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Abstract. In this paper an attempt is made to study equa-
torial Kelvin waves using a network of three radars: Ko-
totabang (0.204◦ S, 100.320◦ E) meteor radar, Pameung-
peuk (7.646◦ S, 107.688◦ E) medium-frequency radar, and
Pontianak (0.003◦ S, 109.367◦ E) medium-frequency radar.
We have used the continuous data gathered from the three
radars during April–May 2010. Empirical mode decompo-
sition (EMD), Lomb–Scargle periodogram (LSP) analysis,
and wavelet techniques are used to study the temporal and
altitude structures of planetary waves. Here, we used a novel
technique called EMD to extract the planetary waves from
wind data. The planetary waves of ∼ 6.5 and ∼ 3.6 days pe-
riodicity are observed in all three radar stations with peak
amplitudes of about 12 and 11 m s−1, respectively. The 3.6-
day wave has an average vertical wavelength from the three
radars of about 42 km. The 3.6- and 6.5-day planetary waves
are particularly strong in the zonal wind component. We find
that the two waves are present at the 84–94 km height re-
gion. The observed features of the 3.6- and 6.5-day waves
at the three tropical-latitude stations show some correspon-
dence with the results reported for the equatorial-latitude sta-
tions.

Keywords. Electromagnetics (wave propagation) – history
of geophysics (atmospheric sciences) – meteorology and at-
mospheric dynamics (middle atmosphere dynamics)

1 Introduction

Planetary waves (PWs) are prominent features that appear
in the mesosphere and lower thermosphere (MLT) region.
The source of these waves is most likely to be excitations
with a periodicity of ∼ 2 to 20 days, which have been ob-
served using medium-frequency (MF) radar and meteor radar
wind measurements (Williams and Avery, 1992; Tsuda et
al., 1988). The observed PW amplitudes indicate substan-
tial variability with different periodicities, which dynami-
cally changes with time. PWs are classified based on inter-
vals of periodicity as opposed to single period classifica-
tion criteria. The pioneering work was done by Charney and
Drazin (1961) on upward-propagating PWs and the PW dis-
tribution of the zonal wind with height.

Equatorial waves are one of the most important contribu-
tors to modifications of middle atmospheric dynamics by de-
positing energy and momentum, which they carry from the
lower atmosphere (Holton, 1972; Salby and Garcia, 1987).
Planetary-scale waves in the equatorial region, which are
comprised of Kelvin waves and Rossby-gravity waves, refer
specially to waves that are trapped in the equatorial and low-
latitude regions. Kelvin waves exhibit only zonal wind per-
turbations, while Rossby-gravity waves also exhibit merid-
ional wind components. The MLT PWs usually have peri-
ods of around 2, 3–4, 5–7, 8–10, and 12–22 days and show
variabilities with height and time. The 3–5-day wave was re-
ported by means of extensive usage of ground- and satellite-
based observations (e.g., Riggin et al., 1997; Salby et al.,
1984; Pancheva et al., 2004, 2010; Garcia et al., 2005; Taka-
hashi et al., 2007). Garcia et al. (2005), utilizing Sounding of

Published by Copernicus Publications on behalf of the European Geosciences Union.



926 P. Kishore et al.: A case study of mesospheric planetary waves

the Atmosphere using the Broadband Emission Radiometry
(SABER) satellite temperature measurements, demonstrated
PWs at around 3–5 days with an amplitude of 4 K in the MLT
region. Later Takahashi et al. (2007) specified that the PWs
propagate upwards from the stratosphere to the mesosphere
and lower thermosphere with a velocity of 5 km day−1 in
view of two meteor radar MLT winds and ionospheric vir-
tual height. Simulations by Forbes (2000) showed that 3–5-
day waves excited in the troposphere could propagate verti-
cally to penetrate into the MLT region using the Global Scale
Wave Model (GSWM), and the maximum amplitudes were
observed at 100–105 km at about 10 K. The wave activities
have been reported in the equatorial MLT region (Salby et
al., 1984; Garcia et al., 2005). Wave activity for this oscilla-
tion period is intermittent throughout the year, but maximum
amplitudes are generally observed from May to August.

