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Species distribution models that predict species occurrence or density by quantifying
relationships with environmental variables are used for a variety of scientific
investigations and management applications. For endangered species, such as large
whales, models help to understand the ecological factors influencing variability in
distributions and to assess potential risk from shipping, fishing, and other human
activities. Systematic surveys record species presence and absence, as well as the
associated search effort, but are very expensive. Presence-only data consisting only of
sightings can increase sample size, but may be biased in both geographical and niche
space. We built generalized additive models (GAMs) using presence–absence sightings
data and maximum entropy models (Maxent) using the same presence–absence
sightings data, and also using presence-only sightings data, for four large whale
species in the eastern tropical Pacific Ocean: humpback (Megaptera novaeangliae), blue
(Balaenoptera musculus), Bryde’s (Balaenoptera edeni), and sperm whales (Physeter
macrocephalus). Environmental variables were surface temperature, surface salinity,
thermocline depth, stratification index, and seafloor depth. We compared predicted
distributions from each of the two model types. Maxent and GAM model predictions
based on systematic survey data are very similar, when Maxent absences are selected
from the survey trackline data. However, we show that spatial bias in presence-only
Maxent predictions can be caused by using pseudo-absences instead of observed
absences and by the sampling biases of both opportunistic data and stratified
systematic survey data with uneven coverage between strata. Predictions of uncommon
large whale distributions from Maxent or other presence-only techniques may be useful
for science or management, but only if spatial bias in the observations is addressed in
the derivation and interpretation of model predictions.

Keywords: species distribution model, maximum entropy, generalized additive model, whale, eastern tropical
Pacific
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INTRODUCTION

Assessing the risk of anthropogenic activities on protected marine
species requires quantitative and accurate representations of
species distributions. Cetacean species distribution models have
been used to predict the probability of cetacean presence, relative
abundance or density throughout an area of interest and to gain
insight into the ecological processes affecting these patterns (e.g.,
Redfern et al., 2006; Gregr et al., 2013). By fitting models of
presence or abundance to relevant environmental variables, and
then projecting them into geographic space, dynamic responses
to environmental variability can be predicted (Becker et al.,
2014, 2018). Predictions from these models can also be used to
develop and evaluate management and conservation strategies
(e.g., Redfern et al., 2013; McClellan et al., 2014).

Ideally, the data used in cetacean-habitat models would come
from surveys designed to estimate cetacean abundance and
distribution. Transect lines on this type of survey are positioned
to ensure equal sampling probabilities throughout the study area
or strata, and data include both sightings and effort. Conducting
this type of survey is costly and such surveys have covered only
a small fraction of the global oceanic habitat (Kaschner et al.,
2012); most cetacean data are either from opportunistic sightings
or non-systematic surveys of local areas. Consequently, using
presence-only modeling techniques, which do not need observed
absence or observer effort data, may expand our ability to conduct
spatially explicit risk assessments for cetaceans.

The use of generalized additive models (GAMs) is common
in species distribution modeling because it allows the data to
identify non-linearities in species–habitat relationships rather
than imposing parametric fits through polynomial terms in
a linear regression (Chambers and Hastie, 1991). GAMs can
predict presence/absence, the encounter rate of sightings, or
the density of individuals when the data include observed
zeros (absences). Maxent is a presence-only modeling technique
that has been extensively applied and tested for terrestrial
species (Phillips et al., 2006; Elith et al., 2011). Like the more
commonly used technique of generalized additive modeling,
it can fit complex relationships to environmental variables.
The primary concern when using Maxent, as when using
any presence-only modeling technique, is the spatial biases
often exhibited in data that are not collected systematically
(Dennis and Thomas, 2000; Guillera-Arroita et al., 2015).
While incomplete sampling of species habitat can also occur
in systematic surveys, biases in presence-only data collected
without a systematic sampling design are much more pervasive.
Presence-only data tend to be collected opportunistically in
areas of known occurrence or areas that are easy to survey
and they often encompass only a small portion of a species
or population range. Measurements of effort are often missing
from these data sets, making an assessment of spatial bias
impossible.

Model comparison studies have shown that Maxent models
using presence-only data are competitive with other presence-
only and presence–absence methods for predicting species
distributions, although most of this work has been in terrestrial
systems (Elith et al., 2006; Shabani et al., 2016). We explored

the performance of Maxent models using cetacean data from
the eastern tropical Pacific. This is a large, well-surveyed area,
with >300,000 km of systematically collected cetacean line-
transect data and thousands of additional cetacean sightings
collected opportunistically. NOAA Fisheries research vessel
surveys have resulted in this region having the most cetacean
line-transect survey effort in the world (Kaschner et al.,
2012). Species distribution models have been successfully built
for multiple species using the systematically collected survey
data (Forney et al., 2012). Following a similar approach,
we used the systematically collected data to develop GAMs
for humpback (Megaptera novaeangliae), blue (Balaenoptera
musculus), Bryde’s (Balaenoptera edeni), and sperm whales
(Physeter macrocephalus). These species were selected because
they represent a range of habitat selectivity from the narrow
coastal distributions of humpback whales and regional centers of
blue whale distributions to the broad distributions of Bryde’s and
sperm whales.

