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Abstract. In this paper we investigate the special automata over finite rank free groups and estimate

asymptotic characteristics of sets they accept. We show how one can decompose an arbitrary regular

subset of a finite rank free group into disjoint union of sets accepted by special automata or special

monoids. These automata allow us to compute explicitly generating functions, λ−measures and Cesaro

measure of thick monoids. Also we improve the asymptotic classification of regular subsets in free

groups.

1. Introduction

This paper continue the series of papers written by different authors [2, 1, 6, 7, 8]. More specifically,

we expand the results of [9] and give their proves. We return to the question of asymptotic classification

of regular subsets in finite rank free groups, thus being motivated by needs of universal algebraic

geometry. Namely, having in mind the notion of an A−dimension function over arbitrary algebraic

structure introduced by the second author and its applications in different algebraic systems (see [3]),

we have started to prepare the algebraic and algorithmic foundations for a suitable dimension function

in group theory. In particular, in a sequel paper we are going to present such an algorithm for regular

subsets of finite rank free groups over certain group A. However, the existing asymptotic classification

of sets, appeared first in [2] and then refined in [1] does not allow us to fulfill this task. To reveal the

problem, we formulate these results (see Section 2 for definitions):
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Theorem 1.1. [2, 1] Let F be a finite rank free group. Then

1) every regular subset of F is either thick or exponentially negligible;

2) a regular subset of F is thick if and only if its prefix closure contains a cone.

As we shall see below, all the necessary computations can be easily done in the case of regular

exponentially negligible sets. The missing bit consists in more specific characterisation of thick sets

and in finding the way to distinguish between them in a finer way. The present paper covers these

problems.

The following theorem adds to our knowledge on how does the thick sets look like; these new details

turn out to be crucial as we shall show in section 4:

Theorem 3.8. A regular subset R of F is thick if and only if it contains a subset w ◦ T , with T
being a thick monoid and w ∈ F .

Another important results of the current paper concerns new algorithms for the computation of the

generating functions and Cesaro measure of sets recognised by so-called special automata and thick

monoids. The algorithms we suggest appears to be easier with respect to the older ones.

Now, a few words on the structure of the paper. In Section 2 we give some basics on regular sets and

recall techniques for measuring subsets in a free group F and the asymptotic classification of regular

sets. In subsection 2.2 we also provide Algorithm I for computation of the generating function of a

regular set by means of linear algebra.

Section 3 starts with the definition of a special automaton over monoid and group. Further on we

prove that every regular subset L of a finite rank free group F can be represented as a finite disjoint

union of languages accepted by certain type of automata (see Proposition 3.1), which is going to be

crucial property of the special automata in a context of both current paper and the construction of a

dimension function in free groups. In Lemma 3.3 we also show how one can split the sets accepted by

special automata, which leads to the notion of a thick monoid.

Further in this section we analyse the structure and compute the most important asymptotic charac-

teristics of thick monoids: the generating function and the Cesaro measure among the most important

of them (see Proposition 3.6 and Lemma 3.7). In Theorem 3.8 we improve already mentioned result

on the asymptotic classification of regular sets. We conclude Section 3 with Algorithm II computing

λ−measure of a negligible set accepted by a special automaton.

The next Section 4 is dedicated to computations and also it reassumes the results from above. Pre-

liminary calculations made in Lemma 4.1 allows us to compute the generating function of an arbitrary

double-based cone (see Theorem 4.2). We want to emphasize that this is a crucial theorem for all

the paper, interesting per se, applied in Lemma 3.7, and having a lot of structural and computa-

tional consequences. In particular, Theorem 4.2 reduces Algorithm I to much more straightforward

combinatorial calculations and formulae that does not use linear algebra methods.
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2. Regular sets in free groups

In this section we recall the main definitions and tools of particular interest for our purposes.

