УДК 625.85

ПРОСТЕЙШИЕ ЗВЕНЬЯ ЛИНЕЙНОЙ ПРОСТРАНСТВЕННОЙ РЕОЛОГИЧЕСКОЙ МОДЕЛИ АСФАЛЬТОБЕТОНА

В.А. Богомолов, профессор, д.т.н., В.К. Жданюк, профессор, д.т.н., С.В. Богомолов, инженер, ХНАДУ

Аннотация. Рассмотрены трехмерные математические модели напряженно-деформированного состояния элементов: Гука, Ньютона, Максвелла, Кельвина.

Ключевые слова: реологическая модель, девиатор, тензор, напряжения, деформации.

НАЙПРОСТІШІ ЛАНЦЮГИ ЛІНІЙНОЇ ПРОСТОРОВОЇ РЕОЛОГІЧНОЇ МОДЕЛІ АСФАЛЬТОБЕТОНУ

В.О. Богомолов, професор, д.т.н., В.К. Жданюк, професор, д.т.н., С.В. Богомолов, інженер, ХНАДУ

Анотація. Розглянуто тримірні математичні моделі пружно-деформованого стану елементів: Гука, Ньютона, Максвелла, Кельвіна.

Ключові слова: реологічна модель, девіатор, тензор, пружний стан, деформації.

ELEMENTARY LINKS OF LINEAR SPATIAL RHEOLOGICAL MODEL OF ASPHALT-CONCRETE

V. Bogomolov, Professor, Doctor of Technical Science, V. Zhdaniuk, Professor, Doctor of Technical Science, S. Bogomolov, engineer, KhNAHU

Abstract. The article deals with three-demensional mathematical models of the deformation mode of Hook, Newton, Maxwell and Kalvin elements.

Key words: rheological model, deviator, tensor, stress, deformation.

Введение

В асфальтобетонных покрытиях при определенных температурах и режимах нагружения появляются остаточные деформации, посчитать которые возможно только при условии использования вязко-упругой модели.

Анализ публикаций

В настоящее время накопился огромный массив исследований реологического поведения асфальтобетонов. Только некоторые из них [1–4].

На наш взгляд, основным недостатком большинства таких исследований является то, что в них математические модели записаны для так называемых одномерных, или одноосных задач.

Цель и постановка задачи

Целью настоящей работы является совершенствование 3-D реологических моделей простейших элементов: Гука, Ньютона, Максвелла, Кельвина, на базе которых впоследствии можно построить вязко-упругую 3-D модель асфальтобетона и других строительных материалов, являющихся составными частями дорожной одежды.

Тензор и девиатор

Асфальтобетон работает в условиях трехмерного нагружения. В каждой точке его напряженно-деформированное состояние представляется в виде тензоров [5]

$$T_{\rm H} = D_{\rm H} + D_{\rm III}; \tag{1}$$

$$T_{\rm p} = D_{\rm p} + D_{\rm o}, \qquad (2)$$

где $T_{\rm H}$, $T_{\rm g}$ – тензоры напряжений и деформаций; $D_{\rm H}$, $D_{\rm g}$ – девиаторы напряжений и деформаций; $D_{\rm m}$ – шаровый тензор напряжений; $D_{\rm o}$ – объемный тензор деформаций.

И именно из пространственной модели нагружения будет более правильным получать одноосный тип напряженно-деформированного состояния как частный случай более общей модели.