In this study, we compare GAM and Maxent models, and
we assess the performance of Maxent models that are based
on data with varying levels of spatial bias. First, we compare
GAM and Maxent models built with the same systematic survey
data that include both presences and observed absences from
the transect coverage, rather than the typical randomly selected
background points or pseudo-absences for the Maxent models.
The background data thus have the same potential spatial
bias as the occurrence data (Phillips et al., 2009); this bias
correction is not possible for strictly presence-only observations
of occurrence. Second, we demonstrate spatial biases in presence-
only Maxent model predictions arising from two sources: (1) the
use of pseudo-absences randomly selected from climatological
background data rather than the use of observed absences, and
(2) spatial bias in observed presences from either opportunistic
sampling or stratified systematic sampling with uneven coverage
among strata. These analyses shed light on mechanisms of bias
in Maxent models, using an extensive and unique marine survey
data set.

MATERIALS AND METHODS

Data Sources
The eastern tropical Pacific study area spans approximately 20
million km2 of the Pacific Ocean and contains a diversity of
habitat types and 30 species of cetaceans as residents (∼35%
of currently recognized species; Ballance et al., 2006). We used
cetacean and ecosystem assessment survey data collected by the
National Marine Fisheries Service’s Southwest Fisheries Science
Center (SWFSC) from August through November in 1986–1990,
1998–2000, 2003, and 2006. On all surveys, line-transect methods
were used to collect marine mammal data during daylight hours
(Kinzey et al., 2009) for a total of 302,381 km of search effort
(Figure 1). These data are systematic, with rigorous recording
of effort and sightings so that both presence and absence can be
quantified. These systematic surveys were stratified to improve
abundance estimates for endangered dolphin stocks (Gerrodette
and Forcada, 2005); the intensity of yearly survey effort was
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FIGURE 1 | Sighting locations for four whale species from systematic surveys (see text for explanation of on-effort and off-effort) and opportunistic records
(presence-only). All sightings are July–November. Stratified survey on-effort tracklines (inset): dotted line is the core survey area, which has greater coverage than the
outer stratum; solid line is the survey study area.

increased by a factor ranging from 1.24 to 3.38 (mean 2.34) within
a core area (Figure 1). We also used whale sightings collected
opportunistically, without associated effort or environmental
data, during July–November 1980–2010. These data are available
in SIBIMAP1, a regional database that provides compiled and
standardized cetacean data from a variety of sources in the
eastern Pacific Ocean. We excluded SWFSC systematic sightings
that are included in the SIBIMAP opportunistic records.

Five environmental variables were used as predictors:
surface temperature, surface salinity, thermocline depth,
stratification index, and distance to shelf edge. These
variables represent surface water mass identity, physical
processes such as mixing and upwelling, and bathymetric
features that influence prey availability. For each of these,
the same variable or a related variable, e.g., mixed layer
depth rather than thermocline depth, has been found to
be important as a predictor variable in the eastern tropical
Pacific or other regions (Forney et al., 2012; Becker et al.,
2017).

An ocean reanalysis combines oceanographic observations
with a general ocean model to produce estimates of variables
describing the changing state of the ocean in time and
space; the observations correct biases in the model, while
the model fills in gaps between the assimilated observations
(Balmaseda et al., 2015). We used ocean reanalysis data to
estimate the four dynamic environmental variables: sea surface
temperature and salinity, thermocline depth, and stratification

1http://cpps.dyndns.info/sibimap/cetaceos.html

index (Figure 2). Data values for sightings or systematic effort
segments were spline-interpolated from year–month composites
of six ocean reanalysis data sets as described in Fiedler et al.
(2017). The thermocline was considered to be the depth
interval that included the upper decile (the greatest 10%)
of 1 m temperature gradients in a 0–300 m temperature
profile. Thermocline depth is the weighted mean of the depths
of this set, with each depth weighted by the value of the
1 m temperature gradient at that depth. Stratification index
is the standard deviation of temperature in the near-surface
layer, 0–300 m (Fiedler, 2010). A fifth environmental variable,
distance to the edge of the continental shelf, was derived from
the geomorphic features map (GSFM) of the global ocean
(Harris et al., 2014). Correlations among these variables are in
Table 1.

Species distribution models were built for each of the
four large whale species: humpback, blue, sperm, and Bryde’s
whales. Sightings from systematic surveys and opportunistic
records are plotted in Figure 1. The systematic sightings
were divided into two categories: on-effort sightings are those
made while observers were on effort, but excluding sightings
not used for abundance estimation (>5.5 km perpendicular
distance from the trackline or made by the independent
observer); off-effort sightings are all other sightings made
by any observer not engaged in active searching, such as
on a chase to identify an on-effort sighting. The survey
trackline segment data used for GAM contain only on-effort
sightings. Prevalence (fraction of 1◦ squares in the study
area occupied by at least one sighting) increases as follows:
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FIGURE 2 | Climatologies of predictor variables (1980–2015) and important environmental features in the eastern tropical Pacific. Dotted line is the survey and model
study area.

humpback whale 0.036, blue whale 0.057, sperm whale 0.120,
Bryde’s whale 0.159. For comparison, the prevalence of SWFSC
survey trackline segments is 0.661. The sampling bias of the
opportunistic records for all species is readily apparent in
Figure 1; nearly all of these sightings are in limited near-coastal
areas.