Another PW with a period of 5–8 days is a frequent occur-
rence near the equinox in the MLT (Talaat et al., 2001; Clark
et al., 2002). The MLT observations sometimes indicate the
presence of waves having periods of 5–8 days, the charac-
teristics of which are consistent with those of 6.5-day waves.
Talaat et al. (2001) and Clark et al. (2002) observed a 6.5-
day wave using the zonal wind data in the stratosphere in the
United Kingdom Meteorological Office (UKMO), and these
wave periods are well correlated with satellite observations
in the MLT region. The 6.5-day waves are generally found
earlier than and after the equinox at low latitudes and these
wave events propagate from the lower stratosphere up to the
upper stratosphere. Meyer and Forbes (1997) suggested that
the mesospheric 6.5-day waves are unstable and also that the
vertical-propagating phase of the 6.5-day waves responds to
an in-situ wave source in the lower mesosphere due to wind
instabilities. Kishore et al. (2004) found 6.5-day oscillations,
using Tirunelveli MF radar, and they discovered that the 6.5-
day wave amplitude peaks at altitudes between 94 and 98 km
with a maximum of ∼ 20 K during equinoctial (April–May
and September–October) months.

All these observations and results are based on satellite and
single ground-based observations. In this paper, we chose the
wind data observed by a network of three MLT radars over
Indonesia to study the PWs with periods of 3–5 and 5–8 days
in April–May 2010 as a function of height, latitudinal struc-
tures, and wavelength. The collection of data and investiga-
tion method received for the present review are portrayed in
Sect. 2, results and discussion are given in Sect. 3, and the
overall conclusions drawn from the present study are pre-
sented in Sect. 4.

2 Database and analysis procedure

The equatorial MLT zonal and meridional wind data obtained
by MF radar observations from Pameungpeuk (7.646◦ S,
107.688◦ E; hereafter PAM), Pontianak (0.003◦ S, 109.3◦ E;
hereafter PON), and meteor radar observation from Kotota-

bang (0.204◦ S, 100.320◦ E; hereafter KOT) for the period
of April–May 2010 are used to study the characteristics of
the PWs. These data periods are chosen because they are the
ones for which simultaneous observations are available over
the three radars.

The MF radars at PAM and PON operate at frequen-
cies of 2.008 and ∼ 2 MHz, respectively. At both sites, the
radar soundings involve sampling at 2 km intervals from ap-
proximately 78 to 98 km, with a sampling rate of approxi-
mately every 2 min. The zonal and meridional winds are es-
timated using full correlation analysis (FCA; Briggs, 1984).
The yield of mesospheric wind data depends on the occur-
rence of echoes, the electron densities, and the strength of
the scatters (Gregory et al., 1982). The Kototabang radar
is an all-Sky interferometric meteor radar (SKiYMET), the
details of which are well described by Venkateswara Rao
et al. (2011). Briefly, the radar operates at a frequency of
37.7 MHz with an output power of 12 kW, installed at the
ERA (equatorial atmosphere radar) site. Continuous sound-
ing involves sampling at 2 km intervals from ∼ 78 to 98 km,
with an hourly time resolution. The equatorial MF and me-
teor radar winds are greatly influenced by the ionospheric
E region currents, especially at altitudes greater than 94 km.
Winds above 94 km represent electron drift and not neutral
wind (Ramkumar et al., 2002; Dhanya et al., 2008). In order
to consider reliable data and neutral winds, we utilize data
within the altitude range 82 to 94 km in this study.

