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Energy metabolism is key to the promotion of tumor growth, development, and

metastasis. At the same time, cellular metabolism also mediates immune cell survival,

proliferation and cytotoxic responses within the tumor microenvironment. The ability

of natural killer cells to eradicate tumors relies on their ability to functionally persist

for the duration of their anti-tumor effector activity. However, a tumor’s altered

metabolic requirements lead to compromised functional responses of cytokine-activated

natural killer cells, which result in decreased effectiveness of adoptive cell-based

immunotherapies. Tumors exert these immunosuppressive effects through a number

of mechanisms, a key driver of which is hypoxia. Hypoxia also fuels the generation

of adenosine from the cancer-associated ectoenzymes CD39 and CD73. Adenosine’s

immunosuppression manifests in decreased proliferation and impaired anti-tumor

function, with adenosinergic signaling emerging as an immunometabolic checkpoint

blockade target. Understanding such immunometabolic suppression is critical in

directing the engineering of a new generation of natural killer cell-based immunotherapies

that have the ability to more effectively target difficult-to-treat solid tumors.
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INTRODUCTION

Warburg metabolism, alongside glutamine turnover, is a hallmark of cancer, associated with
elevated metabolism of glucose to produce ATP and sustain rapid cancer cell growth (1).
Such metabolic reprogramming from glycolysis to oxidative phosphorylation results in the
activation of a number of signaling pathways, upregulation of oncogenes and transcriptional
factors, and inactivation of tumor suppressor genes. Similarly, natural killer (NK) cells undergo
tumor-induced metabolic reprogramming, when they switch from a basal to an activated
state. Such reprogramming leads to altered cytotoxic function, and can result in impaired
effectiveness of immunotherapies relying on adoptively-transferred NK cells in vivo. The
deregulated metabolism in the tumor microenvironment (TME) exerts an immunosuppressive
effect on NK cells through a combination of mechanisms (Table 1). Some of the most
representative features of an immunosuppressive TME are environmental heterogeneity to
include deep hypoxic cores which lead to the generation of suppressive metabolites, such
as adenosine, and the secretion of metabolic by-products. Though adoptive immunotherapy
of both unmodified (9) and genetically-engineered NK cells (14) has been extensively
demonstrated, the implication of immunometabolism is only starting to be investigated. Most
of the insights into immunometabolic suppression of NK cell function currently originate
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TABLE 1 | Sources of immunometabolic inhibition of NK cell functions.

Source Immunometabolic

regulator

Effect on NK cells References

Cancer cells LDHA-associated lactic acid

production

Downregulation of NFAT; inhibition of effector

functions

(2)

NK cells HIF-1α Downregulation of NKp46, NKp30, NKp44, and

NKG2D, inactivation of mTOR

(3), (4)

Cancer cells (renal cancer) HIF-2α Upregulation of ITPR1 to regulate autophagy

through calcium signaling

(5)

Irregular vascularization/Tumor

microenvironment

Hypoxia Generation of adenosine and reduction in NK

cytotoxic function, Overexpression of HIF proteins

(1α and 2α)

(6), (7), (8)

Cancer cells/Tumor microenvironment Extracellular adenosine Binding to A2AR receptor to inhibit proliferation,

reduction of cytokine production, and reduction of

cytotoxic function

(9), (10), (11)

Exogenous source Rapamycin or Torin-1

(metabolic inhibitors)

Inhibition of the mTOR pathway (12)

Exogenous source Overstimulation with IL-15 Diminished cytolytic and inflammatory function (13)

from a limited number of focused studies. Until now, the interest
has largely been on improving the cytotoxic activity of NK cells
and enhancing target recognition.

The use of natural killer cells in adoptive immunotherapy
has traditionally relied on equipping these cells with
synthetic machinery—such as genetically-engineered chimeric
antigen receptors—to improve target recognition (14, 15).
It is becoming increasingly apparent that next-generation
immunotherapies, for difficult-to-treat solid tumors, will require
the consideration of the emerging role of immunometabolism
on immune function. Here, we discuss the current state-of-
the-art of the field and the approaches aimed at targeting
immunometabolic suppression to improve adoptive NK cell
immunotherapy.

