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Abstract 
 

Rock lithology identification is an important aspect of field geological surveys. However, traditional identification 
methods cannot obtain real-time effective feedback, a limitation that is ineffective for further implementation of field 
geological surveys. To obtain rock lithology information quickly in field geological surveys, an automatic identification 
method of rock lithology applicable to field offline conditions was proposed in this study. Based on MobileNets, a 
lightweight deep neural network with depthwise separable convolutions, and the transfer learning method, the proposed 
method was employed to establish a lithology recognition model for rock images. Its applications on mobile devices were 
verified, and the fast and accurate lithology identification of rock images was realized under the field offline conditions. 
Results demonstrate that the constructed model achieves 95.02% identification accuracy on the validation dataset and 
93.45% identification accuracy on the test dataset of mobile devices. The average recognition time of each image is 1186 
ms, and images which have result confidence higher than 95% respectively account for 91% of the test dataset. The mode 
size is 17.3 MB. These findings indicate that the model has high identification accuracy, short identification time, and 
reliable identification results. The proposed method provides good references for the establishment of a geological survey 
intelligent space and has promising prospects for application in field geological surveys. 
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1. Introduction 
 
With the development of computer technology, geological 
surveys have undergone great reforms from the traditional 
working mode to digital mode and then to the intelligent 
geological survey system [1]. Rock lithology identification 
is an important part of modern geological research and a 
vital aspect of field geological surveys. Therefore, rock 
lithology identification is an interesting and meaningful 
research topic. In traditional rock lithology identification 
method based on images, fresh rock samples are collected 
and brought to the laboratory during field geological survey. 
A small piece of rock is cut from the vertical bedding 
direction of rock samples and ground into 0.03 mm-thick 
slices. The slice is called the rock thin section [2]. Then, the 
rock types and structural parameters are identified by 
experienced geological researchers. In the entire process of 
identification, many defects are found, such as strong 
subjectivity, strong uncertainty, long judgment period, and 
high judgment cost [3]. 

In recent years, the application of image processing 
technology in various fields has been deepening, and the 
automatic recognition of rock images has been greatly 
developed. Existing studies on automatic recognition of rock 
images mainly focus on the microscopic image of rock thin 
sections by using image analysis, feature extraction and 
other image processing techniques to analyze rock texture, 
petrofabric [4], rock grain size, rock lithology, and other 

issues. The automatic recognition of rock thin sections has 
solved the problems of strong subjectivity and high 
judgment cost but failed to solve the problem of long 
judgment period. In practice, field geological surveys are 
often carried out under offline conditions. Therefore, 
acquiring the rock lithology information quickly and 
accurately to identify rock lithology automatically under 
field offline conditions is an urgent problem requiring a 
solution. 

This study established an automatic recognition model of 
rock image on the basis of deep learning. Subsequently, the 
model was deployed to mobile devices and used to analyze 
the rock profile images captured by mobile devices to 
identify rock lithology quickly under field offline conditions. 
 
