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Objective: We proposed an improved automated high frequency oscillations (HFOs)

detector that could not only be applied to various intracranial electrodes, but also

automatically remove false HFOs caused by high-pass filtering. We proposed a

continuous resection ratio of high order HFO channels and compared this ratio with

each patient’s post-surgical outcome, to determine the quantitative threshold of HFO

distribution to delineate the epileptogenic zone (EZ).

Methods: We enrolled a total of 43 patients diagnosed with refractory epilepsy. The

patients were used to optimize the parameters for SEEG electrodes, to test the algorithm

for identifying false HFOs, and to calculate the continuous resection ratio of high order

HFO channels. The ratio can be used to determine a quantitative threshold to locate the

epileptogenic zone.

Results: Following optimization, the sensitivity, and specificity of our detector were

66.84 and 73.20% (ripples) and 69.76 and 66.13% (fast ripples, FRs), respectively.

The sensitivity and specificity of our algorithm for removing false HFOs were 76.82

and 94.54% (ripples) and 72.55 and 94.87% (FRs), respectively. The median of the

continuous resection ratio of high order HFO channels in patients with good surgical

outcomes, was significantly higher than in patients with poor outcome, for both ripples

and FRs (P < 0.05 ripples and P < 0.001 FRs).

Conclusions: Our automated detector has the advantage of not only applying to various

intracranial electrodes but also removing false HFOs. Based on the continuous resection

ratio of high order HFO channels, we can set the quantitative threshold for locating

epileptogenic zones.
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INTRODUCTION

More than 30% of epilepsy patients eventually develop refractory
epilepsy (1) for which resection of the epileptogenic zone (EZ)
is an important treatment (2). Accurate localization of the EZ
is therefore key in determining the surgical outcome (2). The
EZ is the area of the brain that is necessary and sufficient
for initiating seizures (3). Unfortunately, so far there are no
methods which can accurately locate the EZ. Over the past
two decades, numerous studies have shown that the removal of
areas showing high rates of high frequency oscillations (HFOs)
is associated with a good-surgical outcome (4–8). Therefore,
HFOs are considered a promising biomarker of the seizure onset
zone (SOZ) or epileptogenic zone (4, 9, 10). However, none of
these studies have applied the quantitative threshold of HFO
distribution to delineate the EZ. Therefore, it is crucial to explore
the quantitative threshold of HFO distribution to delineate the
EZ.

HFOs are classified into ripples (80–200Hz) and fast ripples
(FRs, 200–500Hz). Although visual analysis remains the gold
standard for HFO analysis, this procedure is time consuming and
subjective (4, 10). Therefore, developing an automated detector

is critical (4, 11). Over the past two decades, several automated
HFO detectors have been proposed, including the methods of

Root Mean Square (RMS) (11), Short-time Linelength (12),
Envelope (13), Radial basis function neural network (14), wavelet
entropy (15), and others (16). However, most algorithms use
the entire electroencephalogram (iEEG) segment to calculate the

baseline. When the channel contains massive HFOs or high-
frequency activities, the calculated baseline level will deviate
significantly from the true baseline level, resulting in a significant
drop in the accuracy of an automated detection. To solve this
problem, Ren et al. proposed an algorithm that calculates the
baseline by maximum distributed peak points, which worked
well (10).

Recent studies showed that the stereotactic
electroencephalogram (SEEG) has increasingly been used
to locate the EZ (17), because the signal to noise ratio of
signals recorded by different types of electrodes, is significantly
different (18–20). In order to allow automated detectors to adapt
to various intracranial electrodes, it is necessary to develop
an automated detector that can be applied to a variety of
electrodes.

When analyzing HFOs the original EEG signals need band-
pass filtering (18). When using classical filtering methods, sharp
transient events passing through a high-pass filter can result in
“false” HFOs (Gibbs effect) (21, 22). It is necessary to remove
these false HFOs (23, 24).

Here, we proposed an improved automated detector
for HFOs. We first optimized parameters for SEEG and
then added an algorithm to remove false HFOs in our
detector. The automated detector and algorithm were
created by our laboratory. Finally, we calculated the
continuous resection ratio of high order HFO channels
and compared this ratio with surgical outcomes, to determine
a quantitative threshold of the HFO distribution to delineate
the EZ.

