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Abstract: In this paper, the retrial unreliable server queue with batch arrivals is considered. The arrival rates of  
the units are different and dependent upon the joining probabilities according to the server status. On arrival, if  unit 
finds the busy server, he may retry for the service after a random duration of  time. The server facilitates the essential 
service and optional service, if  opted after essential service. Moreover, the server is unreliable and subject to the 
breakdown while rendering essential/optional service. The failed server may immediately undergo for the 
compulsory multiphase repair or may wait to start the repair due to any technical reasons. The server can also avail 
the optional vacation under the Bernoulli schedule after finish the service of  each unit or may continue to serve the 
next unit. The variables corresponding to elapsed times of  general distributed service process, retrial process, repair 
process and vacation duration, as supplementary variables and used to frame the governing equations. By using the 
probability generating functions of  joint distributions of  the units at different states of  the server, the performance 
characteristics of  the system are derived. To validate the results, the sensitivity analysis has been performed by taking 
the numerical illustration. 
Keyword — Unreliable server, Optional service, Vacation, Retrial queue, Supplementary variable, Queue length. 
AMS Mathematics Subject Classification: 60K25, 68M20. 

 
 
 

1. INTRODUCTION 
 
In all the spheres of  day-to-day activities, the formation of  the queues can be experienced. In some congestion 
situations of  commercial as well as industrial organizations, the retrial queue or queue with repeated attempts can be 
noticed. In the situation, when the units are not getting service on joining the system due to busy server, they may 
decide to join the retrial orbit and retry for the service in other attempts after some random period of  time. The 
concept of  retrial queue is important feature and can be observed in manufacturing system, computer, 
telecommunication systems, network access control process, cellular mobile communication networks, switching 
systems, etc. To elaborate the situation, we cite the example of  cellular mobile network wherein the packet/call 
attempts join the system to be transmit but due to busy line or due to service interruption, the call attempts may 
decide to join the orbit and repeat the other attempt to get the service. The queueing systems with bulk 
arrival/service and essential/optional services are common and meet the practical effectiveness in terms of  efficient 
utilization of  resources. During vacation period and repair of  breakdown server, the server wishes to perform some 
internal workout for proper maintenance of  the service system to provide the service up to customer’s satisfaction. 

In performance of  the service system, the service interruption is the key factor to observe the efficiency of  the 
system. Many researchers have studied queueing networks with the different variations. Choudhury and Ke (2014) 
have presented the stochastic model of  the single arrival of  the customer in unreliable retrial queueing system under 
Bernoulli vacation schedule for single phase repair/delayed repair. In real time activities, many situations can be 
experienced that due to service interruption, the service phenomenon can be affected and balking behaviour may be 
occurred. Motivated with such realistic situation, in the present investigation, we have extended above stated model 
for the general congestion situation by incorporating some additional realistic features such as (i) arrivals of  the units 
in bulk (ii) provision of  second stage optional service (iii) unreliable server with delayed in repair and −m phases 
of  repair (iv) state dependent joining probabilities of  the units.  

The motivation of  this investigation comes from real life situations of  manufacturing system encountered in 
the production of  electric appliances industry, wherein the manufacturing process activates the production by 
providing the raw materials in the bulk and the production of  the items has various varieties as per the requirements 
of  the customers with the basic and luxury needs. During manufacturing process, the essential/optional vacation of  
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the machines for random time period may be required for efficient outputs of  the production, as some modern 
equipment require the essential vacation for fixed time duration. It is also experienced that the unpredictable failure 
of  the machinery parts may cause of  service interruption and affects the input flow of  the demands for service 
(varying arrival rates). The retrial process of  the arrived units in the service system is also one of  the important key 
factors of  the service environment. In this process, customers may retry for his turn later to fulfil their requirements 
on finding the service system in idle state. In production process, At the completion of  any stage of  the service, if  
the server is not ready to provide the service for next step of  the process immediately then ready stock of  the items 
may join the retrial orbit and retry again after some time for the completion of  the service process (retrial process).. 
The service station may breakdowns and failure server requires a phase repair for its recovery to good condition. 
Furthermore, when immediate repair of  the broken down server is not possible due to any technical reason (delayed 
in repair), some preliminary setting may require before starting the actual repair for the recovery which can be 
accomplished in many sequential stages of  the repair. During the period of  repair/delay in repair, the 
discouragement behaviour of  the waiting customers may occur and decide to quit the system without getting the 
service (balking). 