 
2. State of the art 
 
In recent years, plenty of studies on the automatic 
recognition of rock images have been conducted. With the 
use of multi-scale analysis of color texture images, Lepistö 
[5] classified natural rock texture by combining color 
information and texture description. The experimental data 
were divided into four types, and a classification accuracy of 
81.3% was obtained. The use of color information increases 
the classification accuracy of color images, but its 
computation complexity is determined by scale and number 
of color channels, which influence the classification 
accuracy. Singh et al. [6] extracted useful information from 
rock images using image processing technology and 
effectively classified them based on a radial basis function 
network. The experimental data were divided into three 
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classes and showed a classification accuracy of 88.71%. 
However, extremely complex image processing procedures 
are necessary to extract effective information. Naresh Singh 
et al. [7] studied the texture recognition method of rock thin 
sections based on image processing and multi-layer 
perceptual neural network and succeeded in achieving basalt 
texture identification. The accuracy of the three texture 
classes was 92.22%, which was higher than those in 
previous studies. However, the classification categories were 
fewer. In 2013, Cheng et al. [8] studied the automatic pore 
recognition of rock thin section images based on the 
probabilistic neural network method, which extracted 
features and implemented classification test by clustering 
and PNN. However, lithology identification was not 
considered. In 2015, Cheng et al. [9] classified 100 rock thin 
section samples of four classes by studying image features 
and using support vector machine. The accuracy was 80%, 
but the model performance was poor. Zhang Cuifen et al. 
[10] synthesized image color by using eigenvectors of 
lithologic units. Although this process greatly increased the 
identifiability of lithologic units of rocks, the remote sensing 
image identification was inapplicable to field geological 
investigations. With the development of deep learning in the 
field of image-intelligent identification [11–14], research on 
the automatic recognition of rock images based on deep 
learning is increasing. In 2017, Cheng et al. [15] realized the 
automatic rock particle size identification of rock thin 
section image based on convolution neural network. 
Although the identification accuracy of this method reached 
98.5%, the standard convolutional neural network had many 
parameters and was inapplicable to mobile devices. 
Moreover, the network avoided the lithology identification 
problem. Li et al. [16] trained microscopic images of 
sandstone by transfer learning and gained a high-precision 
microscopic image classification model of sandstone thin 
sections. However, this model showed poor adaptation and 
was only applicable to sandstone identification. Zhang et al. 
[17] applied transfer learning in automatic lithology 
identification and classification of rock images for the first 
time and effectively identified graphite, phyllite, and 
breccias. However, the experimental data used natural rock 
images, and the surface weathering was neglected. The 
identification accuracy of this method was also sensitive to 
many factors. 

In the above methods, the dataset involved few rock 
types, which could neither verify the expansibility of the 
classifier nor meet the demands of quick feedback in field 
geological investigation. Thus, this study proposes a quick 
lithology identification method of rock images for mobile 
devices. This method can identify rock lithology quickly and 
accurately in the geological survey process under offline 
conditions following the rock profile images collected by 
mobile devices. Considering the limited computing and 
storage resources of mobile and embedded devices, the 
learning results of MobileNets (a lightweight deep neural 
network with depthwise separable convolution) on the large 
dataset ImageNet are transferred to the rock dataset of this 
study, including 25 classes based on MobileNets and the 
transfer learning method [18]. After retraining, the generated 
model is exported and deployed on the Android platform to 
identify rock lithology rapidly and accurately under field 
offline conditions. 

The remainder of this study is organized as follows. 
Section 3 describes the principle of the model, constructs a 
lithologic identification model of rocks that is applicable to 
mobile devices, and introduces the dataset and data 

processing mechanism. Section 4 analyzes the model 
training process and results. Furthermore, the model 
performance on the test dataset of the mobile device is 
exhibited, and the applicability of the proposed method on 
the mobile device is verified. Section 5 summarizes the 
conclusions. 
 
 
3. Methology 
 
3.1 Depthwise separable convolution 
Considering the continuous applications of deep neural 
networks in computer vision, the overall trend of designing 
the deep neural network structure is to develop a deeper and 
more complicated network for extraction and fusion of 
image features, thereby achieving high accuracy [19]. This 
process implies the involvement of abundant parameters and 
a large-volume model. For the deep neural network to 
function in mobile and embedded devices with limited 
resources, the network structure must be optimized to reduce 
its occupation of computation and storage resources. 

Depthwise separable convolution is a convolution 
structure designed for mobile and embedded devices. The 
structure factorizes a standard convolution into a depthwise 
convolution and a pointwise convolution (1×1 convolution 
kernel) [20]. Depthwise convolution applies the filter to each 
input channel, and 1×1 pointwise convolution is used to 
combine the outputs of the depthwise convolution. As 
shown in the following figures, Fig.1 is a standard 
convolution structure, and Fig. 2 is a depthwise separable 
convolution structure. 