MATERIALS AND METHODS

Patient Selection
Forty-three patients with intractable epilepsy were enrolled
between March 2016 and May 2017 from Xuanwu Hospital of
Capital Medical University. All the patients had been implanted
with intracranial electrodes (subdural or SEEG electrodes). The
study was approved by the ethics committee of Xuanwu Hospital
and all the patients signed the informed consent.

Three different datasets were acquired from these patients.
The first dataset included 24 patients (48 channels, 2
channels/patients) implanted with the SEEG electrode and
used to optimize parameters.

The second dataset consisted of 10 patients (2
channels/patient; 8 patients with SEEG electrodes and 2
patients with subdural electrodes) who were used to test our
algorithm to identify false HFOs.

The third dataset included 26 patients (16 patients used SEEG
electrodes and 10 patients used subdural electrodes) who met
our inclusion criteria. These patients were used to study the
relationship between the HFO distribution and surgical outcome
to determine the quantitative threshold of HFO distribution to
delineate the EZ. The patient inclusion criteria were as follows:
(1) epileptic region had been surgically removed, (2) post-
surgical follow-up for at least 12 months, and (3) the patient
underwent post-surgical examination of magnetic resonance
imaging (MRI). The criteria for exclusion were as follows: (1) the
EZ was identified in bilateral hemispheres, (2) the EZ involved
the occipital lobe, and (3) patients who experienced two or
more surgeries. Patients’ detailed information of third dataset is
provided in Table S1.

Electrode Types and iEEG Recording
The subdural electrodes (contact diameter of 4mm with a
2.5mm exposure, 10mm spacing between contact centers) and
SEEG electrodes with 8,10,12, and 16 contacts (0.8mm diameter,
2mm length, 1.5mm between contacts; Beijing Huakehengsheng
Healthcare Co., Ltd., Beijing, China) were implanted in the
putative epileptogenic region based on previous non-invasive
pre-surgical evaluation. The iEEGs were acquired using a 256-
channel Nicolet recording system (Natus Medical Incorporated,
San Carlos, CA, USA) with a sampling rate ≥2,000Hz.

Segment Selection and Visual Analysis
In order to detect HFOs, we selected five minute segments during
slow sleep period in which the delta band measured higher than
25% of all delta bands in a 30 second epoch. We also refer
to the results of electrooculography and chin electromyography
in determining the slow wave sleep period (10). All segments
were selected from interictal periods, separated at least 2 h from
seizures, and were transformed to a bipolar montage made of
adjacent contacts.

Visual analysis was carried out by two reviewers. We used
a zero-phase finite impulse response filter, and the cutoff
frequencies were 80–200Hz and 200–500Hz for ripples and
FRs, respectively. First, baseline segments were visually marked
by one reviewer and considered as the negative gold standard
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(segments without high frequency activity, lasting for at least
200ms). Then, HFOs were defined as the event where amplitude
was clearly higher than the baseline with at least four consecutive
oscillations. For each channel, the first minute of data was
independently analyzed by two reviewers. The concordance
between the reviewers was assessed using Cohen’s kappa
coefficient. If kappa > 0.5, the remaining 4min of data were
marked by one reviewer (10).

Parameters Optimization and Automated
Detection of HFOs
In our previous study, parameter optimization was based on data
from subdural electrodes (10). As SEEG has been increasingly
used to locate the EZ in clinical practice and because the signal
to noise ratio of an EEG recorded by different electrodes is
significantly different, we considered it necessary to optimize
the parameters for different electrodes. We randomly selected 48
channels from 24 patients implanted with SEEG electrodes, to
optimize parameters using our previous method (10). In brief,
we used the traversal method to repeatedly calculate sensitivity
and specificity using different parameters and then computed
the Youden index (sensitivity + specificity – 1) for different
parameters. Parameters with higher specificity than sensitivity,
as well as the highest Youden index, were regarded as the most
suitable (25).