2.1. Regular sets: some properties. We assume that the reader is familiar with basic facts on

regular sets in monoids and groups (described in details, for example, in [4, 12]). Let X = {x1, . . . , xm}
be an alphabet and define Σ to be the letters of X with their formal inverses: Σ = X ∪ X−1. Let

F = F (X) be the free group generated by X. A finite state automaton A is a quintuple (S,Σ, δ, I, Z),

where S is a finite set of states, Σ is an alphabet, I ⊂ S is the (non-empty) set of initial states, Z ⊆ S

is the set of final states, and δ is a set of arrows with labels in the enlarged alphabet Σ ∪ ε (here ε

is assumed not to lie in Σ). Further, a deterministic automaton can be considered a special case of

a finite state automaton, with no arrows labelled ε, the only one initial state and each state being

the source of exactly one arrow with any given label from Σ. By the Kleene-Rabin-Scott theorem,

all regular subsets over Σ (i.e. the closure of finite subsets of free monoid over Σ under the rational

operations) are exactly the sets accepted by a finite state automaton over Σ ∪ ε, or, equivalently,

accepted by a deterministic automaton over Σ. The language accepted by an automaton A we shall

denote by L = L(A).

2.2. Multiplicative measures: basics and first algorithms. We denote by |f | the length of an

element f ∈ F , and let Sk = {w ∈ F | |w| = k } denote the sphere of radius k in F . We consider a

subset R of F , and denote by fk(R) =
|R∩Sk|
|Sk| the frequency of elements from R among the words of

length k in F .

λ− measure. An important measuring tool in F is the so-called frequency measure, introduced in

[2] and studied in [6] and [7]. By definition,

λ(R) =
∞∑
k=0

fk(R).

A subset R ⊆ F is called λ-measurable, if λ(R) < ∞, and exponentially λ−measurable if there exists

a positive constant δ < 1 such that fk(R) < δk for big enough k. We adjuste this measure to obtain

λ∗(R) = 2m
2m−1λ(R).

Generating function. One can consider the (frequency) generating function for R as a formal

series in R[[t]]: gR(t) =
∑∞

k=0 fk(R)t
k. We shall also use the adjusted version of this function: g∗R(t) =

2m
2m−1 ·gR(t). In case of regular subsets of F the generating function can be described in a very concise

form:

Theorem 2.1. For a regular set R ⊆ F the function gR(t) is a rational function of t with rational

coefficients and either

• has no singularity at t = 1 (in this case R is exponentially λ−measurable) or
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• has a simple pole at t = 1 (in this case R is thick1).

In particular,

(2.1) Res1gR(t) = −µ0(R).

Recall that a regular set is called thick if the parameter µ0(R) defined by formula (2.1) is strictly

positive. This parameter µ0(R) is called Cesaro density of R. We use often the following simple

properties of the generating function: suppose R1 and R2 are regular subsets of F . Then

(1.) If R = R1 ∪ R2, then the corresponding generating function can be computed as gR(t) =

gR1(t) + gR2(t)− gR1∩R2(t).

(2.) If R = R1 ◦R2, then gR(t) = gR1(t)g
∗
R2

(t).

Now we describe the first algorithm for calculation of the generating function for an arbitrary

regular subset of a finite rank free group F . This algorithm is previously known (see, for example,

[2]), although it was not directly formulated there.

Algorithm I computing the frequency generating function gR(t) for a regular set R.

Indeed, let A = (S,Σ, δ, I, Z) be an automaton such that |S| = n and let A be it’s adjacency matrix,

i.e. n × n matrix with entries aij such that each aij corresponds to the number of arrows from the

state i to the state j. Clearly, the number of different paths of length k from i to j is equal to (Ak)i,j .

Denote by R the subset of F accepted by A.

Algorithm I:

1. Given an automaton A, compute the entries aij , i, j = 1, . . . , n of the adjacency matrix A.

2. Compute the entries bij of the fundamental matrix B = tA(E − tA)−1 of A, with the entries

bij from the ring of formal power series R[[t]].

3. The generating function gR(t) is equal to
∑

i∈I,j∈Z
bij .

One of the disadvantages of the Algorithm I is that step [2.] involves the matrix inversion, and

it makes the algorithm hardly implementable with the size of automaton n big enough. However,

computation of the generating function can be significantly simplified for a wide class of regular sets.