The pioneer works on retrial queue have been done by a number of  researchers with different variations (cf. 
Artalejo (1999), Artalejo and Corral (2008), Shin and choo (2009)). The non-markovian retrial queue with general 
distributed service time and unreliable server under Bernoulli vacation policy was investigated by Wu and Lian (2013) 
and studied the behaviour of  negative customers by applying the embedded Markov chain approach and 
supplementary variable technique to obtain the different performance indices of  the system. Gao and Wang (2014) 

have considered the / / 1M G  retrial queue to discuss the behaviour of  the impatient customers and queue size 

distribution was determined by using the supplementary variable technique and embedded markov chain approach. 
Recently, Singh et al. (2016) have studied the non-markovian retrial queue with two stage service under Bernoulli 
vacation schedule. In present scenario, the reliable server is a common assumption and can be experienced in many 
activities. Due to unpredictable failure of  the system or due to other cause of  service interruption, the 
discouragement behaviour may occur and can be experienced in computer system, telecommunication network, 
flexible manufacturing system, banking and transport system, etc.  In this direction, some notable works are due to 
many researchers under different assumptions (cf. Tang (1997), Jain and Agarwal (2009), Choudhury et al. (2011)). 
Jain and Bhagat (2015) investigated the batch arrival retrial queue under Bernoulli vacation schedule and admission 
control policy to study the behaviour of  the system. 

In industrial scenario, queue with vacation schedule have great applications in many fields including the 
communication networks, production management, flexible manufacturing system, etc. Many queue theorists (cf. 
Doshi (1986), Madan (2000), Zhang and Hou (2010), Singh et al. (2012), Dimitriou (2013)) modelled the queueing 

situations where server can take vacation. The / / 1M G  unreliable queue with single vacation under ( , )p N -policy 

was presented by Yang and Ke (2014) in order to study the system characteristics of  queue size distribution by using the 
supplementary variable approach. The provision of  regular/optional service has also wide applications in the 
situations of  daily and industrial activities. From the literature of  queueing theory, it is evident that many researchers 
presented their work in this direction (cf. Medhi (2002), Wang (2004), Ke (2008)). Recently, Kirupa and Chandrika 
(2015) investigated a stochastic model for unreliable retrial queue with batch arrival and negative customers having 
choice of  multi-optional service. They have considered the provision of  J- vacations under feedback policy and 
analyzed the model by using supplementary variable technique. 

To investigate the present model, the remaining paper is explained in the following manner. Section 2 presents the 
model description by stating the necessary notations and assumptions. The mathematical formulation of  the model is 
done in section 3.  The queue length distribution of  the model has been provided in Section 4. Section 5 consist the 
performance measures of  the system. Some special cases to validate the results with existing models by setting the 
parameters are considered in section 6. The numerical illustration has been carried out in Section 7. Finally, conclusion 
is presented in section 8. 

 
 

2. MODEL DESCRIPTION 
 

Consider a retrial queue with heterogeneous arrival rates and single unreliable server. The basic assumptions of  the 
model are described as follows: 
 
2.1 Arrival and Retrial Process 
 

The arrivals of  the units occurs in bulk of  sizeX  with probability mass function ( ) , 1
j

P X j c j= = ≥  and 

follows the Poisson process with mean arrival rates in idle state, busy state, delayed repair, under repair and vacation 
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states with their respective joining  probabilities of  the units are and
1 2 3 1 2 3
, , ;0 , , , 1b b b b b b b b< < . The first and 

second factorial moments of  arrival process of  the units are denoted as (1)d and (2),d
 
respectively. It is assumed that on 

arrival, the unit finds the server is idle but available for the service; the unit may either join the queue or wait for their 
turn in respective orbit. Furthermore, on arrival if  the primary unit finds the server is in busy state or on vacation 

state/ broken down state, the unit may join the group of  retrial units (i.e. retrial orbit) of  size ( )N t at time t . The 

random variable R  denotes the retrial time with distribution function ( )M x and its Laplace transform ( ).M sɶ  