The Visual Discrimination of False HFOs
To determine whether an HFO is caused by filtering, we used
Morlet wavelet to prepare a time-frequency map to visually
identify false HFOs. When an island-shaped high energy area
on the time-frequency map at the corresponding time point of
the HFOs was shown, the HFOs were marked as real HFOs.
When a mountain-shape high energy area was shown, the HFOs
were marked as false HFOs (22, 26, 27). We also plotted a chart
of power spectral density (PSD) corresponding to the period of
HFOs. If there was a significant power rise on the PSD, the HFO
was considered true; otherwise, it was considered to be a false
HFO. We visually identified true and false HFOs according to
the two methods shown in Figure 1. Visual identification of false
HFOs was processed by two reviewers. Concordance between the
two reviewers was assessed using Cohen’s kappa coefficient for
each channel. When the kappa value < 0.5, the two reviewers
jointly assessed the events until a consensus was established.

Automated Identification and Removal of
False HFOs
In order to automatically remove false HFOs, we proposed a
novel algorithm to distinguish false HFOs from true HFOs. After
plotting the PSD based on Morlet wavelets, the frequency offset
power difference of phase space reconstruction was computed,
at the middle time point of the corresponding HFO event. This
power difference is calculated as Power(f )-Power(f-1f ). When
an HFO is false, it shows a trend of decreasing power as the
frequency increases. In such instances, the frequency offset power
difference is <0. Conversely, if the power of the frequency
band where the HFO is located shows an increasing trend, the
frequency offset power difference will then be >0. To identify

complete information, we gradually increased1f values to reflect
the characteristics of the frequency offset (our frequency offset
value was set to 1–600). We then increased f from 80 to 600Hz
(in steps of 1Hz) and increased 1f from 1 to 200Hz (ripples, in
steps of 1Hz) and 200 to 600Hz (FR, in steps of 1Hz). When the
value of the frequency offset power difference was <0, the value
was set to 0. Since the power of the baseline affects the detection
of HFOs, the algorithm adds baseline power constraints. Since
the power of HFOs was greater than the baseline power, if
the value of the frequency offset power difference was less
than the baseline mean power, it was also set to zero. Finally,
we accumulated the frequency offset power difference of the
frequency band where the HFO was located. If the value was 0,
it indicated that there was no energy increase in the frequency
bands was therefore regarded as a false HFO (Figure 2).

Outcomes With Respect to Seizures
The post-surgical outcomes of patients were classified according
to Engel’s classification (28) as class I (free of disabling
seizures), class II (rare disabling seizures), class III (worthwhile
improvement), and class IV (no worthwhile improvement). We
defined good post-surgical outcome as class I (seizure-free) and
poor post-surgical outcome as class ≥ II (recurrent seizures).

Determination of a Quantitative Threshold
of HFO Distribution to Delineate the EZ
Twenty-six patients, who met our inclusion criteria, were used to
study the relationship between the HFO distribution and surgical
outcomes, in order to establish a quantitative threshold of HFO
distribution, to delineate the EZ.

We automatically detected HFOs from all channels in the
26 patients using the optimized parameters. Next, we ranked
all channels in a descending order according to the HFO rates
for each patient. As mentioned before, we believe that the first
channel that was not continuously removed from the highest
ranking is the most important. We then calculated the ratio
between the sum of channels, starting from the highest ranking
to the first channel which was not continuously removed, and
the total number of channels which detected HFOs. We referred
to this ratio as a “Continuous resection ratio of high order HFO
channels.”

Continuous resection ratio of high orderHFO channels

= #ChannelConRemHFOs/#ChannelHFOs×100%,

where #ChannelConRemHFOs refers to the number of
continuously removed channels from the highest ranking
and where #ChannelHFOs represents the number of channels
detected HFOs. Only those channels with HFO rates >1 event
per minute were used for analysis (29). Removed channels were
confirmed by comparing the fusion of pre-surgical MRI and CT
and post-surgical MRI.

