, when a feedback from previous displacements
is taken into account through Equation (5),C(r) is less negative at
very short distances, suggesting that adjacent cells can be avoided
in a more realistic way.

3.3. Mean-Squared Displacement
The mean-squared displacement (MSD) is a useful measure to
find cell persistence of migration in two and three dimension

microenvironments [49–52]. This is calculated as MSD(t) =
〈

(−→r M (t) −−→r M (0)
)2

〉

, where 〈. . .〉 indicates the average taken

over all the cells on the substrate. Figure 7 shows MSD scaled
with time as a function of time at ρ = 0.2 (solid lines) and
at ρ = 0.9 (dashed lines) and three different values of τ . The
MSD obtained for high density is lower than that obtained for
low density, as expected. In all cases, MSD behaves as ∼ t2 for
short enough time scales (ballistic), and MSD behaves as ∼ t for
long time scales (random walk), as expected for cell movements
in the absence of symmetry-breaking gradients [34, 41]. Scaling
MSD with τ 2 and the time with τ , we can observe that the scaled
behavior is independent of φ and τ for ρ = 0.2. However,
for high density, there is a small deviation and scaled behavior
depends on the τ -value, showing the complex behavior generated
by the interaction between cells.

4. DISCUSSION

Since the classical Steinberg experiments, it has been
demonstrated that differential adhesion is a key ingredient
for cell rearrangement and cell sorting [53, 54]. Graner and
Glazier have shown that the CPM model with solely differential
adhesion, as driving force, is able to generate cell sorting [16].
However, during the morphogenetic processes, there are other
ingredients that also play important roles, like chemotaxis.
Savill and Hogeweg have extended the CPM by considering
a “directional propensity" vector to model the chemotactic
response of Dictyostelium cells [35]. This vector can induce a
bias on the membrane sites belonging to a cell in the direction
given by chemoattractant gradients. Thus, the cells move at a
constant velocity whose module depends almost linearly on the
intensity of the bias [36]. Accordingly, the extension of the CPM
allows to leave considering cells as passive objects, giving them
the possibility to actively explore the environment beyond the
local fluctuations of their cell membranes, both in the presence
or absence of external signals. This extension has been used to
model the D. discoideum morphogenesis [19–21], to investigate
collective cell migration (or motion) in Szabó et al. [36], Kabla
[37], Czirók et al. [55], and Czirók et al. [56], and more recently
to study the chemotactic response of cells [45]. In this paper,
following the line of pioneering works that use the CPM to study
persistent cell motion in the absence of external cues [33, 36],
we take advantage of a directional propensity vector linked to a
first order autoregressive process that governs the dynamics of
cell movement direction. Thus, the timing of the cell movement
is given by two parameters: the persistence time τ and the
autoregressive parameter φ, instead of only one as in Beltman et
al. [33] and Szabó et al. [36].

We study here some statistical features of the cell movement
in this model under different conditions and observe that it
is able to reproduce several features of the motility of real
cells observed in the absence of chemoattractants. It has been
pointed-out that themotion ofDictyostelium and Polyphondylum
cells does not follow the Brownian motion and, unlike the
Ornstein-Uhlenbeck process, cell velocity distribution deviates
from Gaussian distribution [34]. In the same line, we observe
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FIGURE 7 | (A) Log-log plot of the scaled mean-squared displacement vs. time t, for three different values of τ , φ = 0.95 and for two different densities: ρ = 0.2 (solid

lines) and ρ = 0.9 (dashed lines). Vertical arrows mark the transition between ballistic and random walk behavior. (B,C) shows the collapse of the curves by rescaling

the horizontal axes by τ and vertical axes by τ2, for the simulations at low and high density, respectively. All other parameters values are the same as for Figure 2.

a gap in the velocity distribution when an effective persistence
time is present. On the other hand, bell-shape distributions
were observed when τ = 1 or in a crowded neighborhood.
Both bell- and crater-shape distributions for cell velocity have
been predicted by a mathematical model that considers the
actin flow [47], connecting persistent motion with crater-shape
distribution, in agreement with our findings. Also, we observe
in our simulations at low density cultures that the temporal
autocorrelation of the cell velocity obtained for φ = 0.99
decays exponentially, while for high density and/or φ = 0.95
the behavior deviates from the expected random motion under
the traditional Ornstein-Uhlenbeck process. For φ = 0.95
and low density, we observe a double exponential decay with
a slower decrease of the autocorrelation function at long time
scales independent on the τ value. This two-step profile for
the autocorrelation function has been previously observed in
different experimental setups [41, 57]. On the other hand, the
effect of the density on the autocorrelation function depends
on the value of the persistence time. Moreover, similarly to
the effect of φ = 0.95, the cell-cell interaction induces a no-
single exponential decay behavior. This complex decay behavior
could be the result of the interplay between the parameters
τ and φ. Besides, we find that the particular way in which
the cell movement direction is updated has important effects
on the spatial correlation. In this sense, when this update rule
considers a feedback between polarity and cell motion, similarly
to proposed in Szabó et al. [36], we obtain larger correlation
length than when this feedback is absent. We also find that high
density cultures have larger correlation length than low density
cultures, suggesting that cell-cell interactions play a crucial role
in cell collective motion. Summing up, these results suggest
that the representation of individual cells and their interactions,
allowed by the CPM, can be critical to study the effect of
different density cultures on the statistical feature of the cell
movement.

While the parameter φ has important effects over the temporal
autocorrelation function, almost no effect can be seen in the
mean-squared displacement, mainly modified by the cell-cell
interactions. We found that these results are consistent with
the prediction of the persistent random walk model [49–51].
This agreement is not in itself enough to completely specify the
dynamics of cell motion, since other processes used to model
random motion also share this feature [25, 58]. The behavior of
the mean-squared displacement observed in our simulations is in
agreement with the one observed in different experimental setups
[34, 41]. Moreover, the temporal autocorrelation function of the
cell velocities also deviates from the single exponential decay
predicted by the persistent randomwalkmodel. It is interesting to
note that anomalous diffusion of cells has also been reported from
different experiments [29, 30]. This type of cell motion is better
understood in terms of the fractional Klein-Kramers equation,
which includes the Ornstein-Uhlenbeck process as a special case
[30].

These examples put in evidence the difficulty to find in a single
model the ability to accurately represent the full range of cell
movements observed in nature. Therefore, the model proposed
here can be added to the cell movement model repository with
promising perspectives.
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