NATURAL KILLER CELL SUBSETS

The function of NK cells is regulated by the interplay of
a number of activating and inhibitory receptors. NK cells
are considered to be the most well-known subset of innate
lymphoid cells, which also includes tissue inducer cells and non-
cytotoxic innate lymphoid cells (ILCs). Though both human
and mouse innate lymphoid cells include conventional NK
cells, non-cytotoxic innate lymphoid cell groups 1, 2, and
3 (ILC1, ILC2, and ILC3) as well as intraepithelial innate
lymphoid cell group 1 (ieILC1), these cells differ in their
expression of surface markers. For instance, murine ILCs
do not express CD56 and express NK1.1 instead of NKp44
(16).

Phenotypically, human NK cells are defined by the expression
of CD56 and the absence of CD3. NK cells are then additionally
split into two main subsets based on the expression of CD56
and CD16: CD56brightCD16± and CD56dimCD16bright(+). These
subsets differ in tissue distribution, and are dependent on
specific homing properties and the cells’ in situ maturation.
CD56dimCD16bright cell represent about 90% of all NK

cells, and are predominant in peripheral blood. On the
other hand, CD56brightCD16±, found mostly in lymphoid
organs, can be subdivided into CD16− (which represent
about 30–50% of CD56bright cells), and CD16dim (50–70% of
CD56bright) subsets. The less common CD56dimCD16− and
CD56−CD16+ cells have also been described, but the function
of these cells is not well-known (17). Over 90% of peripheral
blood NK cells are also killer immunologlobulin-like receptor
(KIR)+.

Distribution and trafficking of NK cells in tissues has been
extensively described (18). Tissue-resident NK cells express
CD69, which blood-derived NK cells lack (19). They also differ
in expression of chemokine receptors and adhesion molecules:
Tissue resident NK cells tend to express CXCR6 and CCR5 and
the integrins CD49a and CD103, while blood-derived NK cells
express CXCR3, CXCR4, CCR7, CD62L (L-selectin), and lack
CD49a (20).

Murine NK cells differ from human NK cells in a few notable
aspects. While human NK cells express KIRs, mouse NK cells
are characterized by expression of the C-type lectin-like family
of receptors, Ly49s. Mouse NK cells, additionally, lack expression
of CD56, which is a hallmark of human NK cells.

Murine NK cells are primarily defined based on their
expression of CD27 and CD11b. In adult mice, CD11blow

cells are primarily found in the bone marrow, lymph nodes
and the liver, while the CD11bhigh subset is located in
peripheral blood, the spleen and lungs. Among these, the
CD11bhighCD27high subset is the most highly cytotoxic and
expresses higher amounts of cytokines (21). Correlations have
been made in terms of functionality between CD11blowCD27high

and CD11bhighCD27low NK cells in mice with CD56bright

and CD56dim in humans, respectively (22). The intratumoral
infiltration of these subsets also differs, with CD27+CD11b+ the
prevalent subset found in fibrosarcoma (23). Mouse NK cells also
express NK1.1, CD16 and CD122 and are regulated by different
activating and inhibitory receptors (24).
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IMMUNOMETABOLIC CYTOKINE
ACTIVATION OF NK CELLS

Insights into the metabolism of natural killer cells mostly come
from studies using murine cells, though a rapidly increasing
body of work is contributing to our expanding knowledge
of human NK cells. Glycolytic fueling in tumors reduces
glucose availability to surrounding immune cells, leading to
their metabolic reprogramming (25). In NK cells, regulation
of metabolic response by up-regulation of glucose uptake and
glycolysis is mediated by mTOR, specifically mTORC1 (26).
mTORC1 activation requires sufficient intracellular nutrients and
energy. mTOR is also essential for regulating the production of
granzyme B and perforin, and can most potently be activated
with high-concentrations of IL-15 during early infection, though
other cytokines (IL-2, IL-12, IL-18) are also implicated (27).
IL-15 activates mTORC1 via PI3K, PDPK1, and AKT (28).
While NK cells do not exhibit increased glycolysis during short-
term activation, extended stimulation with high-dose IL-15 over
multiple days was shown to lead to up-regulation of metabolism,
enhancing glycolysis (29). mTORC1 also enhances glycolysis
by promoting transcription factor HIFα and mitochondrial
biogenesis through PPARγ co-activator 1α (PGC1α) and yin
and yang 1 (YY1) (30). Recently, Srebp, otherwise implicated in
de novo lipid synthesis, has been shown to regulate functional
responses and NK cell effector function, in supporting glycolysis
and oxidative phosphorylation by the use of the citrate–malate
shuttle, through its targets Acly and Slc25a1 (31). High rates of
glycolysis in tumors exert inhibitory effects on tumor-infiltrating
NK cells also via cancer-associated lactate dehydrogenase-A
(LDHA). LDHA fuels the conversion of excess pyruvate and
NADH into lactate and NAD+, thus supporting tumor glycolysis.
Brand et al. (2) recently reported that LDHA-associated lactic
acid production leads to impaired NK cell activity through
downregulation of nuclear factor of activated T cells (NFAT) in
T and NK cells.