Hourly winds were used for this analysis. We examined
the datasets, found small data gaps, and these data gaps
were filled by linear interpolation. We applied a conventional
cross-spectral (CCS) analysis technique enabling the combi-
nation of any two signals (two series) to be analyzed simul-
taneously. This allows us to examine the characteristics of
these series and coherence of the datasets (Stoica and Moses,
2004; Bloomfield, 2005). In this spectral technique, the to-
tal power is distributed in the frequency domain. We detect
periodic components in the observed signal in the time do-
main as demonstrated by van Hoek et al. (2016). The peaks
of the spectra identify the relative importance of different fre-
quency bands in the time domain. To examine the PWs in the
middle atmosphere, a relatively new adaptive signal process-
ing method called empirical mode decomposition (EMD),
introduced by Huang et al. (1998), was used. This adaptive
approach is derived from the simple assumption that any sig-
nal can be composed of different intrinsic mode functions
(IMFs), each representing an embedded characteristic oscil-
lation of a specific timescale (Huang et al., 2012). Adding
all IMFs together with EMD residue will reconstruct the
original signal without any loss of information or distortion.
Higher frequency oscillations are captured in the first mode
and subsequent modes have lower average frequencies. The
first (principal) mode captures the higher frequency oscilla-
tions, with the following modes capturing successively lower
frequencies. A more detailed description and methodology
of extracting IMFs from the time series data can be found
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Koto Tabang: 2010 Zonal wind(a)
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Pameungpeuk: 2010 Zonal wind(b)

Apr 01 Apr 15 May 01 May 15 May  30
82
84
86
88
90
92
94
96
98

Al
tit

ud
e 

(k
m

)

      
 
 
 
 
 
 
 
 
 
 
 
 

 
-50
 
-30
 
-10
 
 10
 
 30
 
 

Pontianak: 2010 Zonal wind(c)
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Koto Tabang: 2010 Meridional wind(d)
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Pontianak: 2010 Meridional wind(f)
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Figure 1. Time–altitude sections of the daily mean zonal (a, b, c) and meridional (d, e, f) winds over Kototabang, Pameungpeuk, and
Pontianak locations during the period from 1 April to 31 May 2010.

elsewhere (Kishore et al., 2012; Huang et al., 2012). In addi-
tion, the Lomb–Scargle periodogram (LSP) analysis method
(Scargle, 1982) of spectral analysis was used for determina-
tion of PW amplitude and phase. This technique allows for
the estimation of amplitude or power spectra of a time series
that is unevenly spaced (Press et al., 1992). LSP weighs the
data by each point rather than by each time interval. The LSP
technique provides as estimate of the significance of each fre-
quency by examining the probability of its emergence from
random fluctuations (Namboothiri et al., 2002).

A band-pass filter is used in the time domain to identify
possible PWs, following Kishore et al. (2005). To reduce the
effect of long-term trends, all the data are detrended by a sec-
ond order polynomial fit before filtering and performing the
spectral analysis (Kishore et al., 2005). Here we use another
adaptive spectral analysis method based on Morlet wavelets.
The wavelet transform is a localized transform in both space
(time) and frequency. We extract the spectral intensity from a
temporally evolving signal with inherent variable frequencies
(Kumar and Foufoula-Georgiou, 1997). The time-frequency
resolution of a wavelet is not constant, but varies with fre-
quency.

3 Results and discussion

3.1 Temporal variability in mean winds

In this section, we present mean wind circulation in the
MLT region over the three radars located at KOT, PAM, and
PON. Figure 1 illustrates the time–height plots representing
the zonal winds (panels a–c) and meridional winds (pan-
els d–f) over the altitude region of 82–94 km from 1 April
to 31 May 2010. Wind contours are constructed from daily
mean values, with the solid black line representing the zero
wind in zonal and meridional contours. It can be seen that
before mid-April, zonal winds are mostly westward for all
radars, while the flow is eastward for most observation
days after this period. According to Venkateswara Rao et
al. (2012), westward winds are stronger than eastward winds
within ±9◦ latitude, whereas at ±22◦ eastward winds are
stronger. The maximum westward wind is observed to be
about 40 m s−1 over KOT at an altitude of 82 km. The max-
imum eastward wind is in the range of ∼ 25 m s−1 and its
occurrence is at around 88, 86, and 94 km over KOT, PAM,
and PON, respectively. In general, a similar behavior in the
zonal winds is found among the stations, and strong west-
ward winds centered on April 2010 weaken with increas-
ing height. Younger and Mitchell (2006) have shown that
westward winds observed during the equinoxes have a max-
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Figure 2. The zonal wind power spectral density of two radars (a, d, g), cross power spectral density (b, e, h), and coherence (c, f, i) during
1 April to 31 May 2010.