In addition to sampling bias, there are two other sources of
error that can influence species distribution models: detection
bias and occupancy bias (Yackulic et al., 2013). We assume
that both the systematic and opportunistic sightings data

are subject to the same detection bias. Systematic survey
effort is suspended at sea states greater than Beaufort 5
and under low visibility conditions. Presumably, opportunistic
sighting effort would be similarly constrained. Occupancy
bias affects any prediction of the distribution of rare species;
only a small fraction of the area predicted as suitable
for presence will actually be occupied. We assume that
this bias will be equivalent for Maxent and GAM model
predictions. Although we ignore potential occupancy and
detection biases to focus on sampling bias for this comparative
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TABLE 1 | Correlation matrix for predictor variables in SWFSC survey segments
(n = 33,229).

Surface Thermocline Stratification Distance

salinity depth index to edge

Surface temperature −0.495 −0.060 +0.790 +0.106

Surface salinity +0.430 −0.168 +0.384

Thermocline depth +0.474 +0.625

Stratification index +0.475

study, these biases may need to be addressed in other
applications.

Variable values for each sighting or effort segment were
extracted from the ocean reanalysis data corresponding to the
year and month, and 0.25◦ grid square, of the observation.
Thus, we did not use climatological data for the models. Model
resolution was 0.25◦ latitude/longitude. This resolution was
selected to allow effective alignment of the ocean reanalysis data
grids.

Model Comparisons
We performed four sets of model comparisons, with each of the
four whale species, to (1) compare Maxent and GAM modeling
using the same presence–absence data, and (2–4) explore changes
in Maxent model predictions that arise from spatial biases in the
distribution of presences and the selection of pseudo-absences:

(1) Maxent and GAM with observed absences. To compare
Maxent to GAM models using the same presence and
absence data, we built “observed-absence” Maxent models
with systematic survey on-effort sightings and background
data points selected from survey effort segments that had
no sightings of the modeled species.

(2) Maxent with observed and pseudo-absences. Maxent
conventionally uses presence-only data and pseudo-
absences. To assess the effect of using pseudo-absences
for presence-only modeling, we compared the “observed-
absence” Maxent models to “presence-only” (pseudo-
absence) Maxent models built by the usual method that
randomly selects pseudo-absences from background cells
that do not contain observed presences.

(3) Maxent spatial bias of opportunistic samples. To assess
the effects of the spatial bias in opportunistic samples
on Maxent predictions, we built presence-only Maxent
models with opportunistic records alone and combined
with systematic survey sightings. These model predictions
were compared to the presence-only Maxent models built
with the systematic survey sightings.

(4) Maxent spatial bias of stratified systematic samples. To
assess the effects of the spatial bias in stratified, non-
uniform systematic survey data on Maxent predictions,
we built presence-only Maxent models with systematic
survey sightings that were subsampled to correct for the
increased effort in the core area. These model predictions
were compared to the “presence-only” Maxent models built
with all of the systematic sightings.

Modeling
We applied GAMs to the systematically collected on-effort
data to predict presence from the environmental variables.
Survey transects were divided into continuous-effort segments
of approximately 10 km as described by Becker et al. (2010) and
Forney et al. (2012). Almost all of these segments were observed
absences (effort but no sightings). We converted the segment data
to presence–absence by assigning a value of 1 to the segments
with 1 or more sightings. We fit Binomial GAMs with a logit link
using the R (version 3.4.0; R Core Team, 2017) package mgcv
(version 1.8-4; Wood, 2011). The distance traveled on effort in
each segment was added as a covariate in the models to account
for variations in segment length. We allowed a maximum of three
degrees of freedom for each spline to limit over-fitting (Becker
et al., 2014) and thus facilitate comparison between GAM and
Maxent models.

Maxent was applied to the systematic survey sightings data
and to the opportunistic records to predict probability of
presence from the environmental variables (Phillips et al., 2017).
Maxent modeling was performed using the Maximum Entropy
Species Distribution Modeling software, v. 3.4.12, run using
the R package “dismo,” v. 1.1-43. A regularization multiplier
of 2 was used to limit over-fitting. Too much flexibility
in model fitting, either by excessive degrees of freedom in
GAM or minimal regularization in Maxent, can make it hard
to differentiate noise from real species-response signals in a
data set (Merow et al., 2013). Sightings, with corresponding
environmental variable values, were input to Maxent in SWD
(samples-with-data) format files. Duplicate presence records, in
0.25◦ background cells (n = 29,371 cells), were not removed.
Whales are motile and the marine environment is dynamic;
sightings that are coincident in space but separated in time
will be associated with different environmental conditions. To
simplify model comparison, neither Maxent product features nor
GAM interaction terms were used. Maxent threshold features
were also not used (Phillips et al., 2017). The number of
randomly selected background points was set at 1,000 to be
comparable to the numbers of observed presences (29–865
sightings). Fifty replicate model predictions were generated with
randomly selected background points and then averaged. Finally,
the default option “Add samples to background” was retained.
We found that Maxent did not perform well when presence
samples had environmental variable values outside the range
of background values that are taken from the ocean reanalysis
grids.