 
Fig. 1. Standard convolution 
 

 
Fig. 2. Depthwise separable convolution 
 

Generally, the connection of neurons is used to represent 
the computational cost. Standard convolutions (Fig. 1) have 
the computational cost of  DK ⋅DK ⋅ M ⋅N ⋅DF ⋅DF . 
Depthwise separable convolutions (Fig. 2) factorize the 
standard volume integral into two parts: one is depthwise 
convolution, which has a computational cost of 

 DK ⋅DK ⋅ M ⋅DF ⋅DF ; and the other is pointwise convolution, 
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which has a computational cost of  DF ⋅DF ⋅ M ⋅N . After 
series connection, these two parts consist of a depthwise 
separable convolution whose computational cost is 

 DK ⋅DK ⋅ M ⋅DF ⋅DF +DF ⋅DF ⋅ M ⋅N . 
On the basis of the comparison of computation loads 

between depthwise separable convolution and standard 
convolution, we obtain 

 

	 
DK ⋅DK ⋅ M ⋅DF ⋅DF +DF ⋅DF ⋅ M ⋅N

DK ⋅DK ⋅ M ⋅N ⋅DF ⋅DF

=
1
N

. 

 
This equation shows that the use of 3×3 depthwise 

separable convolution kernel (DK=3) reduces parameters and 
computation by eight to nine times, whereas the accuracy 
decreases slightly [20]. Hence, this factorization can 
effectively decrease computation loads and model size. 
 
3.2 Transfer learning 
Transfer learning solves learning problems in the target 
domain by using training data in different but related source 
domains [21]. The major hypothesis in most machine 
learning and data mining algorithms is that training data and 
future (test) data must have the same feature space and 
distribution. However, in many real applications, this 
hypothesis may not be valid. In this case, the learning 
performance can be improved greatly and expensive data 
marking can be avoided by transferring the knowledge of 
different domains [22]. The traditional machine learning 
mode is shown in Fig. 3. Given different learning tasks, 
different learning systems must be established even if 
similarities occur between tasks. The transfer learning mode 
is shown in Fig. 4. To cope with different learning tasks, the 
knowledge that is learned by the learning system from 
solving source tasks can be transferred to the learning 
system that solves the target tasks. 
 

Task A Task B Task C

Different tasks

Learning 
system A

Learning 
system B

Learning 
system C

 
Fig. 3. Traditional machine learning model 
 

From the perspective of the structure and function of 
deep neural networks, the convolution layer of the network 
mainly extracts the image features and shares the parameters. 
The pooling layer is used to reduce the number of 
parameters, the final full-connection layer integrates the 
features extracted by the network to obtain the high-level 

meaning of the image features, and the classifier is used to 
obtain the final classification result as the final step [23]. In 
certain cases, the dataset has a small data size and the 
distribution is uneven because of the limited actual 
conditions, which may lead to overfitting of training results. 
Thus, the model performs well in the training set but poorly 
in the validation set and test set. Transfer learning can 
address this situation to a certain extent [22]. 
 

Source tasks Target tasks

Knowledge Learning 
system

Task A Task B Task C

 
Fig. 4. Transfer learning model 
 
 
3.3 Softmax classifier 
Softmax regression algorithm is often used to solve multi-
classification problems by mapping the output values of 
multiple neurons into (0,1), and naturally, their sum is 1. 
From this point, the output values can be regarded as the 
probability that a sample is classified into a certain class. 