imum of about 30 m s−1, and are located at about 84 km at
the Ascension Island equatorial station. The UARS High-
Resolution Doppler Imager (HRDI) has also documented the
tendency of the speed of westward winds (e.g., Burrage et
al., 1996). Figure 1d–f represent the meridional wind for the
three radar stations. The major structures produced by the
three stations are generally the same. In all three stations
southward wind is larger than the northward wind. The max-
imum southward wind is observed in early April between
the 82 and 86 km altitude regions at about ∼ 25 m s−1 over
PON. The maximum northward wind is observed over KOT
at about ∼ 15 m s−1 between the altitudes of 86 to 92 km.
Independent observations of equatorial mean winds at As-
cension Island (Hirota, 1978) and other longitudes (Burrage
et al., 1996) agree with the general form of the winds. These
studies demonstrated that westward winds peak during the
equinox while eastward winds peak during the solstice.

A cross-correlation analysis was performed between the
three zonal and meridional time series between 82 and 94 km
altitudes. This analysis provides a set of time-dependent cor-
relation coefficients of two signals. We found correlation co-
efficients of 0.68 between KOT and PAM with a lag of zero,
0.65 between KOT and PON, and 0.63 between PON and
PAM zonal wind at 86 km, which are significant at the 95 %
confidence level. The maximum lag is observed in the alti-
tude range between 90 and 94 km. In the case of meridional
wind we observed a time lag of ±5 h. Figures 2 and 3 show
the results of the cross-spectral analysis for the zonal and

meridional winds. In Fig. 2, the top row (panels a, d, and
g) shows the power spectral density of two radars, the mid-
dle row (panels b, e, and h) corresponds to the cross-spectral
power, and the bottom row (panels c, f, and i) is the coher-
ence spectrum estimated for the 90 km altitude level using
the CCS technique. The dashed line in the bottom panels
corresponds to the 95 % confidence level. From the figures
it can clearly be seen that the zonal and meridional wind
power spectra are characterized by a dominant peak at 3–4
and 5–8 days. Furthermore, these peaks appear at all meso-
spheric heights (82–94 km). Comparing the bottom panels of
Figs. 2 and 3 demonstrates that PWs appear in the three radar
datasets, and these waves are above the 95 % confidence
level. The average coherence is 0.53 between the radars zonal
winds and 0.5 between the meridional winds. These coher-
ence plots identify cycles of 3–4 and 5–8 days. In addition,
some other PWs (8 and 10–12 days) are also clearly evident;
however, they are out of the scope of the present study.

Before studying the characteristics of PWs, we checked
what periods were dominant in the hourly wind datasets. We
used LSP and the new analysis technique of EMD, which
is an effective method for adaptively decomposing the sig-
nal into different independent frequency components, termed
IMFs. The IMFs yield instantaneous frequencies as a func-
tion of time, which allows for a precise identification of em-
bedded structures. The time series of hourly zonal wind data
at 90 km altitude are shown in Fig. 4 (top left); 10 IMFs can
be extracted over KOT, only 8 of which are shown here to
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Figure 3. The meridional wind power spectral density of two radars (a, d, g), cross power spectral density (b, e, h), and coherence (c, f, i)
during 1 April to 31 May 2010.

characterize the most important components. We investigate
the gross characteristics of oscillations for each IMF using
LSP analysis to the IMF time series. All IMFs exhibit slow-
varying amplitudes and frequencies. The amplitude spectral
plots are shown in the right panels of Fig. 4. The 95 % confi-
dence level is shown by a horizontal dashed line. For this fig-
ure, the selected altitude is 90 km from the KOT hourly zonal
wind dataset. The figure shows that the dominant peaks near
semi-diurnal (12 h) and diurnal (24 h) are present in IMF2
and IMF4. IMF7 shows a clear PW period of about 3.5 days,
while IMF8 shows a broader range of oscillations with pe-
riods ranging from 5 to 8 days and the maximum amplitude
occurring at about 6.5 days. The Lomb–Scargle amplitude
spectra are shown on the right side of Fig. 4, which reveals
components centered at ∼ 3.6 and 6.5 days. The 3.6-day
peak is somewhat broad, extending over roughly 3–5 days.
Similarly, the 6.5-day wave also shows a broad peak (∼ 5–
8.0 days). The EMD technique reveals that some waves with
periods that are close to those of diurnal tide are generated
due to the interactions of the diurnal tide and PWs, which in-
dicate extensive coupling between the diurnal tide and PWs
(Takahashi et al., 2006). In both methods, the PWs in meso-
spheric altitudes over equatorial radars are clearly seen. The
PW periods are observed throughout mesospheric altitudes
at all stations, although their amplitudes vary with altitude
and from station to station. Similar results are also found at
the other radars, indicating that these IMFs are statistically
different from noise.