Model Assessment
Species distribution models are commonly assessed by AUC,
but its utility has been questioned for several reasons (Lobo
et al., 2008; Araújo and Peterson, 2012; Golicher et al., 2012;
Jiménez-Valverde, 2012). The main issues are that AUC (1)
does not reflect the goodness-of-fit of the model predictions
or the spatial distribution of model errors, and (2) is not
theoretically valid for evaluations of presence-only models

2https://biodiversityinformatics.amnh.org/open_source/maxent/
3https://CRAN.R-project.org/package=dismo
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FIGURE 3 | Comparison of predictions for Maxent and GAM models built with stratified survey presences and absences. In the first two columns, the prediction
values range between 0 and 1, but the central tendencies are different for Maxent and GAM. The sightings included in the maps are both on-effort and off-effort (�).
For the difference maps (right column), the prediction values were log-transformed and standardized prior to differencing (see text).

built by using background data as pseudo-absences. To assess
goodness-of-fit (issue 1), we also report point biserial correlation
(COR) between observed presence/absence (1 or 0) and model
predictions in the corresponding model cells (Elith et al.,
2006). Spatial distributions of model errors are illustrated
by maps of differences between compared model predictions.
Difference maps were calculated after standardization of the log-
transformed predictions, because of the different scalings of the
model predictions. We tested the effect of the violation of AUC
theory caused by using background pseudo-absences (issue 2)
by comparing evaluations of Maxent models built with observed
absences and with pseudo-absences.

Performance metrics for all models were calculated with a
set of both on- and off-effort systematic sightings, subsampled
within the core survey area as described above, and with
duplicate sightings in the same 0.25◦ cell removed. Although
these samples are not independent of the presences used to
build the models based on systematic on-effort sightings, we
consider these sightings to be the most complete and unbiased

sample of the true distribution of the four whale species in
the study area. All Maxent and GAM model predictions were
assessed with 1,000 bootstrap replications of 1,000 randomly
selected cells or segments as absences. AUC and COR were
calculated using “evaluate” in the R package “dismo,” v. 1.1-4 (see
footnote 3). Since the only source of variation in performance
metric values for a model was the 1,000 bootstrap replications,
significant differences between AUC or COR values were tested
conservatively by non-overlap of mean± SD intervals.

The relative importance or contribution of predictor variables
to a model prediction was estimated as in Thuiller et al. (2009) to
facilitate comparison between models. For a given Maxent model
or GAM, each of the five variables was randomly permuted before
being used to calculate a prediction surface. The correlation of the
original prediction with the prediction using a permuted variable
is related to the importance of the permuted variable: permuting
an unimportant variable will change the prediction only slightly
and result in a high correlation, while permuting an important
variable will result in more change in the prediction and a lower
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TABLE 2 | Performance metrics for (A) Maxent and (B) GAM models, both built
with observed presences and absences from systematic survey effort segments.

(A) Maxent (B) GAM

Humpback whale

AUC 0.957 ± 0.0055 ns 0.954 ± 0.0057

COR 0.580 ± 0.0219 ns 0.532 ± 0.0452

Blue whale

AUC 0.863 ± 0.0098 ns 0.860 ± 0.0098

COR 0.406 ± 0.0143 ns 0.423 ± 0.0190

Sperm whale

AUC 0.692 ± 0.0099 > 0.649 ± 0.0100

COR 0.268 ± 0.0143 > 0.218 ± 0.0144

Bryde’s whale

AUC 0.701 ± 0.0098 > 0.660 ± 0.0106

COR 0.302 ± 0.0149 > 0.237 ± 0.0157

Mean ± SD (significantly different if no overlap). Explained deviances of the GAMS
were as follows: humpback whales 29.0%, blue whales 13.6%, sperm whales
1.8%, and Bryde’s whales 2.9%.

correlation. The scores of variable importance are equal to 1
minus the correlation, rescaled to sum to one across all predictor
variables.

RESULTS

Maxent and GAM With Observed
Absences
The two modeling methods produce very similar predictions
from the same set of systematic presence/absence data (Figure 3).
Pearson’s correlations between the GAM and Maxent model
prediction cell values are: humpback whales +0.813, blue whales
+0.900, sperm whales +0.831, and Bryde’s whales +0.888. The
overall shapes of the prediction surfaces are visually similar,
although there are minor discrepancies as shown in the difference
maps. The performance metrics for the Maxent and GAM
predictions are significantly different only for the more prevalent
sperm and Bryde’s whales (Table 2).

Humpback whale predicted presence is high along the coasts
of Baja California and from Central America to the south, and
around the Galapagos. The difference map shows that Maxent
tends to emphasize the Baja California coastal high (red). Blue
and red bands aligned with the edges of prediction highs indicate

differences in the amplitude and extent of the highs, in this case
off Central and South America and the Galapagos. Distance to
shelf edge was an important predictor in both models, but was
dominant for Maxent (Table 3).