We consider a training set composed of m marked 
samples, 	   x(1) , y(1)( ),!,(x(m) , y(m) ){ } , where the value range 

of class label y is 	   y
( i) ∈ 1,2,!,k{ } . We consider that 

  
p y = j | x( ) indicates the probability of samples being 

classified as class  j  under the input x. Thus, the output of 
the k-class classifier is a k-dimensional vector and the sum 
of elements of this vector is 1. Similar to logistic regression, 
the hypothesis function 

  
hθ x( i)( )  can be employed to express 

the output of Softmax as: 
 

	   

hθ x( i)( ) =

p y( i) =1 | x( i);θ( )
p y( i) =2 | x( i);θ( )
!

p y( i) = k | x( i);θ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
1
eθ j

T x( i )

j=1

k

∑

eθ1
T x( i )

eθ2
T x( i )

!

eθk
T x( i )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

                  (1) 

 
where the input x is (m×1)-dimensional vector and is a 

parameter of the model, a matrix of m×k order. The training 
process of the model is to search the optimal θ  by 
continuous iteration, thereby causing the predicted value to 
approach the actual value. The cost function of the 
regression model can be expressed as: 
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j θ( ) = − 1m 1 y( i) = j{ }j=1

k
∑i=1

m
∑ log eθ j

T x( i )

eθl
T x( i )

l=1

k
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥               (2) 

 
where 	1 ⋅{ }  is a characteristic function, the rule is 

1{value=true}=1, 1{value=false}=0.   J (θ )  is minimized to 
obtain the value of . As no closed-form solution is available 
for the minimization of   J (θ ) , a gradient descent iterative 
algorithm is available. After derivation, the gradient formula 
can be gained as follows: 
 

	  
∇θ j

J (θ ) = − 1
m

x( i) 1 y( i) = j{ }− p y( i) = j | x( i);θ( )( )⎡
⎣

⎤
⎦i=1

m
∑  (3) 

 

where 
  
∇θ j

J (θ )  is a vector, and its  l th element, 
  

∂J (θ )
∂θ jt

, is 

the partial derivative of 
 
θ j  to the  l component of   J (θ ) . 

In practice, a weight attenuation term is usually added to 
the cost function   J (θ )  to obtain a strict convex function and 
assure the convergence and a unique solution [24]. Therefore, 
the new cost function and gradient are 
 

	  

J (θ ) = − 1
m

1 y(i) = j{ }log eθ j
T x( i )

eθl
T x( i )

l=1

k
∑j=1

k
∑i=1

m
∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥+

+
λ
2 θij

2
j=0

n
∑i=1

k
∑

            (4) 

 

	  
∇θ j

J (θ ) = − 1
m

x( i) 1 y( i) = j{ }− p y( i) = j | x( i);θ( )( )⎡
⎣

⎤
⎦i=1

m
∑ +λθ (5) 

 
where λ  is the weight attenuation coefficient. 
 
 
4 Result analysis and discussion 
 
4.1 Model architecture 
The inter-class gap in rock image dataset is relatively small 
compared with a large dataset and is thus considered the fine 
dataset in specific fields. Rock lithology identification is an 
example of fine-grained classification. Here, the transfer 
learning mentioned in Section 3.2 was used for rock image 
recognition. The network was pre-trained on the large 
dataset, and most parameters were retained. The retained 
parameters were adjusted to be applicable to the dataset in 
this study. With late deployment onto the mobile devices, 
the lightweight network structure of separable convolution 
(MobileNets) in Section 3.1 is one solution. The first 28 
layers of the convolution structure in MobileNets were 
frozen. The final full-connection layer was rewritten based 
on rock image dataset characteristics. MobileNets weights 
and parameters that were pre-trained on ImageNet dataset 
were input. Each convolution layer used ReLU as the 
activation function, and batchnorm was used for the 
standardized distribution of batches. The Softmax classifier 
in Section 3.3 was used and rock image dataset was trained 
again. The convolutional layer structure is shown in Fig. 5, 
and the model structure is shown in Table 1. 