Statistical Analysis
Sensitivity and specificity were calculated as follows:
sensitivity = true positive detections/visual marking;
specificity = 1 – false positive/automated detections. Cohen’s
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FIGURE 1 | Visual and automated identification of false HFOs. In (A–D), the first rows show one second of iEEG raw data, the second rows show the iEEG signal after

the band-pass filtering [80–200Hz for (A,C) and 200–500Hz for (B,D)], the third rows show the Morlet wavelet spectrum, while the last rows represent a power

spectral density map (PSD). The real HFOs appear as isolated islands (A,C) while false HFOs appear as a mountain-like shape (B,D) in the time-spectrum. On the

power spectral density map, true HFOs have obvious peaks in the corresponding frequency range (arrows, A,C), but these peaks do not appear in the false

HFOs (B,D).

kappa coefficient was used to compare consistency between the
two reviewers; a Kappa value < 0.5 implied poor consistency,
while a Kappa value > 0.5 implied good consistency. Non-
parametric Spearman’s rank correlation was used to compare
visual and automated analyzed results. The relationship between
the continuous resection ratio of high order HFO channels with
post-surgical outcome was analyzed with the Mann–Whitney
U test.

All statistical analyses were performed using IBM SPSS
Statistics 20 (IBM Corp., Armonk, NY, USA).

RESULTS

Parameters Optimization for SEEG Signals
We visually marked the HFOs of the 5-min segment in the first
dataset. A total of 3007 ripples and 1637 FRs were marked by two

reviewers. In addition, we selected 3883 (ripples), and 2457 (FRs)
baseline segments as the negative standard.

We used the traversal method to optimize the parameters.
The optimized parameters for use with SEEG electrodes, were
set as amplitudes, at which there were eight consecutive peaks
higher than 3 SD above baseline mean amplitude, and six
consecutive peaks higher than 10 SD above baseline mean
amplitude (ripples); eight consecutive peaks higher than 3 SDs
above the baseline mean amplitude and six peaks higher than 9.5
SDs above baseline mean amplitude (FRs).

The sensitivity and specificity of our automated detector,
for patients who had SEEG electrodes implanted, were 66.84
and 73.2% (ripples) and 69.76 and 66.13% (FRs), respectively.
Spearman’s rank correlation between visually-marked and
automated detection showed a correlation coefficient (r) of 0.962
for ripples and 0.884 for FRs.
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FIGURE 2 | Automated identification of false HFOs. (A,C) represent true and false ripples; while (B,D) show true and false FRs, respectively. The top row shows the

chart of power spectral density (PSD) corresponding to period of HFO. A true HFO will show a significant power rise on the PSD (A,C), otherwise, the event should be

classified as a false HFO (B,D). The second row shows the accumulated power of frequency offset power difference of the phase space reconstruction where the

HFO is located. The blue color shows that the accumulated power is lower than the baseline power; we count these instances as zero and classify them as a false

HFO (B,D). The red area shows the accumulated power. Instances where power is higher than the baseline power represent true HFOs (A,C).

Automated Removal of False HFOs
We visually analyzed the total HFOs and false HFOs from the
second dataset. A total of 1874 ripples and 1208 FRs were
acquired, and of these, 699 ripples were false ripples and 102 FRs
were false FRs. Our algorithm then detected 568 false ripples and
78 false FRs. The sensitivity and specificity of our algorithm to
identify false HFOs was 76.82 and 94.54% for ripples and 72.55
and 94.87% for false FRs.

Subsequently, our detector detected the 54854 ripples from
1340 channels and 30672 FRs from 495 channels, from 26
patients in dataset 3. Of these HFOs, our algorithm identified
11612 false ripples (21.17%) and 1501 false FRs (4.90%). Figure 3
shows the results from the automated identification of true and
false HFOs, using our new algorithm. We found that the number

of false ripples identified by our algorithm was much greater than
that of the FRs, which may indicate that the ripple were more
susceptible to the Gibbs effect.

We also compared the false HFO rate between SEEG and
subdural electrodes (Table 1). In patients with SEEG electrodes,
the median of detection rate of false ripples was 17.31% (Min–
max: 4.20–42.89%) and 3.57% (Min–max: 0–75%) for false FRs.
In patients with subdural electrodes, the median detection rate
of false ripples and FRs was 29.83% (Min–max: 13.07–48.77%)
and 10.37% (Min–max: 0–26.67%) for false FRs. The proportion
of false ripples from subdural electrodes was significantly higher
than that of the SEEG electrodes (p = 0.013), but not for the FRs
(p = 0.096). These results implied that subdural electrodes may
be more likely to cause false ripples after filtering (Table 1).
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FIGURE 3 | Example of the automated identification of true and false HFOs using our algorithm. (A) Real ripples and FRs. (B) Present false ripples and FRs. Panels

(Aa, Ab, Ba, Bb) show one-second of raw iEEG signals. Panels (Ac, Ad) shows true HFOs were detected by our automated detector. Panels (Bc, Bd) show false

HFOs which were identified by our automated detector. Panels (Ae, Af, Be, Bf) show the Morlet wavelet spectrum. The green regions and red regions represent the

time points of HFOs.