Напомним, что [5, 6]:

$$D_{\rm H} = \begin{cases} \sigma_x - \sigma_{\rm cp}, & \tau_{xy}, & \tau_{xz} \\ \tau_{yx}, & \sigma_y - \sigma_{\rm cp}, & \tau_{yz} \\ \tau_{zx}, & \tau_{zy}, & \sigma_z - \sigma_{\rm cp} \end{cases}; \quad (3)$$

$$D_{\rm III} = I \cdot \sigma_{\rm cp}; \tag{4}$$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - единичная матрица; (5)$$

$$\sigma_{\rm cp} = \frac{\sigma_x + \sigma_y + \sigma_z}{3}; \qquad (6)$$

$$D_{\mu} = \begin{cases} \varepsilon_{x} - \varepsilon_{cp}, & \frac{1}{2}\gamma_{xy}, & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{yx}, & \varepsilon_{y} - \varepsilon_{cp}, & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{zx}, & \frac{1}{2}\gamma_{zy}, & \varepsilon_{z} - \varepsilon_{cp} \end{cases},$$
(7)

где σ_x , σ_y , σ_z – напряжения растяжениясжатия в точке; $\tau_{xy}...\tau_{zy}$ – касательные напряжения; ε_x , ε_y , ε_z – относительные деформации растяжения-сжатия; $\gamma_{xy}...\gamma_{zy}$ – угловые деформации сдвига;

$$\varepsilon_{\rm cp} = \frac{\varepsilon_x + \varepsilon_y + \varepsilon_z}{3}; \qquad (8)$$

$$D_{\rm o} = I \cdot \varepsilon_{\rm cp}. \tag{9}$$

Реологическая модель

Многие исследователи [1–4] отмечают, что для описания реологических свойств асфальтобетона может использоваться физическая модель Биргерса (см. рис. 1, а).

Из линейной теории вязкоупругости [7] известно, что модель рис. 1, а имеет еще как минимум три аналога (см. рис. 1, б, в, г). При этом использование схемы рис. 1, а имеет несомненные преимущества при экспериментальной оценке коэффициентов G_1, G_2, η_1, η_2 .

Рис. 1. Четырехэлементные реологические модели: *G*₁, *G*₂, η₁, η₂ – коэффициенты, характеризующие жесткостные и вязкостные свойства асфальтобетона

Схему рис. 1, б выгодно применять, если в элементы η_1 и η_2 вводятся пороговые значения в виде элементов Шведова [4], см. рис. 2, при этом четырехэлементная модель (рис. 1, б) преобразуется в шестиэлементную. Хотя, надо сказать, что любая из моделей (рис. 1) может быть преобразована в пяти-шестиэлементную, подобно тому, как это сделано на рис. 2.

Схема рис. 1, г хорошо приспособлена для численного интегрирования, а также формирования на ее основе нелинейной реологической модели.

Рис. 2. Шестиэлементная реологическая модель с двумя элементами Шведова: σ_{01} , σ_{02} – пороговые значения срабатывания элементов Шведова

Но все они имеют общий признак: структурно они составлены из простейших звеньев [6, 7], представленных на рис. 3.

Рис. 3. Простейшие звенья реологической модели: а – упругий элемент; б – вязкий элемент; в – модель Максвелла; г – модель Кельвина

Упругий элемент Гука

Пространственная модель упругого элемента (рис. 3, а) может быть записана в виде обобщенного закона Гука [5, 6, 8]

$$D_{\mathrm{H}(y)} = 2GD_{\mathrm{g}(y)}, \qquad (10)$$

где G – модуль сдвига; (y) – индекс, означающий принадлежность к упругому элементу.

Как видно из (4, 9), чтобы записать $D_{\mathrm{III}(y)}, D_{\mathrm{o}(y)},$ необходимо определиться с σ_{cp} и $\varepsilon_{\mathrm{cp}}$. Эти величины связаны между собой известным выражением [5, 8]

$$\sigma_{\rm cp} = \varepsilon_{\rm cp} \frac{E}{(1-2\mu)} = \varepsilon_{\rm cp} \frac{2G(1+\mu)}{(1-2\mu)} = \varepsilon_{\rm cp} 3K \quad (11)$$

где E – модуль продольной упругости; μ – коэффициент Пуассона; $K = \frac{2G(1+\mu)}{3(1-2\mu)}$ – объемный модуль упругости.