3×3  Conv 3×3  Depthwise Conv

ReLU

batchnorm

batchnorm

ReLU

1×1  Conv

ReLU

batchnorm

 
Fig. 5. The structure of convolution unit 
 
Table 1. MobileNets Body Architecture 

Type Filter Shape Input Size 
Conv1 3×3×3×32 224×224×3 

Conv2 dw 3×3×32 dw 112×112×32 
Conv2 pw 1×1×32×64 112×112×32 
Conv3 dw 3×3×64 dw 112×112×64 
Conv3 pw 1×1×64×128 56×56×64 
Conv4 dw 3×3×128 dw 56×56×128 
Conv4 pw 1×1×128×128 56×56×128 
Conv5 dw 3×3×128 dw 56×56×128 
Conv5 pw 1×1×128×256 28×28×128 
Conv6 dw 3×3×256 dw 28×28×256 
Conv6 pw 1×1×256×256 28×28×256 
Conv7 dw 3×3×256 dw 28×28×256 
Conv7 pw 1×1×256×512 14×14×256 
Conv8 dw 3×3×512 dw 14×14×512 
Conv8 pw 1×1×512×512 14×14×512 
Conv9 dw 3×3×512 dw 14×14×512 
Conv9 pw 1×1×512×512 14×14×512 

Conv10 dw 3×3×512 dw 14×14×512 
Conv10 pw 1×1×512×512 14×14×512 
Conv11 dw 3×3×512 dw 14×14×512 
Conv11 pw 1×1×512×512 14×14×512 
Conv12 dw 3×3×512 dw 14×14×512 
Conv12 pw 1×1×512×512 14×14×512 
Conv13 dw 3×3×512 dw 14×14×512 
Conv13 pw 1×1×512×1024 7×7×512 
Conv14 dw 3×3×1024 dw 7×7×1024 
Conv14 pw 1×1×1024×1024 7×7×1024 
Avg Pool Pool 7×7 7×7×1024 

FC 1024×25 1×1×1024 
Softmax Classifier 1×1×25 

 
4.2 Rock image dataset and preprocess 
The rock image dataset in this experiment is a new dataset 
that consists of fresh rock profile images collected by mobile 
devices during the field geological survey, including a1 light 
grey rhyolite, a2 purple-red tuffite, and 23 other types of 
different lithologic rock data. All data were collected from 
multiple locations in East China. The image sizes of the 
original data vary from 3 M to 5 M. To reduce model 
parameters, the original data were compressed to 224 × 224 
pixels. The sample images are shown in Fig. 6 as below. 

The rock image dataset consists of a total of 3023 images, 
which belong to 25 categories, of which 80% were randomly 
selected as training datasets, 10% as validation datasets, 
10% as test datasets, 2432 images in the training set, 301 
images in the validation set, 290 images the in testing set. 
The detailed data distribution is shown in Fig. 7. 
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Fig. 6. Samples of data 
 

The number of different classes of the rock image dataset 
is not balanced, and the number of some classes of pictures 
is extremely small. The training dataset is augmented by 
random rotation, flip, cropping, and shading adjustment. 
 
4.3 Training and analysis 
Model training was started and the MobileNets structure was 
constructed. Parameters that were trained by MobileNets on 
the ImageNet dataset were input, and other hyper-parameters 
were adjusted following experimental performances. The 
iteration steps were 4,000, and the learning rate was 0.006. 
ReLU was applied as the activation function that was 
optimized by the stochastic gradient descent method. Loss 
was verified by cross-entropy, and the classifier used 
Softmax. In training, 16 images were randomly selected 
from the dataset in every iteration. The model was evaluated 
every 20 iterations. Loss and accuracy changes in the first 
2,000 iterations in the training process are shown in Fig. 8. 
Loss began to converge after 200 iterations and began to 
stabilize after 600 iterations. The loss was nearly 0 and the 
training accuracy was nearly 100%. The accuracy of the 
verification dataset fluctuated slightly but approached 100%. 