To deduce more information on the dependence of the
PWs on height variations in Figs. 5 and 6, we show the mean
wind, amplitudes, and phases over the three stations for the
observation period. In each figure the top and bottom pan-
els represent the zonal and meridional winds, respectively,
as well as the amplitude and phase profiles for each sta-
tion. The spectral amplitudes and phases were calculated by a
LSP analysis within a set time window of 14 days (26 days)
in length for the 3.6-day (6.5-day) wave. This window was
shifted by a step size of 1 day, and the power spectral am-
plitude and phase values were estimated. The amplitude and
corresponding phase values were considered only when they
are > 95 % significant. Mean zonal and meridional winds are
also given (curves with solid curves) to show the response
of the PWs to background winds. Generally speaking, the
3.6-day zonal amplitudes look similar in all three stations.
For example, at KOT and PAM the peaks are as large as
12–14 m s−1 above 90 km. But at Pontianak the zonal 3.6-
day amplitudes are smaller and have no prominent peak val-
ues. When comparing the 3.6-day wave amplitude with back-
ground zonal mean wind, it seems that when there is a west-
ward wind flow, there is also stronger 3.6-day amplitudes.
The phase profiles (solid curves with open circles) indicate
fairly downward progression in the 82–94 km height range
at almost all three stations. KOT, PAM, and PON have verti-
cal wavelengths of 42, 44, and 40 km, respectively. Note that
these values are close to those estimated for equatorial re-
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gions and the vertical wavelengths are slightly smaller than
the theoretical estimates for a 3.6-day wave.

Figure 6 shows the mean vertical profiles of the 6.5-day
wave amplitudes and phases observed in the zonal (top pan-
els) and meridional (bottom panels) wind components at the
three equatorial stations, together with the mean wind. In
the figure, the 6.5-day wave amplitude is shown by solid
curves, mean wind is shown by curves with solid circles, and
the phase is indicated by curves with open circles. The am-
plitudes are generally < 10 m s−1 below 90 km altitude lev-
els. The maximum amplitudes (12–14 m s−1) are observed
at KOT and PAM radar stations at 94 km of altitude, while
moderate amplitudes are observed over the PON radar. Jiang
et al. (2008) observed that 6.5-day wave amplitudes were
strongest between 84 and 98 km, and the maximum ampli-
tude of ∼ 14.5 m s−1 appeared at 92 km in April–May 2004
using the Wuhan meteor radar. Furthermore, they indicated
that the 6.5-day waves near the spring equinox were gen-
erally stronger than those in other seasons. A large meso-
spheric 6.5-day wave was seen during late April and early
May 2003 by the SABER instrument aboard the TIMED

satellite and the ground-based radar systems (Riggin et al.,
2006; Jiang et al., 2008). They mentioned that the 6.5-day
wave in the MLT region during April–May 2003 should be
regarded as an atmospheric normal mode, which was am-
plified through sympathetic interaction with the background
wind. Takahashi et al. (2006) reported observations of a very
strong ∼ 6-day wave with amplitudes reaching ∼ 25 m s−1

present simultaneously in the zonal winds over Cariri (7.4◦ S)
and Ascension Island (7.9◦ S). Liu et al. (2004) using the
National Center for Atmospheric Research Thermosphere-
Ionosphere-Mesosphere Electrodynamics General Circula-
tion Model (TIME-GCM) investigated the structures and sea-
sonal variability in 6.5-day waves. The phase profiles of the
6.5-day wave for zonal and meridional winds for the three
radars are shown adjacent to the wind profiles in Fig. 6. Usu-
ally there is a downward propagation with time, although up-
ward phase progressions are sometimes observed.