In what follows we introduce this type of sets and describe their structure along with the improved

algorithm for computation of g(t). Now, using Algorithm I and the properties above, we compute

generating function for certain regular subsets of F . We also calculate the corresponding values of

Cesaro density µ0(R) (defined by formula (2.1)).

Example 2.2. (1) The entire free group F has gF (t) = − 1
t−1 and µ0(F ) = 1.

(2) For a set R = F ♯ = F \ {1} we have gR(t) =
−t
t−1 while µ0(F

♯) = 1.

1The rationality of gR(t) for regular sets is well known (see for instance [5]; it follows also from Algorithm I for gR(t)

below), while statements about asymptotic properties of R follow from asymptotic classification of regular sets shown in

[2, 1].
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(3) Let R be a cone2 C(w) or R = C[w], and let |w| = r. Then gR(t) =
1

2m(2m−1)r−1 · −tr

t−1 , and

µ0(R) =
1

2m(2m− 1)r−1
.

(4) If R = F \Br−1, then gR(t) =
−tr

t−1 , and µ0(R) = 1.

(5) For a subgroup H < F (X) of all words of even length direct calculations of frequency generating

functions gives gH(t) = 1
1−t2

, and therefore µ0(H) =
1

2
.

3. Special automata over free groups and monoids

In this section we investigate one of the central concepts of this paper, i.e. special automata over

monoids and groups. We show in Proposition 3.1 that every regular set in a free group can be

decomposed into finite union of subsets accepted by special automata.

3.1. Definitions. Let A = (S,Σ, δ, i0, Z) be a deterministic automaton. A is called special over the

monoid Σ∗ if

a. The initial vertex has no inedges;

b. There is only one final state z0 ∈ Z;

c. A does not contain inaccessible states;

d. For every state s ∈ S there is a direct path from s to the final state z0;

e. For any state s ∈ S, all arrows which enter s have the same label x ∈ Σ (we shall say, s has

type x).

In order to adjust the notion of speciality to groups, we impose an additional constraint on automata.

Namely, let F be the free group, and A be a special automaton. Suppose also that

f. For any state s of type x in A, all arrows exiting from s cannot have label x−1.

A is a special automaton over the group F , if it satisfies the conditions (a)–(f).

In what follows we also shall use a notion of a special monoid. Namely, a monoidM is called special

if it is accepted by a finite automata A with i0 = z0, satisfying conditions (b) – (f).

3.2. Decomposition into special automata.

Proposition 3.1. Let L be a regular language in F . Then there exist a finite number of automata

A0, . . . ,Ak such that

• L is a disjoint union of languages L0 = L(A0), . . . , Lk = L(Ak) in F : L = L0 ⊔ L1 ⊔ · · · ⊔ Lk;

• every Li is either accepted by a special automaton or a special monoid.

Proof. Since L is regular in F , it is accepted by a finite automatonA. Although we can assume thatA is

deterministic automaton, it will be more convenient for us to start with a non-deterministic one, which

accepts L as a language of reduced words, satisfies (c) (it is always possible, see [10]), but, probably,

has ε−transitions and more than one initial state. Therefore, A has a form A = (S,Σ∪ ε, δ, I, Z). We

2We recall the notions of cones in 3.4

DOI: http://dx.doi.org/10.22108/ijgt.2017.21479

http://dx.doi.org/10.22108/ijgt.2017.21479


32 Int. J. Group Theory 7 no. 4 (2018) 27-40 E. Frenkel and V. N. Remeslennikov

begin with an application of Rabin-Scott powerset construction (see [13] for details). As an output

of this procedure, we obtain an automaton A′ = (S′,Σ, δ′, i0, Z
′), which does not have ε-transitions

and has only one initial state i0 without inedges, as required. As a by-product of the construction,

we have conditions (c) and (d) satisfied. Further, because we have started from the automaton A
which does not have consecutive x, x−1(x ∈ Σ) transitions, A′ does not have these transitions as

well. Nevertheless, it might happen that A′ has more than one final state and some states of S′ have

incoming edges with different labels. In the latter case we split the states of A′ as it is shown on

figure 1:
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Figure 1. Splitting the states of the automaton A′.