Для одноосного случая из (10), (11) можно легко получить известные зависимости, например

$$\sigma_x = E\varepsilon_x; \ \tau_{xv} = G\gamma_{xv}. \tag{12}$$

Вязкий элемент Ньютона

Для вязкого элемента (рис. 3, б) по аналогии с (10) принято [5, 6, 7, 8] записывать

$$D_{\rm H(B)} = 2\eta \dot{D}_{\rm d(B)},$$
 (13)

где η – коэффициент вязкого сопротивления, определяемый из опытов на простое растяжение, сжатие образца; (в) – индекс, означающий принадлежность к вязкому элементу; $\dot{D}_{\rm д(B)} = \frac{dD_{\rm д(B)}}{dt}$ – девиатор скоростей деформаций.

Связь между $D_{\text{ш(в)}}$ и $D_{\text{o(в)}}$, в общем случае, для рассматриваемого элемента можно записать, исходя из [9, 10]

$$\sigma_{\rm cp} = 3 \,\eta_v \,\dot{\varepsilon}_{\rm cp} \,, \qquad (14)$$

где η_{ν} – объемный коэффициент вязкого сопротивления, определяемый из опытов на всестороннее сжатие образца, например, в барокамере.

С другой стороны, по аналогии с (11), очень часто записывают

$$\dot{\varepsilon}_{\rm cp} = \frac{\sigma_{\rm cp}(1-2\mu_{\nu})}{2\eta(1+\mu_{\nu})},\tag{15}$$

где μ_v – коэффициент объемного расширения.

Для Ньютоновской вязкой жидкости принято считать [5], что $\mu_{\nu} = 0.5$, поэтому для нее

$$\dot{\epsilon}_{cn} \cong 0.$$
 (16)

И в этом случае, из (13, 16) для одноосного напряженного состояния имеет место

$$\sigma_x = \eta_p \dot{\varepsilon}_x; \ \tau_{xy} = \eta \dot{\gamma}_{xy}, \tag{17}$$

(18)

где

η_{*p*} – видимый коэффициент вязкого сопротивления при растяжении-сжатии.

 $\eta_n = 3\eta$,

Справедливость соотношений (17, 18) для полимеров экспериментально и теоретически подтверждается многими исследованиями, например [11, 12] и др.

Элемент Максвелла

Для него (рис. 3, в) справедливы соотношения [5, 6, 7 и др.]

$$T_{\rm H(y)} = T_{\rm H(B)} = T_{\rm H(M)}; \ T_{\rm d(M)} = T_{\rm d(y)} + T_{\rm d(B)}, \ (19)$$

где (м) – индекс, указывающий на принадлежность к модели Максвелла в целом. Отсюда

$$D_{\rm H(y)} = D_{\rm H(B)} = D_{\rm H(M)};$$
 (20)

$$D_{\rm g(M)} = D_{\rm g(y)} + D_{\rm g(B)}; \ \dot{D}_{\rm g(M)} = \dot{D}_{\rm g(y)} + \dot{D}_{\rm g(B)}. \ (21)$$

Поскольку из (10), (13) следует, что для рис. 3, в

$$D_{\mu(y)} = 2GD_{\mu(y)}; D_{\mu(y)} = \frac{D_{\mu(y)}}{2G};$$
$$\dot{D}_{\mu(y)} = \frac{\dot{D}_{\mu(y)}}{2G}, \qquad (22)$$

и с учетом (20)

$$\dot{D}_{\mu(y)} = \frac{D_{\mu(M)}}{2G},$$
 (23)

а также из (13)

$$\dot{D}_{\mathrm{A}(6)} = \frac{D_{\mathrm{H}(\mathrm{B})}}{2\eta},\qquad(24)$$

и с учетом (20)

$$\dot{D}_{\rm g(B)} = \frac{D_{\rm H(M)}}{2\eta},$$
 (25)