TABLE 1 | Comparison of the rate of removing false HFOs of different electrode

types.

SEEG Subdural and

depth

Ripple (pre/post) 36151/29386 18703/13856

Fast ripple (pre/post) 22825/21833 7797/7338

Resection rate of ripple

(Median, Min–max)

17.31

(4.20–42.89)

29.83

(13.07–40.74)*

Resection rate of fast

ripple (Median, Min–max)

3.57 (0–75) 10.37 (0–26.67)

*p = 0.013.

Continuous Resection Ratio of High Order
HFO Channels
After removing false HFOs from the dataset 3, we finally
detected 43242 true ripples and 29171 true FRs. We ranked the
channels in descending order according to HFO rates for each
patient. The number of channels consecutively removed from
the highest ranking was then determined by a post-surgical MRI
(Figure 4).

As mentioned above, we calculated the continuous resection
ratio of high order HFO channels for each patient and compared
the ratio with the patient’s post-surgical outcome. For ripples, the
median of the ratio in patients with a good post-surgical outcome

was 0.2 (IQR: 0.0125–0.5025; 95% Confidence interval, CI 0.11 –
0.48; Min–max: 0–1), while the median of the ratio for patients
with a poor post-surgical outcome was 0 (IQR: 0–0.0575; 95%
CI – 0.02–0.1; Min–max: 0–0.26). In the FRs, the median of the
ratio for patients with a good post-surgical outcome was 1 (IQR:
0.67–1; 95% CI 0.72–0.97; Min–max: 0.37–1) and for patients
with a poor post-surgical outcome it was 0.09 (IQR: 0–0.15;
95% CI, 0.02–0.15; Min–max: 0–0.25). This ratio was statistically
significant when comparing the groups of patients with good
and poor outcomes (P = 0.018 in ripples; P < 0.001 in FRs
Figure 5).

Determination of a Quantitative Threshold
of HFO Distribution in Order to Delineate
the EZ
The relationship between the continuous resection ratio of
high FRs order channels and post-surgical outcome, showed
that the lowest value of the 95% confidence interval of this
ratio, is 72% in patients with a good outcome. Therefore, we
believe that when surgical resection reaches this threshold, the
patient should have a good surgical outcome. Based on our
results, we set a quantitative threshold of HFO distribution
to locate the EZ at which the continuous resection ratio of
high FRs order channels must be >72%. Figure 6 shows the
channels ranked in descending order, according to HFO rates
from two patients with a good outcome and a poor outcome,
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FIGURE 4 | Example of how channels can be ranked in a descending order

according to HFO rates. All channels which detected HFOs were ranked in a

descending order according to HFO rates. Channels that were removed during

the operation are marked in red, while non-removed channels are marked in

blue. Then we identified the first channel that was not continuously removed

from the highest ranking (arrows). Based on this channel, we then calculated

the continuous resection ratio of high HFO order channels.

respectively. We also showed the relationship between the
surgical resection regions and the channel distribution of FRs
on patients’ individual brain models. On these models, we
showed the channels that generate FRs and highlight quantitative
threshold for delineating the epileptogenic zone, according to the
ratio. It is clear from our data, that the surgically-resectioned
regions of patients with a good post-surgical outcome, completely
covered the epileptogenic zone which was determined by
the ratio. In contrast, in patients with a poor outcome, the
epileptogenic zone that we identified, was completely removed
during surgery.

DISCUSSION

In this study, we optimized the parameters for SEEG and added
an algorithm to eliminate false HFOs to our detector. We then
proposed a new concept, that uses the continuous resection rate
of the high order HFO channel as a quantitative threshold, to
delineate EZs.