The output of the splitting procedure we shall call A′′ = (S′′,Σ, δ′′, i0, Z
′′). If A′′ has only one final

state z0 ̸= i0, then it is special over F . If Z ′′ = {z0} and i0 = z0, then L(A′′) is a special monoid by

definition and due to (f). Suppose now Z ′′ = {z0, . . . , zk}, with k ≥ 1. For every zi ∈ Z ′′ consider

the maximal connected subgraph Ai = (Si,Σ, δi, i0, zi) of A′′ such that Si ⊂ S′′ and δi ⊂ δ′′ induced

by the paths of arrows from i0 to zi; obviously, there are two options for Ai: either Ai has distinct

initial and finale state and therefore Ai is special, or initial and final states conincide and so L(Ai)

is a monoid . Since L = L(A′′) and A′′ satisfies (c), (d), clearly, L = L(A0) ∪ L(A2) ∪ · · · ∪ L(Ak).

Moreover, this union is disjoint since Li ∩Lj ̸= ∅ implies existence of paths of arrows p1, p2 such that

p1 = i0v1 · · · vszi ∈ A′′ and p2 = i0u1 · · ·urzj ∈ A′′ for zi ̸= zj , with the label δ′′(p1) = δ′′(p2), a

contradiction with A′′ being deterministic. □

Remark 3.2. Notice that the number k and subsets Li for different decompositions of L can vary. On

the other hand, suppose L = L0⊔L2⊔· · ·⊔Lk and L =M0⊔M2⊔· · ·⊔Ms are different decomposition

of a regular set L as in Proposition 3.1. Then by property (1.) of the generating functions we have

gL0(t) + · · ·+ gLk
(t) = gL(t) = gM0(t) + · · ·+ gMs(t).

3.3. Further splitting of subsets in free groups. A special automaton satisfying (a)–(f) in turn

admits further splitting:
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Lemma 3.3. Let R = R(A) and A = (S,Σ, δ, i0, z0) be a special automaton over F . Then there exist

regular languages R1, R2, R3 ⊂ F such that Rj are accepted by Aj = (S,Σj , δj , ij , zj), A1 is special

over F and

1. if A has at least one arrow exiting z0, then R2 is non-empty and i2 = z2, while i3 ̸= z3 and

(3.1) R = R1 ◦R2 is unambiguos;

(3.2) R2 = 1 ⊔R3 ⊔ (R3 ◦R3) ⊔ (R3 ◦R3 ◦R3) ⊔ · · · ;

(3.3) gR(t) = gR1(t)g
∗
R2

(t); λ(R) = λ(R1)λ
∗(R2).

2. if there is no arrows exiting z0, then R2 = R3 = ∅, R = R1, λ(R) = λ(R1), and gR(t) = gR1(t).

Proof. Although the construction of sets R1, R2, R3 and their λ−measures appears in [2] and [7], we

shall widely use these sets and automata in what follows, and therefore we repeat briefly the necessary

computations (see also Example 3.5 and its illustrations in figures 2, 3, 4(a), 4(b)).

Suppose that the final state of A does not have exiting arrows. Then we leave A as it is, and,

clearly, [2.] holds.

Let now z0 has at least one exiting arrow. In this case the special automaton A1 accepting R1 can

be obtained from A by removing all arrows exiting from z0; we take i1 = i0 and z1 = z0. Let us

consider the automaton A2 accepting R2 ̸= ∅ formed by all states accessible from the state z0, with

the same arrows between them as in A; we take z0 for the both i2 and z2. If now u ∈ R1 and v ∈ R2,

then the word uv is reduced and λ(uv) = λ(u)λ∗(v). Therefore, the presentation of R in the form

R = R1 ◦ R2 is unambiguous. Indeed, let w ∈ R can be written in two different forms as u1 ◦ v1 and

u2 ◦ v2, where u1, u2 ∈ R1 and v1, v2 ∈ R2. Assume that |u1| > |u2| (otherwise consider the pair v1

and v2), and let h = u−1
2 u1 ∈ F be readable in A. Notice that h starts at z0 since u2 is accepted by

A1 and ends at z0 because A1 accepts u1. Therefore, h is accepted by A2, a contradiction with the

construction of A1. The estimates on λ(R) and gR(t) now follow immediately from the construction

(frequencies assigned to arrows in A1, A2 the same as they were in A) and formula (2.).