In response to diminishing glucose supplies, NK cells are
thought to undergo metabolic reprogramming by foregoing
IL-15 and mTOR dependency, and instead becoming driven
by activating receptors (e.g., Ly49H in mice, KIR in humans)
(32). However, the metabolic reprogramming of failed NK
metabolism in a tumor setting has not been investigated in
detail. This reprogramming is likely to be activation-dependent:
cytokine-stimulated NK cells can produce IFN-γ independent
of glycolysis or mitochondrial oxidative phosphorylation,
while activating-receptor stimulated NK cells require oxidative
phosphorylation (29).

Though scarce, evidence is also emerging that metabolic
signatures also differ among human NK cell subsets, albeit from
limited in vitro studies. In addition to greater activation of
mTORC1, cytokine-activated CD56bright cells are thought to have
higher rates of glucose uptake compared with CD56dim cells,
associated with their higher expression of IFNγ (33). While
CD56dim cells are more cytotoxically active, they also have a
lower biosynthetic burden and are likely to have lower metabolic
requirements (33).

Because cytokines are a critical feature of adoptive
immunotherapies with NK cells, understanding their activation-
specific metabolic requirements to engage in anti-cancer
cytotoxic functions is critical to the implementation of NK cells
as viable immunotherapies.

HYPOXIA-INDUCED METABOLIC
REPROGRAMMING OF NK CELLS

Oxygen availability is dependent on the metabolic requirements
and functional status of each organ. During immunological
responses in inflammatory and tumor microenvironments, NK
cells operate at varying concentrations of oxygen, often reaching
regions of severely low oxygen (hypoxia). Hypoxia is, as such,
considered an adverse prognostic factor, particularly for solid
tumors (34), and has been documented as being a feature
of multiple pathologies (35). While oxygen concentrations in
human tissues range from as low as 1.3% in bone marrow (36)
to 13% in arterial blood (37), the existence of a hypoxic niche at
sites of inflammation and in pathological environments has been
evidenced by measured oxygen concentrations that are ∼3–8
times lower than in corresponding physioxic tissues (38).

Tumor microenvironments are characterized by cycling
hypoxia (39), throughout which they are exposed to bursts of
varying concentrations of oxygen due to irregular vascularization
and blood supply of tumor tissues. Both acute and chronic
hypoxia result in DNA damage (40), replication arrest (41),
radioresistance (42), epithelial to mesenchymal transition (43),
angiogenesis and metastasis (44), and immune resistance (45).

Key NK cell responses to hypoxia are regulated by
overexpression of HIF-1α and HIF-2α (6, 7), although
inconclusive mechanisms have been proposed for their exact
effect on NK cells. HIF-α can signal through and is stabilized via
both oxygen-dependent and oxygen-independent mechanisms
(46). These transcription factors direct responses of NK cells
to low oxygen, influencing trophoblast lineage commitment
and promoting development of the invasive trophoblast lineage
during fetal development (47).

The overexpression of HIF-1α in hypoxic environments,
which is partially dependent on mTOR signaling, leads to the
downregulation of NK activating receptors NKp46, NKp30,
NKp44, and NKG2D (3). Recent work has shown that deletion of
HIF-1α in NK cells renders them hyporesponsive in both hypoxia
and normoxia. Under long term hypoxia, tumor-associated NK
cells from HIF-1α KO mice did not show a reduction of
soluble vascular endothelial growth factor receptor 1 (sVEGFR1)
expression, likely compensated by HIF-2α. These cells were also
found to be less present in hypoxic zones, suggesting HIF-1α has
an effect on intratumoral infiltration of NK cells and, collectively,
increasing the bioavailability of VEGF (48). Others have also
hypothesized that during long-term hypoxia, the HIF-1α protein
accumulates due to the inactivation of its degradation pathway.
This buildup of HIF-1α enforces a negative feedback loop to
inactivate mTOR and cause diminished cellular translation and
deleterious downstream effects (4).