Blue whale predicted presence is high in the California
Current along Baja California, at the Costa Rica Dome, near
the equator centered at the Galapagos, and off the coast of
Peru. Although the same highs are predicted by both models,
the difference map shows differences in amplitudes and spatial
extents throughout the study area, except in the far west.

Sperm and Bryde’s whales had lower correlations between
Maxent and GAM predictions, but the GAMs had very low
explained deviances for these more prevalent species. Sperm
whale predicted presence in both models is moderately high off
Baja California, and in the eastern equatorial Pacific (8◦S–12◦N)
with highest values at the Costa Rica Dome, along the equator,
in the Gulf of Panama, and along the Peru coast. These highs are
attributable to the predominant influence of stratification index
on the model predictions (Table 3). The difference map shows
that the GAM predictions are higher at the Costa Rica Dome and
along the equator, while the Maxent predictions are higher in the
Gulf of Panama. Maxent used distance to shelf edge to predict
lower probability of presence on the continental shelf.

Bryde’s whale predicted presence is high along the equator
and to the south, along the coast of southern Baja California and
extending to the southwest, and at the Costa Rica Dome. Both
models predict low presence in the eastern Pacific warm pool off
southern Mexico. The GAM emphasizes the Costa Rica Dome
high, while Maxent emphasizes the presence of these whales in
near-coastal areas. Salinity is the most important predictor in
both models.

Maxent With Observed and
Pseudo-Absences
Building Maxent models using background pseudo-absences
with climatological predictor variable values resulted in different
predictions, compared to the Maxent models built with observed
absences that were shown in Figure 3. The difference maps
show a similar pattern for all species, although the intensity
of the pattern increases markedly with prevalence (Figure 4).
Performance metrics also changed, depending on prevalence
(compare columns B and C in Table 4). For the less prevalent
species (humpback and blue whales), AUC and COR increased

TABLE 3 | Relative importance of variables in Maxent models and GAMs built with systematic survey segment presences and absences.

Humpback whale Blue whale Sperm whale Bryde’s whale

Maxent GAM Maxent GAM Maxent GAM Maxent GAM

Surface temperature 0.009 0.090 0.016 0.218 0.042 0.054 0.098 0.055

Surface salinity 0.019 0.030 0.099 0.107 0.139 0.000 0.417 0.618

Thermocline depth 0.001 0.147 0.056 0.344 0.032 0.000 0.043 0.195

Stratification index 0.366 0.357 0.390 0.242 0.568 0.946 0.251 0.000

Distance to shelf edge 0.606 0.375 0.439 0.090 0.219 0.000 0.191 0.000

Values > 0.2, indicating more than average importance, are bolded.
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FIGURE 4 | Differences between predictions of Maxent models built with
pseudo-absences and with observed absences. Differencing as in Figure 3:
red indicates that the pseudo-absence model prediction is greater than the
observed absence model prediction.

when models were built and evaluated with pseudo-absences,
but decreased for Bryde’s whale models, with no change for
sperm whales. Table 4 also shows that for Maxent models

built with pseudo-absences or with observed absences, the
performance metrics tend to be higher when the same type
of absences are used in calculating AUC and COR (column
B compared to A, and column C compared to D). However,
these differences were not significant for humpback whales and
significance increases were observed only for the more prevalent
whales.

Maxent Spatial Bias of Opportunistic
Samples
Predicted distributions from Maxent models built with
opportunistic records differed from those of models built
with systematic survey sightings, as shown by the difference
maps in the left column of Figure 5. Differences increased with
prevalence, reflecting the increasing discordance of the spatial
distributions of the opportunistic and systematic sightings shown
in Figure 1. The Pearson correlations between the Maxent model
prediction cell values based on the two data sets are: humpback
whales +0.931, blue whales +0.744, sperm whales +0.352, and
Bryde’s whales +0.270. For blue, sperm and Bryde’s whales,
the predicted probabilities of presence are either reduced or
elevated where there were no opportunistic sightings, while
the prediction bias is strongly positive where the opportunistic
sightings are located, around the Galapagos and along the coast
of Peru. The effect of this bias is small for humpback whales,
because the numerous opportunistic records were all on or
near the coast and sightings from the systematic surveys also
occurred along the coast, although they tended to be more
offshore.

For all species, the performance metrics decreased for Maxent
models built with opportunistic records, although the differences
were statistically significant only for sperm and Bryde’s whales
(Table 5, columns A and B). When the opportunistic records are
combined with the systematic survey sightings, the spatial biases
are much less pronounced, as shown by the difference maps in
the right column of Figure 6.

Maxent Spatial Bias of Stratified
Systematic Samples
Stratified systematic sampling is not uniform; the resulting
sampling bias affects Maxent model predictions. When
oversampling in the core area stratum is corrected, prediction
levels are reduced in the core area for all species in the difference
maps (Figure 6). However, the model performance metrics do
not change significantly (Table 6).

DISCUSSION

Two fundamentally different methods of species distribution
modeling, GAM and Maxent, were used to generate model
predictions for four species of large whales in the eastern tropical
Pacific Ocean. One of the primary reasons for Maxent’s popularity
and widespread application in recent years is its ability to make
use of presence-only data. These data are less expensive to collect
and therefore offer larger sample sizes than systematic data,
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TABLE 4 | Performance metrics of Maxent models built with systematic survey sightings, using observed absences and pseudo-absences for model building and/or for
model evaluation.