 

49
12

312

133

40

157

99 104

60 64
88 74 87

66

258

39

118
93

77 88
104 93 87

116

6 1

39
17 18 20 12 13 7 7 11 9 11 2 8 5 15 11 10 11 13 11 11 146 1 4 7 8 9 1 8

32
414

32
16 1011 12 11 10

14914101112 12
1939

0

50

100

150

200

250

300

350

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 c1 c2 c3 c4 c5 d1 d2 d3 d4 d5 e1 e2 e3 e4 e5

train val test

 
Fig. 7. Data distribution 
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Fig. 8. Variation of train accuracy, test accuracy, and loss in training 
 

The model accuracy on the training dataset reached 
100%, and the loss was 0.0005 after 4,000 iterations. 
Furthermore, the model accuracy on the verification dataset 
was 95.02%, and the loss was 0.1434. 
 

4.4 Testing and analysis 
Our rock image identification application was constructed on 
Android. The application was designed to acquire identified 
data by camera shooting and photo reading. The technical 
route is shown in Fig. 9. The CPU of the test platform was a 
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Qualcomm Snapdragon 430. The output model size was 
17.3 MB. 
 

Album

Camera

Model ResultData

 
Fig. 9. Technical route 
 

The test dataset and the trained model were input into the 
rock image identification application. Data were loaded and 

the model was operated; thus, test results were obtained. The 
confusion matrix is shown in Fig.10. 

In the confusion matrix, the value of the middle row was 
the real value and the value of column was the predicted 
value. The accuracy of the entire test set reached 93.45%. 
Over 91% of the test dataset were those images with 95%-
plus result confidence rate respectively. The single-result 
identification time distribution of the test dataset is shown in 
Fig. 11. Specifically, the single-result average identification 
time was 1,186 ms. The maximum and minimum 
identification times were 1,409 and 858 ms, respectively. 
The box plots showed no abnormal values, thereby 
indicating the stability of model identification. 

 
 

 
 

 
Fig. 10. Confusion matrix 
 
 

 
Fig. 11. Recognition time per image 
 
4.4 Testing and analysis 
To verify the applicability of the proposed method on the 
mobile terminal, the network ResNet50 with a standard 
convolutional structure was used to train, deploy, and test 

the rock image dataset. The comparison between ResNet50 
and the proposed model are shown in Table 2. 
 
Table 2. Results of contrast experiment 

Network   Test accuracy Model size Single-result 
recognition time 

ResNet50 92.76% 94.7 MB 3050 ms 
MobileNets 93.45% 17.3 MB 1186 ms 

 
The contrast experiment demonstrated that given the 

similar accuracy of the test set, the model based on the 
depthwise separable convolution network had outstanding 
performances in model compression and computation. The 
model was applicable to fast accurate lithology identification 
of rock images under field offline conditions. 
 
 
5. Conclusions 
 
To achieve real-time fast feedback during field geological 
surveys, an automatic lithology identification model of rocks 
was proposed in this study on the basis of the depthwise 
separable convolutional structure and the transfer learning 
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method. The pre-trained model of MobileNets was fine-
tuned and then retrained on the selected dataset. The 
following conclusions were obtained.  
 

(1) Compared with the standard convolutional network 
model, the depthwise separable convolutional network 
model shows fewer parameters, smaller size, higher 
computation speed, and shorter running time. 

(2) The proposed method can accurately identify 25 
types of rock images (e.g., light grey rhyolite). The model 
size is 17.3 MB and the single-result average identification 
time is 1,186 ms. The model is applicable to mobile devices. 
Experimental results demonstrate that the proposed method, 
which has short identification time and high reliability, is 
applicable to the fast accurate identification of rock images 
under field offline conditions. 

 

Basing on the MobileNets with depthwise separable 
convolution and the transfer learning method, we proposed a 
new method for automatic identification of rock lithology in 
field geological survey. In future studies, the model 
identification capability can be improved by continuously 
enriching data of the training set. Quantization and 
compression are also available to further improve the 
performance of the model in mobile devices. 
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