Frontiers in Immunology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 2517

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chambers et al. Immunometabolic Reprogramming of NK Cells

Additionally, hypoxia was shown to cause autophagy-
induced degradation of granzyme B released from activated
NK cells in the tumor microenvironment (49, 50). The
hypoxia-induced onset of autophagy has been described
mechanistically for a number of cancers, including renal cancer
(51), glioblastoma (52), bladder cancer (53), lung cancer (54) and
acute myeloid leukemia.(55) Mechanistic insights in renal cancer
have implicated HIF-2α to transcriptionally upregulate inositol
triphosphate receptor 1 (ITPR1), a regulator of autophagy
through calcium signaling (5).

The strength of the antitumor response of NK cells is largely
dependent on the expression of NKG2D ligands on NK cells,
and corresponding MICA/B receptors on tumor cells (56). These
receptors are highly present in tumor environments in response
to cellular stresses, and the MICA/B receptors assist the NK
cells in locating the cancer cells for elimination through NKG2D
receptor activation. Shedding ofMIC receptors—alongside CD16
shedding— has been widely described to contribute to immune
evasion and deficiency of adoptive NK cell transfers (57–59). This
shedding has shown to be induced by hypoxia through altered
nitric oxide (NO) signaling (60), and could be rescued through
exogenous induction of NO signaling (61). It bears mentioning
that shedding of CD16 from NK cells also occurs in response to
various activation stimuli, including cytokines, cross-linking with
activating receptors or target cell stimulation, ultimately resulting
in decreased intracellular cytokine production and impaired
CD107a degranulation (62). Without CD16 shedding, NK cell
viability is not sustained, and shedding is thought to possibly
prevent activation-induced cell death and modulate NK cell
effector functions through the ability to engage multiple target
cells.

Because of the broad and potent role of cytokines in activation
of NK cells, it is no surprise that studies have investigated the
implication of cytokine stimulation in hypoxic environments.
Recent reports have indicated that hypoxia-induced loss of NK
cell cytotoxicity could be rescued by treatment with high doses
(1,000 IU/mL) IL-2 (63) for 14–16 h. While IL-2 treatment
abrogated impairment of NK-mediated cytotoxicity against K562
cells in vitro under both normoxic (20% oxygen) and hypoxic
(0% oxygen) conditions, it is still unclear how such observations
translate in vivo against solid tumor targets. Similarly to IL-2, IL-
15 induces potent cytotoxic responses on NK cells. Interestingly,
short-term hypoxia (6 h, 1%O2) enhanced the cytotoxic response
of NK cells that were simultaneously stimulated with IL-15
(50 ng/mL) against K562 cells in vitro, and induced upregulation
of HIF-1α-induced glycolytic gene expression (8). This did
not, however, result in changes in glycolytic flux compared
to non-IL-15-stimulated NK cells, showing that other factors
may also be involved in this response during short-term
hypoxia. The synergy between IL-15 and short-term hypoxia
has also resulted in the downregulation of the glycolytic/pentose
phosphate pathway-linked gene TKTL1, suggesting a possible
switch to Warburg metabolism in response to IL-15 and short-
term hypoxia. Transcriptional microarray data collected from
NK cells under hypoxia and IL-5 activation (6 h) have also been
reported (64).

EFFECTS OF ADENOSINERGIC
METABOLISM ON NK CELLS

Adenosine, a purine ribonucleoside, is involved in a well-
characterized network of pathways in many cell types, including
immune cells. While adenosine signaling occurs both intra
and extracellularly, its roles diverge. Intracellularly, adenosine
is involved in energy homeostasis, nucleic acid metabolism,
angiogenesis, and the methionine cycle (65–67), exerting a
protective effect on cells and tissues (68). Extracellular adenosine,
on the other hand, is involved in intercellular signaling. Elevated
extracellular concentrations of adenosine in tumors, which
can be as much as 100-fold higher than in normal tissues,
are known to contribute to immune evasion (69, 70). This
immune evasion manifests through a combination of reduced
proliferation, inhibition of cytotoxic activity, downregulation of
activating receptors, and reduced secretion of cytotoxic cytokines
(71). As a result, adenosinergic signaling has emerged as a
negative feedback loop that regulates local and systemic anti-
tumor response (72). Much is known about adenosine signaling
in cells, and with deepening knowledge of its effects on NK cells
(73) as a target for adoptive immunotherapy, it has become of
increasing therapeutic interest (74).