In order to further investigate these waves, a band-pass fil-
tering analysis of the horizontal winds in each height grid
was carried out. The dominance of the 3.6-day wave period-
icity is also clearly evident in the filtered time series of all
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Figure 5. Height profiles of the amplitudes and phases (open circle) of the 3.6-day waves over Kototabang, Pameungpeuk, and Pontianak
locations. The thick solid lines represent the mean zonal winds over the period from 1 April to 31 May 2010.
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Figure 6. Height profiles of the amplitudes and phases (open circle) of the 6.5-day waves over Kototabang, Pameungpeuk, and Pontianak
locations. The thick solid lines represent the mean zonal winds over the period from 1 April to 31 May 2010.
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Figure 7. The band-pass filter results of the zonal (a, b, c) and meridional (d, e, f) at Kototabang, Pameungpeuk, and Pontianak locations.
The bandwidth is 3–4 days and the interval is 15 m s−1.

three radars as shown in Fig. 7. In this figure, we considered
step sizes of 2 km between the heights of 82 and 94 km. The
data at the three sites were subjected to an elliptical band-
pass filter with cutoff periods of 3.0–4.0 days. The figure
clearly shows the time variations in the occurrence of the 3.6-
day wave, with the KOT amplitudes being larger than those
of the other two radars. The largest wave activity, with am-
plitudes of ∼ 16 m s−1, occurred at 92 km in the zonal wind
during 1–15 April and 20 April–10 May over KOT. While
the zonal and meridional wind components have similar am-
plitudes near the equator, the zonal 3.6-day wave amplitudes
are larger than the meridional wind amplitudes. This is con-
sistent with the other measurements.

Next, we perform a similar analysis with the 6.5-day oscil-
lations. Figure 8 illustrates the features of the 6.5-day oscil-
lations at different heights from 82 to 94 km. The zonal and
meridional wind dataset was subjected to a band-pass filter
of 5–8 days width. The amplitude of the oscillations at KOT
reached ∼ 16 m s−1 at 88–94 km and lasted for 2 to 3 cycles
in the 21-day interval spanning 22 April to 12 May 2010.
It is interesting to note that the 6.5-day zonal wind oscilla-
tions at KOT, PAM, and PON were almost in phase during
this period. The PAM and PON zonal winds showed com-
mon oscillation features during the intervals 1–14 April and
20 April–12 May 2010. The KOT zonal wind showed larger
amplitudes than the other equatorial sites. The filter analy-

sis determined that 6.5-day waves have a period of about 6–
7.5 days, with the maximum wave amplitude occurring at
6.5 days. The zonal 6.5-day amplitudes are generally slightly
stronger than the meridional amplitudes in all radar observa-
tions.

3.2 Wavelet analysis of the 3.6- and 6.5-day
oscillation variability

In this section, we investigate the possible temporal modu-
lation of 3.6 and 6.5-day waves throughout the observation
period through wavelet analysis. Figures 9 and 10 show the
3.6 and 6.5-day periodicities at three different height lev-
els (86, 90, and 94 km) over three different radars. Wavelet
analysis was applied to the dataset for the period 1 April–
31 May 2010 for constructing the contours. Specifically, the
commonly used Morlet wavelet function was used which bet-
ter captures the time-varying nature periodicities. The details
of this method can be found in Torrence and Compo (1998).
In the figures, the 3.6- and 6.5-day periods are marked by
white dotted lines.

In Fig. 9 we illustrate the 3.6-day zonal spectral intensities
observed at 86, 90, and 94 km for the three radars. It is evi-
dent that during the observation period, a large burst of wave
activity with a period of about 3.6 days occurred at all alti-
tude levels. The wave period extended 2–5 days but the max-
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Figure 8. The band-pass filter results of the zonal (a, b, c) and meridional (d, e, f) winds at Kototabang, Pameungpeuk, and Pontianak. The
bandwidth is 5–8 days and the interval is 15 m s−1.

imum intensity was near 3.6 days. The black line in the plots
indicates areas with 95 % confidence level. The white dotted
line indicates the 3.6-day wave period. From the figure, the
wave intensity at higher altitudes appears to be slightly larger
than that at the lower altitude levels. Figure 9d shows wider
periods oscillating at 2–7 day periods. The 3.6-day wave am-
plitudes at PON have slightly smaller amplitudes compared
to the other two radars.