подставим (23, 25) в (21) и после соответствующих преобразований получим дифференциальное соотношение

$$\frac{\eta}{G}\dot{D}_{\rm H(M)} + D_{\rm H(M)} = 2\eta\dot{D}_{\rm d(M)}.$$
 (26)

Рассуждая аналогичным образом, для $D_{\mathrm{un}(M)}$ и $D_{\mathrm{o}(M)}$ в общем случае получаем

$$\frac{\eta_{\nu}}{K} \dot{\sigma}_{\rm cp(M)} + \sigma_{\rm cp(M)} = 3\eta_{\nu} \dot{\varepsilon}_{\rm cp(M)} \,. \tag{27}$$

Легко убедиться, что при выполнении (16), уравнение (27) трансформируется в (11). Таким образом, алгоритм вычисления перемещений и напряжений в объемной модели Максвелла может осуществляться по следующей схеме.

После совместного решения (26, 27) или (26, 11) записываем $T_{H(M)}$ и $T_{A(M)}$, см. (1, 2). Упругую составляющую деформаций можно получить при помощи уравнений (11, 19, 20, 22), а затем по – формуле

$$T_{\rm g(B)} = T_{\rm g(M)} - T_{\rm g(y)} \,. \tag{28}$$

Определяемся и с вязкостной составляющей.

Нетрудно показать, что из (26) получается общеизвестное дифференциальное уравнение для одноосного напряженного состояния модели Максвелла, представленное, например в [3, 4]

$$\frac{\eta_p}{E}\dot{\sigma}_x + \sigma_x = \eta_p \dot{\varepsilon}_x.$$
(29)

Это выражение получается, если учесть, что на стадии ползучести можно принять

$$\frac{\eta}{G} = \frac{3\eta}{3G} = \frac{\eta_p}{E}$$

Решение дифференциальных уравнений (29) и (26) продемонстрированы на рис. 4, 5.

Рис. 4. Функция $\varepsilon_x = f(t)$ модели Максвелла при условиях $\eta_p = 5 \cdot 10^{12} \Pi a \cdot c; E = 3, 2 \cdot 10^9 \Pi a;$ $\varepsilon_{xp} = 2, 5 \cdot 10^{-4}; \sigma_y = 0; \sigma_z = 0$

Рис. 5. Функция $\varepsilon_x = f_1(t)$, $\varepsilon_y = f_2(t)$, $\varepsilon_z = f_3(t)$ модели Максвелла при условиях: $\eta = 1,67 \cdot 10^{12} \, \Pi a \cdot c$; $G = 1,23 \cdot 10^9 \, \Pi a$;

$$\sigma_x = 8 \cdot 10^6 \cdot \cos\left(\frac{\pi t}{3000}\right) \Pi a;$$

$$\sigma_y = 6 \cdot 10^6 \left(\frac{\pi t}{4500}\right) \Pi a;$$

$$\sigma_z = (4 \cdot 10^6 - \sigma_1 - \sigma_2) \Pi a$$

Элемент Кельвина

Рассуждая аналогичным образом, можно получить и соответствующие уравнения для модели Кельвина (см. рис. 3, г).

Для параллельного соединения упругого и вязкого элементов справедливы соотношения [4, 5, 6]

$$T_{\mu(y)} = T_{\mu(B)} = T_{\mu(K)};$$
 (30)

$$T_{\rm H(K)} = T_{\rm H(y)} + T_{\rm H(B)}, \qquad (31)$$

где (к) – индекс, указывающий на принадлежность величин тензоров деформаций и перемещений к модели Кельвина в целом.