The physiologic functions of adenosine are largely mediated
by four types of G-protein-coupled adenosine receptors, A1,
A2A, A2B, and A3, where the A2A adenosine receptor (A2AR)
is the subtype that is most frequently expressed on immune
cells (75). Extracellular accumulation of adenosine in the tumor
microenvironment leads to immunosuppression, particularly
through A2AR on infiltrating immune cells, including NK cells
(76–78). Indeed, effector functions of NK cells were shown to
be susceptible to A2AR stimulation in a number of studies.
Among the suppressed immune functions due to extracellular
adenosine are inhibited proliferation (79), a reduced production
of cytokines from IL-2-stimulated NK cells (11), and a reduced
cytotoxic effector function against cancer cells (10). A2A receptor
expression on tumor-associated myeloid cells was also shown
to inhibit the cytotoxic function of NK cells in primary and
metastatic tumor microenvironments (80), indicating that the
broad effect of the A2 receptor in tumors is not limited to self-
expression on NK cells. Unlike signaling through A2A, agonism
of the A1 or, to a lesser extent, the A3 receptor stimulates
NK cytotoxicity (77), presumably through a mechanism that
involves a decrease in intracellular cAMP (81, 82). A3 agonism
was also associated with higher serum levels of IL-12, a known
stimulator of NK cell cytotoxicity (82). Using a different A3
receptor agonist, iodobenzyl methylcarboxamidoadenosine, that
blocks the adenosine response, inhibition of proliferation, IFN-
γ production, and cytotoxicity of NK cells was shown. However,
through a mechanism involving the A3 adenosine receptor, and
in the presence of adenosine upon stimulation with IFN-α, IFN-
γ production from NK cells increased compared to that observed
in the absence of adenosine (83). More recently, targeting A2AR
via both A2AR inhibition or in A2AR-deficient mice resulted
in improved tumor control and inhibition of tumor progression
through elimination of the A2AR-induced suppression of NK cell
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maturation by promoting the accumulation of highly cytotoxic
CD56dim NK cells (84). Ongoing pre-clinical studies are also
addressing the co-inhibition of the A2AR receptor with the A2B

receptor on immune cells in conjunction with chemotherapy
(85); however, the A2B receptor has a lower expression
on NK cells compared to myeloid-derived and dendritic
cells.

STRATEGIES TO MODULATE
IMMUNOMETABOLIC SUPPRESSION IN
THE TUMOR MICROENVIRONMENT

Recent evidence that metabolic functions regulate NK cell
activation (Table 2) has fueled interest in the preclinical
development of strategies that address metabolic reprogramming
of NK cells in the context of immunotherapy. While several
therapeutic strategies aim to target metabolism of immune cells,
approaches aimed at specifically targeting NK cell function are
still emerging.

Cytokine Stimulation
Several studies are investigating cytokine stimulation to induce
activation signals and enhance in vivo persistence of adoptively-
transferred NK cells. Among these, IL-15 has been the most
utilized, due to its recognized role in NK cell development,
homeostasis and activation (86). Recently, the functions of IL-
15 have been linked to mammalian target of rapamycin (mTOR)
(87), which is known to regulate NK cell metabolism through
glycolysis. There are various clinical trials currently investigating
several IL-15 dosing regimens for improving NK cell metabolism
for adoptive transfer. Though IL-15-stimulated NK cells were
shown to eradicate solid tumors (88), recent findings have
indicated that continuous treatment with IL-15 may actually
result in exhaustion of NK cells (13), ultimately leading to cells
with markedly diminished cytolytic and inflammatory function.
As it stands, our understanding of optimal IL-15 dosing, timing,
or the overall effects of its use in the immunotherapy of
adoptively-transferred NK cells is incomplete.