Optimizing Parameters to Improve the
Adaptability of Our Automatic Detector
The inevitable subjective bias of visual analysis will lead to
gaps between study groups, which seriously hampers the use
of HFOs as clinical biomarker (4, 30). Therefore, over the past
two decades, a variety of automated HFO detectors have been
proposed. However, since most of these automated detectors
used entire EEG segments to calculate the baseline (11–13,
16, 31, 32), baseline calculations in channels with many HFOs
are not precise enough. To solve this problem, we proposed
an automated detector, which uses the maximum distributed
peak points method to calculate the baseline which can fit
different HFO active states, thereby significantly improving
detection accuracy (10). However, our previous parameters were
optimized for subdural electrodes. Recently, the SEEG has been
increasingly used to locate the EZ which represents a problem
because differences in electrode implantation sites, the size and
impedance, lead to differences in the signals recorded (18–20).
In this experiment, we used the signals of SEEG to optimize the
parameters for our automated detector, so that our automatic
detector could adapt to various intracranial electrodes and detect
HFOs accurately.

Development of an Algorithm to
Distinguish Between True and False HFOs
The EEG signals need to be filtered before visual or automated
analysis of HFOs (18). However, when using classical filtering
methods, sharp transient events can result in “false” HFOs
(21, 22). When studying the mechanisms of HFOs, or
the relationship between HFOs and the epileptogenic zone,
these false HFOs must be removed to ensure specificity of
HFO detection. Waldman et al. developed a topographical
method to distinguish true ripples from false ripples on
epileptiform spike events arising from filtering (23). However,
this method cannot identify false FRs. Numerous studies
have demonstrated that FRs are significantly more meaningful
than ripples, in locating the epileptogenic zone (7, 33–
35). Therefore, identifying all false HFOs, especially false
FRs, is very important for clinical application. Amiri et al.
reported a method to identify false HFOs, arising from the
filtering effect, by detecting oscillations in the raw signal at
the time of sharp events (27). The authors mentioned that
their method did not apply to scalp EEG. The detection of
HFOs will eventually be extended to non-invasive methods,
especially using scalp EEG signals. Therefore, the ideal
HFO automated detector would be suitable for various EEG
signals.

We proposed an algorithm to identify false HFOs by
computing the frequency offset power difference of phase space
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FIGURE 5 | Correlation between the continuous resection ratio of high HFO order channels and post-surgical outcome. The continuous resection ratio of high HFO

order channels exhibited statistically significant differences between the groups of patients with good outcomes and poor outcomes (P = 0.018 for ripples; P < 0.001

for FRs). No FRs were detected in patient 17. *P < 0.05; ***P < 0.001.

reconstruction. Compared to others, our algorithm is not only
applicable to various EEG signals but can also analyze ripples and
FRs bands at the same time.

Quantifying the Threshold of HFO
Distribution to Delineate the EZ
Numerous studies have demonstrated that higher rates of HFOs
were observed within the SOZ or EZs (5, 8, 10, 36–40). The
removal of areas generating high rates of HFOs is associated
with good surgical outcomes (5, 7, 8, 10, 35, 41). Unfortunately,
few studies have reported the use of the quantitative threshold
of HFO distribution to delineate the EZ. Recently, Quitadamo
and his colleagues reported EPINETLAB, an automated analysis
software that can help researchers and clinicians to detect HFOs
and identify the SOZ using iEEG/MEG data (42). They used
this software to perform a preliminary validation analysis of
EEG data in the ripple frequency band (80–250Hz), from six
patients with drug-resistant epilepsy who underwent pre-surgical
evaluation with stereo-EEG (SEEG). Based on preoperative
evaluation results, they reported that the algorithm could
localize the SOZ with an average sensitivity of 81.94% and
specificity of 96.03% with a reduction in computational load of
more than 66% (43). However, this study only analyzed ripple
frequency bands due to the limited sampling rate. A number
of studies have found that fast ripples are more localized to the
epileptogenic zone than ripples, therefore it is also important
to validate the method on fast-ripple HFOs in the 250–500Hz
range.