Further, we transform the automaton A2 by splitting the final state z2 = z0 into separate initial

state i3 (with no arrows entering it, and those arrows which were exiting z2 now exiting i3), and the

final state z3 (with no arrows exiting z3, and those arrows which were entering z0 now entering z3).

Then, clearly, (3.2) holds. □

Corollary 3.4. Let R = R(A) and A = (S,Σ, δ, i0, z0) be a special automaton over F , and let

R1, R2, R3 ⊂ F be regular languages such that R1 is accepted by a special automaton over F , R2 is

non-empty set such that its initial and the final state coincide, R3 is accepted by a special automaton

over F ; R = R1 ◦ R2, and R2 satisfies (3.2) as in lemma above. Then the subset R2 of F is the

free special monoid generated by {wi|i ∈ I}, where wi ∈ F are words in R3 and wi can be computed

effectively by A.
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Proof. The automaton A2 constructed in the proof of Lemma 3.3 has i2 = z2, and its final vertex z2

is of x−type, for some x ∈ Σ. The condition (f) provided by the speciality of A guarantees that the

arrow labelled x−1 cannot exit from i2. Therefore, if u1, u2 are accepted by A2, then u1u2 = u1 ◦ u2.
In particular, using the further splitting of R2, one can express every ui as a reduced product of wi’s

accepted by (non-empty) R3. Since the identity belongs to R2, A2 accepts the free special monoid

with generators wi, i ∈ I. □

The subsets and automata described in Lemma 3.3, claim 1. are of particular interest for us.

Regular sets R ⊆ F of such form we shall call saturated. Sets R1, R2, and R3 in the splitting defined in

this lemma we shall call a set of first, second, and third type, respectively. In what follows, we use the

notations A1,A2,A3 for the splitting of arbitrary automaton A and R1, R2, R3 for the corresponding

regular sets exclusively in a sense of Lemma 3.3. We provide an example of such automata and sets

below.

Example 3.5. Let Σ be an alphabet x, y, t, z and the inversion is given by the rule t→ x−1, z → y−1

(so X = {x, y}). Consider the special automaton A (the arrow with a tale corresponds to the initial

state, and the finale state is drawn as a double circle).

Figure 2. The special automaton A.

Clearly, R = R(A) is generated by the following regular expression:

R = xy
(
(x−1y)∗(xy)∗

)∗ ∪ xy ((xy)∗(x−1y)∗
)∗⊔

⊔
x−1y

(
(xy)∗(x−1y)∗

)∗ ∪ x−1y
(
(x−1y)∗(xy)∗

)∗
.

The set of first type R1 can be read off by the automaton A1 shown in figure 3; therefore, R1 =

xy ∪ x−1y.
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Figure 3. The special automaton A1.

The sets of second type R2 =
(
(xy)∗(x−1y)∗

)∗
and third type R3 = xy ∪ x−1y with their automata

A2 and A3. Clearly, the elements w1 = xy,w2 = x−1y provides a set of generators for the monoid R2

(see Corollary 3.4).

(a) A2 (b) A3

Figure 4. The automata A2,A3.

3.4. Thick semigroups and cones. We want to classify the subsets accepted by special automata

over F by modulo of their measure. This classification requires recalling of the notion of X−complete

automaton, which was already used in [2] and [6] for analogous purposes. Let A = (S,Σ, δ, i0, z0)

be a special automaton satisfying the conditions (a)–(f). A is called Σ−complete if for every state

s ∈ S ∖ {i0} of type x ∈ Σ every label from Σ ∖ {x−1} is present on one of the arrows exiting

from s and exactly |Σ| arrows exits from i0. Further, let R2 be a regular set of the second type and

A2 = (S,Σ, δ, z0, z0) be the corresponding automaton. A2 is called Σ−complete if for every state s ∈ S

of type x all arrows labeled by Σ ∖ {x−1} exit from s. Otherwise A (or A2) is not Σ−complete (for

instance, the automaton A in Example 3.5, as well as A1,A2, and A3 are not Σ−complete). The

following proposition shows that the λ− measure can be easily estimated in the latter case.