Metabolic Inhibition
The mTOR inhibitor rapamycin has been used in clinical
immunotherapy for a number of years to suppress the metabolic
activity of pathogenic cells (89). The metabolic activity of NK
cells is regulated by mTOR. In NK cells, mTOR is activated
primarily, though not exclusively, by IL-15 (90), rationalizing
the use of IL-15 in adoptive immunotherapy. Consequently,
stunting metabolic activity for cancer treatment has raised
concerns that using IL-15 could lead to associated negative
effects on glucose metabolism of immune cells, including NK
cells (12). Recently, Yang et al. (91) described the independent
roles of mTORC1 and mTORC2 in the development of NK
cells: while the loss of either did not disrupt the cytolytic
function of NK cells, deletion of mTORC1 function disrupted
NK cell homeostasis, and the absence of mTORC2 stunted
the terminal maturation of NK cells. Results like these have
shown that the use of metabolic inhibitors, such as rapamycin
or Torin-1, should be taken into consideration to make sure
there are not any secondary and potentially suppressive effects
on the immune cell effector function, since manipulation
of mTOR signaling can affect NK cell development and
repopulation.

Targeting Adenosinergic Signaling With
Adoptive NK Cell Immunotherapy
With recent advances in immunotherapy using genetically-
engineered immune cells, an emerging therapeutic approach
has been to combine an A2A receptor blockade with adoptive
cell therapy. Targeting the A2A receptor with a small molecule
inhibitor, such as SCH58261, or with A2AR knockdown in cells
using shRNA, triggers the enhancement of the cytotoxic function
of anti-HER2 CAR-T cells either alone or in combination
with anti-PD-1 therapy when transferred adoptively to tumor-
bearing C57BL/6 mice (92). Unlike CAR-T cells, however,
no such studies using adoptively-transferred NK cells exist
yet.

Accumulation of extracellular adenosine in tumors is
associated with activity of the CD39-CD73 enzymatic cascade

TABLE 2 | Sources of immunometabolic regulation of NK cell functions.

Source Immunometabolic regulator Effect on NK cells References

NK cells mTOR (mTORC1)—activation occurs via

PI3K, PDPK1, and AKT most potently by

IL-15

Production of granzyme B and perforin, enhancement of

glycolysis

(26), (27)

NK cells Srebp Control of glucose metabolism through citrate-malate

shuttle

(31)

T-cells, dendritic cells IL-2 Increase in cytotoxicity of NK cells (63)

Immune Cells IL-15 Increase in cytotoxicity of NK cells; Upregulation of

HIF-1α and downregulation of TKTL1 (during hypoxia);

Glycolysis regulation through mTOR

(8)

Cancer cells/Tumor microenvironment Adenosine Binding to A1 or A3 receptor stimulates NK cell

cytotoxicity (via a decrease in cAMP); Increase in IFNy

production (with a combination of IFN-α)

(77)

Immune Cells (APCs) IL-12 Increase in cytotoxicity of NK cells (82)
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FIGURE 1 | Drawing representation of immunometabolic suppression of NK cell functions induced by adenosine metabolism in the TME involving CD39 and CD73 on

cancer cells via signaling through the adenosine A2A receptor on NK cells.

(93). Hypoxia in solid tumors promotes the release of nucleotides
including AMP and ATP, which fuel the enzymatic activity of
the ectonucleotidases CD39 and CD73 (Figure 1), inducing the
conversion of AMP → ATP → extracellular adenosine, with
CD73 catalyzing the dephosphorylation of extracellular 5′AMP
to adenosine as the final step in this pathway (94). HIF-1 was
implicated as regulating the activity of CD73 (95). Though CD73
is expressed on several cell types including NK cells, it is highly
upregulated in various cancers (91, 96). Antibody therapy with
anti-CD73 antibodies or CD73 shRNA (97, 98) was shown to
be effective in inhibiting tumor growth and metastasis. This
type of treatment has recently found its way into the clinic and
is known as Medimmune’s Oleclumab (anti-CD73 antibody),
which is currently in Phase I clinical trials (99). Therapeutic
inhibition of CD73 was also shown to improve antitumor
efficacy of anti-PD-1 and anti-CTLA-4 checkpoint inhibitors
in preclinical models of various solid tumors (100). A limited
expression of CD73 is observed on NK cells, typically in the
region of 1%. NK cells were reported to be able to enhance their
expression of CD73 upon co-culture with mesenchymal stem
cells (MSCs) (101). CD73 expression conferred by MSCs results
in catalytically active ectoenzyme, andNK cells that are capable of
producing higher amounts of adenosine via the conversion of 5′-
AMP. Further studies have implicated the CD56brightCD16− NK
subset as most active in producing adenosine via involvement of
CD38—by inhibiting CD38 activity, adenosine production was
reduced (102).