Таким образом,

$$D_{\mu(y)} = D_{\mu(B)} = D_{\mu(K)};$$
 (32)

$$D_{\rm H(K)} = D_{\rm H(V)} + D_{\rm H(B)}.$$
 (33)

После подстановки (10, 13) в (33) и с учетом (32) получаем

$$D_{\rm H(\kappa)} = 2GD_{\rm g(\kappa)} + 2\eta \dot{D}_{\rm g(\kappa)}.$$
 (34)

И для $D_{III(\kappa)}$ и $D_{O(\kappa)}$

$$\sigma_{\rm cp(\kappa)} = 3K\varepsilon_{\rm cp(\kappa)} + 3\eta_{\nu}\dot{\varepsilon}_{\rm cp(\kappa)}.$$
 (35)

Алгоритм вычисления перемещений и напряжений по (34, 35), в том числе и отдельно для упругой и вязкостной составляющих, может осуществляться аналогично тому, как это предложено для модели Максвелла, см. (26, 27, 28).

Для одноосного напряженного состояния, учитывая (3, 4, 5, 6, 7, 8, 9, 15) и при условии, что

$$\mu = \mu_v = 0, 5. \tag{36}$$

Рис. 6. Функции $\varepsilon_x = f_1(t), \quad \varepsilon_y = f_2(t),$ $\varepsilon_z = f_3(t)$ модели Кельвина (при условиях нагружения, соответствующих рис. 5)

Получаем известное [4, 5] выражение

$$\sigma_x = E\varepsilon_x + \eta_p \dot{\varepsilon}_x. \tag{37}$$

Решение дифференциального уравнения (34) (при условиях нагружения по рис. 5) показано на рис. 6.

Выводы

Таким образом, предложены трехмерные реологические модели простейших звеньев, которые могут быть использованы при построении модели асфальтобетона.

Литература

- Золотарев В.А. Исследование свойств асфальтобетонов различной макроструктуры: дис. ... канд. техн. наук: 05.23.05 / В.А. Золотарев. – Харьков, 1967. – 207 с.
- 2. Ткачук Ю.П. Влияние структурных особенностей асфальтобетона на законо-

мерности его вязкоупругого поведения при статическом нагружении: дис. ... канд. техн. наук: 05.23.05 / Ю.П. Ткачук. – Харьков, 1977. – 217 с.

- Богуславский А.М. Основы реологии асфальтобетона / А. Богуславский, Л. Богуславский; под общ. ред. Н.Н. Иванова. – М.: Высшая школа, 1972. – 199 с.
- Шульман З.П. Реофизика конгломератных материалов / З.П. Шульман, Я.Н. Ковалев, Э.А. Зальцгендлер. – Минск : Наука и техника, 1978. – 240 с.
- 5. Безухов Н.И. Основы теории упругости, пластичности и ползучести / Н.И. Безухов. М. : Высшая школа, 1968. 512 с.
- Мейз Дж. Теория и задачи механики сплошных сред / Дж. Мейз; пер. с англ. Е.И. Свешниковой. – М.: Мир, 1974. – 318 с.
- 7. Бленд Д. Теория линейной вязкоупругости / Д. Бленд; пер. с англ. И.И. Гольберга, Н.И. Малинина. М.: Мир, 1965. 199 с.

- Самуль В.И. Основы теории упругости и пластичности : учеб. пособие для студентов ВТУЗов / В.И. Самуль. – М. : Высшая школа, 1982. – 264 с.
- 9. Рейнер М. Реология / М. Рейнер ; пер. с анг. Н.И. Малинина. – М. : Наука, 1965. – 223 с.
- Рейнер М. Деформация и течение / М. Рейнер ; пер. со втор. англ. изд. Л.Н. Никитина, А.М. Кочеткова, В.Н. Кунджанова. – М. : Гос. научн.-техн. изд-во нефтян. и горно-топливн. лит-ры, 1963. – 381 с.
- Виноградов Г.В. Реология полимеров / Г.В. Виноградов, А.Я. Малкин. – М.: Химия, 1977. – 440 с.
- 12. Тагер А.А. Физико-химия полимеров / А.А. Тагер. М. : Химия, 1968.

Рецензент: В.В. Филиппов, профессор, д.т.н., XHAДУ.

Статья поступила в редакцию 1 октября 2010 г.