To deduce more information on the time–height variations
and dependence of the 6.5-day wave, we show the ampli-
tudes at the three radars at 86, 90, and 94 km in Fig. 10. The
6.5-day peak is somewhat broad, ranging over 5–8 days at
some heights and 5–10 days at other levels. The wave am-
plitude increases with altitude and reaches a maximum of
about 22 K at mesospheric altitudes for all three radars. The
6.5-day oscillation has a broad spectral peak extending over
several days at 90 and 94 km of altitude at KOT. The maxi-
mum amplitude of ∼ 24 K is observed over KOT at altitudes
of around 94 km. The temporal localization oscillations us-
ing wavelet analysis shows strong 6.5-day waves during the
observation period. During the observation period, the max-
imum amplitudes show differences between the measure-
ments and thus make the wave activity out of phase at these
locations (Kishore et al., 2005).

4 Conclusions

In the present study we made an attempt to study the plan-
etary wave (PW; 3.6- and 6.5-day) oscillations over three
radars (KOT, PAM, and PON) installed in tropical latitudes
during the period from 1 April to 31 May 2010. The main
findings obtained from this study are summarized below:

The major zonal wind structures produced by the three sta-
tions are generally the same. The main features of the zonal
winds are mostly westward before mid-April, and thereafter
eastward wind is observed in all three radar stations. The
maximum westward wind seems similar in all three stations,
while the maximum westward jet is observed at different al-
titudes at each station. The maximum southward wind is ob-
served in early April between the 82 and 94 km altitude lev-
els in all three radars. Furthermore the southward wind is
stronger than the northward wind.

Empirical mode decomposition (EMD) is a novel method
to extract time-varying quantities from time series of data.
This method decomposes a time series into intrinsic oscil-
lations using the local temporal structural characteristics of
the data. Each consequent IMF is a narrowband time series
with an identifiable central period around which the oscilla-
tions take place. The analysis revealed strong signatures of
3.5- and 6.5-day waves. The EMD also showed higher fre-
quencies of 12 and 24 h, as well as 2–2.5 days. The EMD
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Figure 9. Contours of wavelet intensities as a function of frequency and time for the zonal wind of IMF3 at three different heights (86, 90,
and 94 km) over Kototabang, Pameungpeuk, and Pontianak locations.
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Figure 10. Contours of wavelet intensities as a function of frequency and time for the zonal wind of IMF5 at three different heights (86, 90,
and 94 km) over Kototabang, Pameungpeuk, and Pontianak locations.
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technique was used to explore planetary waves over three
equatorial radars.

The 3.6-day wave amplitudes were somewhat similar
across all the radars, with the maximum mean amplitude
observed in KOT and PAM at ∼ 12 m s−1, always above
the 90 km altitude level. The phase profiles showed a fairly
downward progression, with an estimated mean vertical
wavelength of about 42 km.

The amplitudes of the 6.5-day waves show roughly simi-
lar values in all three radars. However, the zonal amplitude
reaches its maximum at altitudes between 90 and 94 km with
a peak value of ∼ 12 m s−1 in KOT and PAM radars. The
PON zonal 6.5-day amplitudes are slightly smaller compared
to the other two radars. Vertical wavelengths are observed
to be between 30 and 38 km with the network of the three
radars, which is similar to the equatorial site measurements.

To understand the temporal behavior of the PW (3.6- and
6.5-day) oscillations, we used a wavelet transform technique
at three different altitudes for the network of radars. Further-
more, it suggested that these oscillations are dominant in the
mesosphere over equatorial regions. In a future study we will
combine datasets from other equatorial stations with long-
term observations, which will allow for a better understand-
ing of wave characteristics and including the wave number.
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