Proposition 3.6. Let A be a special automaton satisfying the conditions (a)–(f), and R = L(A)

be a saturated set such that R = R1 ◦ R2 is the splitting of the form (3.1), with R1 = L(A1) and

R2 = L(A2). If A2 is not Σ-complete, then R is exponentially λ− measurable.
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Proof. If A is Σ−complete, then only one of A1,A2 can be Σ−complete since R1◦R2 is unambiguos by

Lemma 3.3. Moreover, if A2 is Σ−complete for the corresponding Σ−complete automaton A, then A1

is not Σ−complete at the state z0. Thus, we can assume that precisely A2 is not Σ−complete. Then

R = L(A) is λ−measurable by Theorem 3.4 in [2]. Since R is regular, it is exponentially λ−measurable

by asymptotic classification of regular sets ([2, 1]). □

If, on the other hand, A is Σ−complete, then we can improve some previously known results on

classification of regular subsets in free groups. Namely, let R2 be a regular subset of F of second type

accepted by the automaton A2. According to Corollary 3.4, R2 = L(A2) forms a (special) monoid,

and if A2 is Σ−complete, we shall call R2 thick. An interesting fact about thick monoids is that we can

describe them in terms of double-based cones. We recall that the cone C(w) is the set of all elements

in F containing w as initial subword. In what follows we also shall be interested in a symmetric

notion of a cone with a right-hand side handle, i.e. the set of all words in F that terminates with w

(we denote this sort of cones by C[w]). Another member of this family is the double-based cone with

(nontrivial) handles w1, w2, consisting of all words in F of the form w1 ◦ f ◦ w2, f ∈ F . Notice that

all three types of cones are regular in F (see, for example, Corollary 3.15 [8]). Let us consider the

generalized x-cone C(Y, x), x ∈ Σ, i.e. the union of double-based cones of the form ⊔
y∈Σ:y ̸=x−1

C(y, x).

The following technical observation regarding generalized cones give us first examples of thick

monoids:

Lemma 3.7. Let C(Y, x) be the generalized x−cone, x ∈ Σ and M = C(Y, x) ∪ {1}. Then

1. C(Y, x) = C[x]∖ C(x−1, x), and M is a thick monoid;

2. gM (t) =
(2m− 1)t2

4m2(1− t)
+ 1 +

t

2m
+

t2

4m2
+

t3

2m(2m− 1− t)
, and

3. µ0(M) =
2m− 1

4m2
.

Proof. The proof of 1. follows from the definitions of cones and thick monoids, while Example 2.2 (3)

and Lemma 4.1 [3.], [4.] below provide estimates on the generating function and the Cesaro density

given in [2.] and [3.]. □

Now we are ready to refine the asymptotic classification of regular sets in F (see Introduction and

Theorem 3.4 [2] for comparison).

Theorem 3.8. A regular subset R of F is thick if and only if it contains a subset w ◦T , with T being

a thick monoid and w ∈ F .

Proof. Clearly, every set of the form w ◦ T is regular and thick (where 1 ◦ T , by definition, stands for

T ). Suppose now R is regular and thick. We decompose R into a finite number of subsets as in Lemma

3.1. Since a finite union of exponentially λ−measurable subsets is exponentially λ− measurable (see,

for example, Proposition 4.1 [6]), without loss of generality one can suppose that R is accepted by a

special automaton or forms a special monoid. In the latter case, R is a thick monoid itself, so suppose
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R is a set accepted by a special automaton. In this case we apply Lemma 3.3 to procure a pair of sets

R1 and R2 of corresponding types, with R2 being Σ−complete by Proposition 3.6. Since R = R1 ◦R2,

the set R contains a subset w ◦R2, with w ∈ R1. This completes the proof. □

3.5. Computing λ−measure of regular sets. Another immediate consequence of Lemma 3.3 and

Proposition 3.6 is an algorithm for computation of λ−measure of exponentially negligible regular set

R accepted by a special automaton A. We assume that our reader is familiar with the concept of

discrete-time Markov chain and refer to [11] as one of the fundamental manuals on this subject.