In order to set a quantitative threshold of HFO distribution
to delineate EZs, we ranked the channels in a descending order
according to the HFO rates of each patient, separately for both
ripples and FRs. Based on the theory of the EZ (3) and the
fact that HFOs are mainly distributed in the EZ (7, 8, 10), we
believe that the first channel which is not consecutively removed
from the highest ranking is extremely important. If the channel
is located in the EZ, then the post-surgical outcome will not
be seizure-free (Class ≥II). Conversely, if the channel is located
outside of the EZ, then the post-surgical outcome should be
seizure-free (Class I). Based on this hypothesis, we proposed a
new concept of the continuous resection ratio of high order HFO
channels. The ratio is based on the proportion of continuously
removed channels from high ranking HFOs, relative to the total
number of channels with HFOs. Afterwards, we compared the
relationship between this ratio and the post-surgical outcome
of each patient. Our results showed that the ratio exhibited a
highly significant difference between patients with a good and
poor outcome in both ripple and FR bands. The ratio in the
FRs to delineate the EZ was significantly better than in the
ripples. Our results showed that the lowest value of the 95%
confidence interval of the ratio for FR in a good post-surgical
outcome group was at 72%. Therefore, we set the quantitative
threshold for HFO distribution to delineate the EZ such as to

continuously remove at least 72% channels from the highest
ranking. To our knowledge, this is the first study to investigate

a quantitative threshold based on HFO distribution to delineate

the EZ.
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FIGURE 6 | Example of a quantitative threshold for HFO distribution with which to delineate the EZ. (A-C) show the results of patient #13 (good post-surgical

outcome) while (D,E) show the results of a poor post-surgical outcome. (A,D) show the rank in a descending order according to FRs rates. The channels which were

resected are marked in red while the unresected channels are labeled in blue. Arrows indicate the first channel that was not continuously removed from the highest

ranking. (B,E) show the FRs distribution on the individualized models of the patient brains. The number of HFO counts per electrode is represented by a different color.

HFO counts are shown in red while the gray color indicates instances with a reduced HFO count. The resected area is delineated by the blue line and the EZ

confirmed by our quantitative threshold is surrounded by a red line. LF, Left frontal; LMF, Left middle frontal; LCA, Left central area; LI, Left insula; LP, Left parietal; LT,

Left temporal; LST, Left superior frontal; LMT, Left middle temporal; LIP, Left inferior parietal; LSF, Left superior frontal. (C,F) show the timing of all FRs detected in

each channel by our automatic detector during a 5-min iEEG segment. The time and location of each FR are presented in terms of points. The resected area is

delineated by the blue line. The pink regions show the EZ confirmed by our quantified threshold. In the patients with a good surgical outcome, the EZ was completely

removed (B,C). However, the EZ of patients with poor outcome was not completely removed (E,F).

Distinction Between Physiological and
Pathological HFOs
The physiological HFO is another issue affecting the clinical
application of HFOs, as physiological HFOs are completely

independent of epileptic activity. Therefore, much attention has

been paid on how to distinguish between physiological and

pathological HFOs. A recent study that identified physiological

HFOs in multiple regions of the brain suggested the need
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to assess interictal HFO activity relative to anatomically
accurate normative standards, when using HFOs for pre-
surgical planning (44). Nonoda et al. tried to distinguish
epileptic HFOs from physiological HFOs, by detecting the
relationship between HFOs and slow waves. They found that
epileptic HFOs may be preferentially coupled with 3–4Hz
slow-wave, whereas physiological HFOs are more preferentially
coupled with 0.5–1Hz slow-wave during slow-wave sleep
(45). Recently, Liu et al. proposed a method which used
computer deep learning to automatically detect HFOs waveforms
and was able to distinguish physiological and pathological
HFOs based on waveform similarity (46). Although there
have been several studies using a variety of techniques to
distinguish physiological and pathological HFOs, it remains
one of the key issues to be solved when applying HFO
clinically.

In this study, we expanded the scope of application for our
HFO automatic detector. We added an algorithm to remove
false HFOs in our detector. We also proposed a concept for
delineating the EZ, by setting a quantitative threshold according
to the HFO distribution. Of course, this threshold was only set
by our experimental data and needs to be validated with a large
cohort of clinical data in the future. It is also necessary to develop
methods to identify physiological and pathological HFOs and

integrate these into our automatic detector, to promote HFO as
a biomarker as early as possible, in the clinical diagnosis and
treatment of epilepsy.
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