Models built with: Pseudo-absences Observed absences

Models evaluated with: (A) Observed absences (B) Pseudo-absences (C) Observed absences (D) Pseudo-absences

Humpback whale

AUC 0.972 ± 0.0041 ns 0.971 ± 0.0040 > 0.957 ± 0.0055 ns 0.952 ± 0.0055

COR 0.662 ± 0.0229 ns 0.659 ± 0.0228 > 0.580 ± 0.0219 ns 0.554 ± 0.0215

Blue whale

AUC 0.868 ± 0.0091 ns 0.883 ± 0.0080 > 0.863 ± 0.0098 ns 0.848 ± 0.0091

COR 0.412 ± 0.0135 < 0.458 ± 0.0156 > 0.406 ± 0.0143 ns 0.393 ± 0.0147

Sperm whale

AUC 0.675 ± 0.0098 ns 0.678 ± 0.0093 ns 0.692 ± 0.0099 > 0.584 ± 0.0099

COR 0.240 ± 0.0140 ns 0.244 ± 0.0134 ns 0.268 ± 0.0143 > 0.110 ± 0.0141

Bryde’s whale

AUC 0.606 ± 0.0107 < 0.646 ± 0.0096 < 0.701 ± 0.0098 > 0.564 ± 0.0097

COR 0.170 ± 0.0154 < 0.212 ± 0.0133 < 0.302 ± 0.0149 > 0.078 ± 0.0141

Mean ± SD (significant different if no overlap).

as discussed by Elith and Leathwick (2009). Maxent presence-
only predictions have been shown to be generally similar
to predictions from presence–absence models for terrestrial
data sets (Elith et al., 2006), and more recently for marine
species (Sundblad et al., 2013). In general, our GAMs and
Maxent models showed some similarities and some differences
in geographical space (Figure 3). We found that Maxent can
produce models similar to GAM presence–absence models only
if background data points are selected from observed absences
(see the section “Maxent and GAM With Observed Absences”).
Tobeña et al. (2016) used Maxent to model cetacean distributions
from fisheries observer program data; they treated sightings as
presence-only data, but used trackline data to select pseudo-
absences to correct for sampling bias (Phillips et al., 2009). We
showed that this practice corrects bias caused by random pseudo-
absences, but it is not possible with a strictly presence-only
data set.

Maxent Prediction Biases
Although our results suggest that Maxent can produce species
distribution models that are similar to GAMs (comparison
1), they also show that the use of random pseudo-absences
alters Maxent predicted distributions (comparison 2). When
systematic presence-only data were modeled with pseudo-
absences in Maxent, the spatial pattern of predictions was
considerably altered compared to Maxent models built with
observed presence and absence data (Figure 4). Our performance
metrics, AUC and COR, were also influenced by whether
observed or pseudo-absences were used for model evaluation.
A modeler should be aware of the influence of pseudo-
absences on presence-only Maxent modeling even before
the effects of sampling bias are considered (comparisons 3
and 4).

Many authors have found that AUC does not adequately
measure the accuracy of a model prediction relative to
observed presences. There are many other indices of model
performance or accuracy that might be more appropriate for

certain purposes (Hirzel et al., 2006). We show that spatial
maps of differences between models can show important
differences that are not apparent in comparisons of either
AUC or COR performance metrics. Comparison of presence-
only models based on metrics such as AUC and COR should
consider the effects of how the absences are selected for
calculating the metrics used for evaluation. Maxent AUC
values are lower for more prevalent, widely distributed
species (Phillips et al., 2006), as in our results. Lobo et al.
(2008) show how AUC is affected by the distributions of
both absences and presences within the range over which
the model extends. Relying on AUC by default, may give
misleading results when assessing or comparing models of species
distributions.

The sampling bias of presence-only data, like our
opportunistic cetacean sightings data, can result in misleading
model predictions (Syfert et al., 2013). Maxent models built
only with opportunistic records resulted in greatly altered
prediction levels (probability of presence), with both positive and
negative errors (Figure 5). Because the models are formulated
in niche space, the biases introduced by opportunistic sampling
extend throughout the study area when the model is projected
in geographic space. When we tried using a combined data
set of systematic survey sightings plus opportunistic records,
the spatial biases in Maxent model predictions were reduced,
but still apparent. Predictions tended to be less biased for
humpback whales, even though there were many more
opportunistic sightings than systematic sightings, because the
opportunistic sightings occurred in the near-coastal preferred
habitat of this species. For rare, data-limited marine species
such as large whales, it is tempting to use opportunistically
collected sightings data when the provision of management
advice is hindered by small sample sizes. However, even if
opportunistic data are added to a systematic data set, to fill in
gaps in time and/or space, sampling bias must be considered
if the study area is not adequately covered by the sampling
effort.
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FIGURE 5 | Bias or change in predictions of Maxent models built with pseudo-absences if opportunistic records are used alone (left) or combined with the
systematic sightings (right). Differencing as in Figure 3: red indicates that the opportunistic records result in a higher predicted probability of presence.