Let A = (S,Σ, δ, i0, z0) be a special automaton over F and let R = R(A) be a λ−measurable

regular set. We split A into A1, A2 and A3, obtaining regular sets R1, R2 and R3 (without loss of

generality, one can consider the case when all these sets are non-empty). Further, due to formula (3.3)

and Proposition 3.6, it is enough to calculate the value of λ− measure for R3, accepted by the special

automaton A3 = (S3,Σ, δ3, i1, z1).

Consider a finite Markov chain M with the same states as in A3 together with an additional dead

state D. We set transition probabilities from z1 to z1 and from D to D being equal 1. Every arrow

from a state s in A3 gives the corresponding transition from the state s in M which we assign the

transition probability
1

2m− 1
. If at some state s of type x in A3 there is no exiting arrow labeled

y ∈ Σ∖ {x−1}, we make a transition from s to D in M assigning it the probability
1

2m− 1
. We take

the stochastic vector being zero everywhere except the state i1 (so it have the only nontrivial entry

1 at the state i1). This complete the description of the Markov chain M. Clearly, the states z1 and

D of Markov chain M are absorbing, and all other states are transient. Obviously, P (z1) = λ(R3),

and it was shown in [2, 6] that λ(R3) < 1 for any λ−measurable set R. Therefore, one can calculate

λ(R2) using formula (3.2). A similar argument allows to compute λ(R1), and so we are done. Thus,

the Markov chain M provides us with the following algorithm for computation of λ(R).

Algorithm II: Let A be a special automaton and R = R(A) be λ−measurable.

1. Split A into A1,A2,A3 as in Lemma 3.3.

2. Construct Markov chains for A1 = (S1,Σ, δ1, i0, z0) and A3 = (S3,Σ, δ3, i1, z1).

3. Calculate the probabilities P (z0) and P (z1); so λ(R1) = P (z0) and λ(R3) = P (z1).

4. Compute λ(R2) =
∞∑
i=0

P i(z1) <∞.

5. Finally, compute λ(R) = λ(R1) · λ∗(R2).

4. Computations

In this section we carry out all necessary measurements of double-based cones and thick monoids.

4.1. Generating functions and Cesaro density of double-based cones. This technical but

crucial lemma will supply us with data about generating function and values of Cesaro density for

double-based cones.

Lemma 4.1. Let C(a, b) be a double-based cone with both handles a, b in Σ. Then following holds:
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1. fk(C(a, b)) = fk(C(c, d)) and therefore gC(a,b)(t) = gC(c,d)(t) for all a, b, c, d in Σ such that

ab ̸= 1, cd ̸= 1. Further, fk(C(a, a
−1)) = fk(C(b, b

−1)) for arbitrary a, b ∈ Σ.

2. fk(C(a, a
−1)) = (2m− 1)fk(C(a, a))−

1

2m(2m− 1)k−1
, for k ≥ 3,

3. gC(a,a)(t) =
t2

4m2(1− t)
+

t2

4m2(2m− 1)
+

t3

2m(2m− 1)(2m− 1− t)
, and

gC(a,a−1)(t) =
t2

4m2(1− t)
− t2

4m2
− t3

2m(2m− 1− t)
,

4. µ0(C(a, b)) = µ0(C(c, d)) =
1

4m2
for all a, b, c, d ∈ Σ.

Proof. Notice first, that nk(C(a, a
−1)) = nk(C(b, b

−1)) (recall that nk(L) = |L∩Sk|, i.e. the number of

elements of length k in L), for all a, b ∈ Σ. The same equalities holds between the other double-based

cones: nk(C(a, b)) = nk(C(c, d)) for all a, b, c, d ∈ Σ such that ab ̸= 1 and cd ̸= 1. This proves the first

claim.