Mechanisms that guide CD73-induced promotion of tumor
growth and immune resistance include not only the inhibition
of NK cell cytotoxicity, but also induction of the internalization
of CD73 expressed on cancer cells (103). For that reason, a
number of anti-CD73 clones have been indicated to promote
internalization of CD73 with limited effect on its enzymatic

activity. While CD73-targeting antibody therapy can potentiate
the anti-tumor activity of NK cells via ADCC, a recent study
showed that blockade of CD73 with anti-CD73 clone 7G2
in conjunction with anti-CD39 clone A1 enhanced NK cell
cytotoxicity in vitro via a mechanism that includes adenosinergic
metabolism and is independent of ADCC (104). Our own work
showed that a CD73 antibody blockade enhances the killing
potential of CAR-engineered NK-92 cells, a widely-used NK
cell line that does not express CD16, via mechanisms that
implicate extracellular adenosine in the absence of ADCC. NK
cells were also implicated in the metastatic control of LWT1
melanoma tumors in vivo when C57BL/6 mice were targeted by
anti-CD73 antibody therapy in conjunction with inhibition of
A2AR signaling (105). Alongside NK cells, tumor control was
optimal when CD8+ T cells, interferon-γ and perforin were also
present. Most of the in vivo studies targeting CD73 use mouse
clones of these antibodies and are performed in C57BL/6 mice.
Therefore, further insights are needed on understanding the
effect of targeting the CD73/adenosinergic pathway with human-
directed antibody clones in association with adoptive transfer
of immune cells into in vivo models that bear human immune
components.

Adenosine signaling was also studied in NK-92 cells Hong
et al. (106) observed that upon exposure to acute myeloid
leukemia-derived exosomes, NK-92 cells, which also express
the A2AR receptor, increased their expression of adenosine,
inosine and hypoxanthine, ultimately contributing to autocrine
inhibition of NK-92 cytotoxic function via upregulation of A2AR
function (106).

Adenosine is metabolically unstable, becoming rapidly
converted to inosine via the activity of the enzyme adenosine
deaminase (ADA). For that reason, most studies on the
effect of adenosine on NK cells use its metabolically stable
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analog, 2-chloroadenosine, thereby bypassing catalytic removal
of rapidly-accumulating extracellular adenosine. Extreme
dysfunction in purinergic metabolism can lead to adenosine
deaminase-severe combined immunodeficiency (ADA-SCID),
which causes the accumulation of adenosine due to ADA loss of
function, ultimately resulting in partial or complete lymphopenia
(107).

Though direct studies on the effects of purine metabolism,
particularly that of adenosine, on the functions and phenotypes
of NK cells are limited, insights are starting to emerge. McCarthy
et al. (108) observed that the generation of purine nucleotides,
including adenosine, through glycolysis drives the expression
of MICA ligands on cells, which are then targeted by NKG2D
receptors on NK cells. Restricting early glycolytic pathway
intermediates abrogated the expression of MICA, showing that
cell proliferation was not shown to be a prerequisite for MICA
expression.

CONCLUSION

An emerging body of work is starting to highlight the
critical role of immunometabolism in innate immunity and
the development of emerging cancer immunotherapies. Among
the immunosuppressive features of tumors is hypoxia, which
results in the generation of adenosine, a metabolite that is
highly suppressive to NK cell cytotoxicity and proliferation.
These immunometabolic changes are specific to NK cells and
occur under various cytokine stimulation programs. While
mTOR has been recognized as a key driver of metabolic
reprogramming in NK cells, the mechanisms by which mTOR
regulates the metabolic system and NK cell effector responses
in the tumor microenvironment are still largely unknown.
Moreover, the role of mTOR-mediated regulation of protein
translation during NK cell effector responses has not been
studied in depth. Limited knowledge also exists on how these

metabolic changes occur in phenotypically distinct NK subsets,
particularly licensed cells. For instance, metabolic responses of
licensed and unlicensed NK cells are not known, and neither
are the metabolic programs of NK cells that display exhausted
functional phenotypes. This dearth of knowledge precludes our
utilization of NK cells as effective adoptive NK immunotherapies;
however, rapid advances are fueling remarkable discoveries in
the field. Future immunotherapies with adoptively-transferred
NK cells are expected to employ modalities that reverse or
avoid immunometabolic suppression of NK cell function in their
design to ultimately lead to the improved targeting of solid
tumors.
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