Maxent offers two options to account for spatial bias in
presence-only samples (Phillips et al., 2009; Merow et al., 2013).
The first is to input a “bias grid” which is then used to correct
for the specified sampling bias. The bias grid gives a priori
relative sampling probabilities, thus modeling starts with a biased
prior rather than a uniform prior for geographical distribution.
This option is only available in the Maxent software if the

environmental data are input from grids. In this study, a biased
prior could not be specified because environmental variable
values that were contemporaneous with the sightings were input
in the SWD file. Maxent was developed to take advantage
of presence-only data from specimens in museum collections
and historical records of occurrences of terrestrial plants and
animals (Phillips et al., 2006), for which environmental data from
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TABLE 5 | Performance metrics of Maxent models built with (A) systematic survey sightings, (B) opportunistic records, and (C) a combination of opportunistic records
and systematic survey sightings.

(A) Systematic survey sightings (B) Opportunistic records (C) Combined

Humpback whale

AUC 0.971 ± 0.0040 ns 0.963 ± 0.0051 0.965 ± 0.0044

COR 0.659 ± 0.0228 ns 0.628 ± 0.0238 0.622 ± 0.0226

Blue whale

AUC 0.883 ± 0.0080 ns 0.868 ± 0.0093 0.880 ± 0.0076

COR 0.458 ± 0.0156 ns 0.437 ± 0.0212 0.452 ± 0.0148

Sperm whale

AUC 0.678 ± 0.0093 ns 0.675 ± 0.0100 0.677 ± 0.0093

COR 0.244 ± 0.0134 > 0.187 ± 0.0195 0.252 ± 0.0145

Bryde’s whale

AUC 0.646 ± 0.0096 > 0.617 ± 0.0098 0.643 ± 0.0092

COR 0.212 ± 0.0133 ns 0.185 ± 0.0193 0.218 ± 0.0133

Mean ± SD (significantly different if no overlap). There are no significant differences between values in columns A and C.

climatological background grids can be more reasonably utilized
than in the dynamic ocean environment.

The second option to account for spatial sampling bias in
Maxent models is to limit the coverage of background cells to the
area sampled, i.e., the biased background approach (Merow et al.,
2013). This is similar to what we did when we built observed-
absence Maxent models by selecting pseudo-absences from
survey trackline data. For presence-only modeling in the Maxent
software, the background cells with environmental data can be
input in the same type of file (SWD) as the sightings and their
associated environmental data. We found that when this method
of correcting for the coastal spatial bias of opportunistic samples
was applied to our more prevalent, and thus more spatially
biased, species (blue, sperm and Bryde’s whales), the extrapolation
in environmental space required to cover the unsampled study
area resulted in poor model predictions (not shown). An
alternative is to correct for positive bias in oversampled areas,
as we did to correct the uneven sampling in SWFSC stratified
systematic survey data. Fourcade et al. (2014) also found that
systematic subsampling of spatially biased observed presences
was an effective way to correct this bias. However, for severely
biased samples such as our SIBIMAP opportunistic records, this
procedure reduces sample size and cannot effectively correct for
absence of sampling in large parts of the study area.

Do the Models Make Ecological Sense?
Model performance, in the sense of verifying model predictions,
can also be assessed subjectively in relation to existing knowledge.
Specifically, we can consider whether our model predictions are
consistent with what we know about the biology and ecology
of the species. The less-prevalent species, humpback whales and
blue whales, are seasonal migrators thought to be present in
the warm eastern tropical Pacific during the winter months
of the hemisphere where they feed in productive high-latitude
waters. In general, seasonally migrating whales move to lower
latitudes during the winter for breeding and, possibly, for
predator avoidance or energetic savings related to calf survival
(Corkeron and Connor, 1999; Rasmussen et al., 2007; Stern and
Friedlaender, 2018). The humpback whales sighted along the

coast of tropical Central and South America and at the Galapagos
during the SWFSC systematic surveys were on known calving
grounds and were most likely southern-hemisphere whales
(Rasmussen et al., 2007; Félix et al., 2011). The whales along Baja
California at the northern extreme of the study area, however,
were probably northern-hemisphere whales on their summer
feeding grounds. Overall, humpback whale predicted presence
was higher in shallow coastal habitat, which is relatively cool
and productive. Habitat preferences are likely different during
migration. However, the Peru coastal waters where predicted
presence is also high, are a seasonal migration corridor for
humpback whales (Félix and Guzmán, 2014).

The blue whales observed in the eastern tropical Pacific
during July–November include North Pacific whales on their
feeding grounds off southern Baja California, whales at the Costa
Rica Dome that are residents and/or South Pacific whales on
their calving grounds and opportunistically feeding, and South
Pacific whales to the west and south of the Galapagos that are
calving and/or opportunistically feeding (Palacios, 1999; Sears
and Perrin, 2018). Blue whale predicted presence was higher in
waters with a shallow thermocline, which were also relatively
cool and moderately stratified. Surface waters in the eastern
tropical Pacific are stratified year-round, so a shallow thermocline
indicates upwelling and higher nutrient availability for primary
production (Fiedler and Talley, 2006). Blue whales occurring near
the Costa Rica Dome, along Baja California, and in the vicinity of
the equatorial cold tongue could have been feeding on euphausiid
prey (Reilly and Thayer, 1990; Hoyt, 2009). The Maxent model
and GAM had mixed success in predicting the presence of blue
whales in the southeast Pacific extending from Chile (beyond
the study area) to the equator. Connections between blue whales
feeding off Chile and near the Galapagos (likely breeding) have
recently been established (Buchan et al., 2015; Torres-Florez et al.,
2015).