To prove 2., 3., and 4. we are going to construct a bijective map ψ : C(a, a) → C(a, a−1)⊔{an}n>0.

For every element u ∈ C(a, a) of the form u = al ◦ f0 ◦ am, where l and m maximal, i.e. f0 ̸= 1 does

not starts with a and does not end with a, define ψ(u) = al ◦f0 ◦a−m. If, on the hand, u ∈ C(a, a) has

a form u = al, then take ψ(al) = al. Clearly, ψ is bijective and therefore fk(C(a, a)) = fk(C(a, a
−1)+

fk({an}n>0) for k > 2. Since C(a) = ⊔
b∈Σ

C(a, b), and due to the equality fk(C(a)) =
1

2m
, we have

1

2m
= (2m− 1)fk(C(a, a)) + fk(C(a, a

−1)) for k > 2.

But fk(C(a, a
−1)) = fk(C(a, a))−

1

2m(2m− 1)k−1
, and therefore

1

2m
= 2mfk(C(a, a))−

1

2m(2m− 1)k−1
for k > 2.

To compute generating functions of corresponding sets, we multiply fk with tk and take an infinite

sum of these products. As a result we obtain:

∞∑
k=2

fk(C(a))t
k = (2m− 1)

∞∑
k=2

fk(C(a, a))t
k +

∞∑
k=3

fk(C(a, a
−1))tk

and therefore
1

2m

∞∑
k=2

tk = (2m− 1)f2(C(a, a))t
2 + 2m

∞∑
k=3

fk(C(a, a))t
k,

from which follows

t2

2m(1− t)
= 2mgC(a,a)(t)−

t2

2m(2m− 1)
−

∞∑
k=3

tk

2m(2m− 1)k−1
.

Hence,

gC(a,a)(t) =
t2

4m2(1− t)
+

t2

4m2(2m− 1)
+

t3

2m(2m− 1)(2m− 1− t)
,

and therefore

gC(a,a−1)(t) =
t2

4m2(1− t)
− t2

4m2
− t3

2m(2m− 1− t)
.
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Applying Corollary 2.1, from the last two equalities we deduce

µ0(C(a, a)) = − lim
t→1

(t− 1)gC(a,a)(t) =
1

4m2

as well as µ0(C(a, a
−1)) =

1

4m2
. □

Lemma 4.1 can be easily generalized to the case of an arbitrary double-based cone in F .

Theorem 4.2. Let R = C(u, v) be a double-based cone with handles u, v in F such that u = u0 ◦ a,
v = b ◦ v0, where u0, v0 ∈ F and a, b ∈ Σ. Then

1. gR(t) = gC(a,b)(t) · λ∗(u0) · λ∗(v0);

2. µ0(R) =
λ∗(u0) · λ∗(v0)

4m2
.

Proof. The proof follows immediately from Lemma 4.1 and definitions of generating function and

λ−measure. □

It remains to show how one can compute both generating function and Cesaro measure of a thick

monoid.

Theorem 4.3. Let A be a special automaton over F such that A2 and A3 are automata from the

decomposition (3.1), (3.2) of Lemma 3.3. Suppose T = L(A2) is a thick monoid and z3 is of type x.

Then

1)
k
⊔
i=1

T · wi =
l
⊔
j=1

C(A, x) · vj with C(A, x) being generalized x−cone, wi, vj ∈ F and k, l <∞;

2) gT (t) and µ0(T ) can be computed effectively by A3.

Proof. Let T be a prefix closure of T . Then

(4.1) T = ⊔
wi∈W

T · wi

for a set W such that W = {wi ∈ F : there is a simple path pi in A3 such that pi starts at s ∈ S, ends

at z3 and w−1
i is a label of pi}. Clearly, W is finite. On the other hand,

(4.2) T = ⊔
vj∈V

C(A, x) · vj

for some finite set V of words in F , defined by A3. Then claim 1) follows from (4.1) and (4.2), while

claim 2) follows from 1) and Lemma 3.7. □
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