The more prevalent species in our study area, sperm whales
and Bryde’s whales, are known to be widely distributed. Sperm
whales, the only toothed whale of the four studied here, consume
a variety of meso- and bathypelagic squids and fishes. The whales
observed in the eastern tropical Pacific were most likely females
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FIGURE 6 | Change in Maxent predictions if stratified survey bias is corrected
by subsampling the systematic sightings in the core area (dotted line),
compared to the model built with systematic sightings without correcting for
stratified oversampling in the core area. Differencing as in Figure 3: red
indicates that no correction results in a higher predicted probability of
presence.

and young males; adult males feed at higher latitudes in both
hemispheres (Whitehead, 2009).

Bryde’s whales are one of the least well known species
of large baleen whales and taxonomic uncertainties remain

TABLE 6 | Performance metrics of Maxent models built with (A) systematic survey
sightings and (B) systematic survey sightings corrected for stratified oversampling
in the core area.

(A) Stratified (B) Corrected

stratification

Humpback whale

AUC 0.971 ± 0.0040 0.972 ± 0.0042

COR 0.659 ± 0.0228 0.672 ± 0.0246

Blue whale

AUC 0.883 ± 0.0080 0.876 ± 0.0092

COR 0.458 ± 0.0156 0.454 ± 0.0166

Sperm whale

AUC 0.678 ± 0.0093 0.690 ± 0.0095

COR 0.244 ± 0.0134 0.265 ± 0.0146

Bryde’s whale

AUC 0.646 ± 0.0096 0.651 ± 0.0095

COR 0.212 ± 0.0133 0.233 ± 0.0142

Mean ± SD (no significant differences by a conservative test of no overlap).

(Kato and Perrin, 2018). This species or species complex is widely
distributed in tropical and temperate waters of all the world’s
oceans, feeding on schooling pelagic fishes, and may migrate
toward the equator in winter and to higher latitudes in summer.
Species distribution or niche modeling may be difficult for
such an ambiguous taxon, but could also yield insights into
niche separation if the different taxonomic groups have distinct
environmental preferences.

The model comparisons that we used to illustrate both the
biases and the potential utility of Maxent are limited to the
species and area for which we had exceptional systematic survey
data. The results might be different for other organisms or
environments. Even if sampling bias is adequately corrected in
applying Maxent, this technique can only estimate patterns of
presence or occurrence. For some purposes, the ability of GAMs
to predict density or abundances may be essential. For example,
estimates of the number of animals impacted by human activities
are required by United States federal regulations.

A multitude of possible predictor variables could be used to
describe the habitat of the whale species modeled in this study.
Some variables might be more ecologically plausible, such as
density or availability of prey organisms, but estimates of such
variables are very difficult to obtain and are rarely available.
Modelers commonly assume that the available oceanographic
predictor variables will serve as proxies for prey. The direct
use of forage or prey availability as predictors of marine top
predator distributions is a recent approach (Stewart et al.,
2014; Boyd et al., 2015; Zerbini et al., 2015). Studies of
predator–prey relationships on spatial and temporal scales
finer than the present study may benefit from concurrent
observations of both predator and prey organisms, although
Torres et al. (2008) showed that predictions of bottlenose dolphin
distributions in a heterogeneous coastal habitat can be made
without relying on prey data as explanatory variables. On larger
scales, prey data from ocean ecosystem models promises to be
useful in future cetacean prediction models (Lambert et al.,
2014).
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CONCLUSION

Predictions of species distributions from GAMs are valuable
management tools. Both the presence–absence GAMs and
Maxent models of large whale distributions presented here are
useful in understanding the spatial distribution of these species
and predicting distributions from environmental variables with
ecologically meaningful relationships. However, spatial biases
due to sampling and the selection of pseudo-absences must
be taken into account when using Maxent to model presence-
only data. Such data will result in biased model predictions
when the data do not uniformly cover the entire range of the
species in geographic or niche space. This error can compromise
risk management and other applications (Guillera-Arroita et al.,
2015). Systematic surveys are required to effectively sample wide-
ranging species; the cost of ship surveys may be reduced by
using alternative survey platforms or methodologies (Scott et al.,
2018). For coastal species with ranges that are well covered
by opportunistic sightings, Maxent predictions based wholly or
partially on such data may be useful. Accurate and ecologically
meaningful models that are ideally mechanistic or process-based
are needed for scientific understanding and hypothesis-testing
and for reliable prediction of future changes (Cumming, 2009;
Palacios et al., 2013; Merow et al., 2014). Continuing advances in
modeling will yield benefits for both scientific understanding and
informed management decisions for endangered large whales.
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