 
 
2.2 Service Process 
 

The service discipline is FCFS. The regular service time 
1

B (optional service time
2

B ) is general distributed with 

distribution function 
1
( )B x (

2
( )B x ), having respective Laplace transform

1 2
( )( ( ))B s B sɶ ɶ  and finite thj moments

( ) ( )

1 2
( ), 1,2j j jβ β = . After completion of  essential service of  the unit, the optional service may opt with probability

0
r

or leave the system with probability
0 0
1r r= − . 

 
 
2.3 Breakdown State 
 
The server is unreliable and may breakdown in Poisson fashion at any instant of  time while rendering regular/optional 

service with failure rate 
1 2
( )α α . Once the system breaks down, immediately undergoes for the repair. Due to 

unavailability of  the technical staff  or some other reason, the waiting time for repair may also occur. The random 

variable of  the delay time to repair is considered as 
i

D  with distribution function ( )
i

D y  and respective Laplace 

transform ( )
i

D sɶ and finite moments ( ), 1,2j

i
jγ = , when it fails in thi  stage of  the service. The failed server joins 

the repair station for repair of  m compulsory phases of  the repair. The random variable ( )i

l
R denotes the thl  

phase repair time of  the server with cumulative distribution function 
,
( ),

i l
G y  Laplace transform of  cumulative 

distribution function as 
,
( )

i l
G sɶ  and first two moments ( ), 1,2j

il
g j =  when it fails during the thi  stage of  the 

service. 
 
 
2.4 Vacation State 

 

After completion of  the service of  the unit, the server may go for a vacation of  random period V with probability

(0 1)p p< <  or may continue to serve the next unit with probability (1 )p− . The vacation time of  the server is 

general distributed with distribution function ( )V y having Laplace transform ( )V sɶ and finite moments

( ), 1,2jE V j = .   

Now, we introduce some more notations which will be used for the mathematical formulation of  the model. 

Let 0 0 0

,
( ), ( ), ( ), ( )

i i i l
R t B t D t G t and 0( )V t denote the elapsed times of  retrial units, service of  thi stage, delay time 

to repair, repair of  thl  phase and vacation state at time t . Consider a markov process { ( ), ( )}N t X t as joint 

distribution of  number of  units in retrial orbit and queue in the different system states with ( ) 0,1,2,....;N t =

( ) 0X t = if ( ) 0tζ = , 0( ) ( )X t R t= if ( ) 1tζ = , 0

1
( ) ( )X t B t= if ( ) 2tζ = , 

0

2
( ) ( )X t B t= if ( ) 3tζ = , 0( ) ( )X t V t= if ( ) 4tζ = , 0

1
( ) ( )X t D t= if ( ) 5tζ = , 0

2
( ) ( )X t D t= if ( ) 6tζ = ,

0

1,
( ) ( )

l
X t G t= if ( ) 7tζ = , 0

2,
( ) ( )

l
X t G t= if ( ) 8tζ = , 1 l m≤ ≤ , where the random variable ( )tζ denotes the 

server’s status as given by 
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if the server is idle  with no unit in the system at time ,

1 if the server is idle when only retrial units are present in the system at time ,

2 if the server is busy in rendering the first stage regular service at time ,

i

0

3

( )

t

t

t

tζ =

f the server is busy in rendering the second stage optional service at time ,

if the server is on vacation at time ,

if the  server is waiting for repair when failed during regular service at time ,

  if the  serv

4

5

6

t

t

t

er is waiting for repair when failed during optional service at time ,

if the  server is under repair when failed during regular service at time ,

if the  server is under repair when failed during o

7

8

t

t

ptional service at time ,t



 

 
 

3. MATHEMATICAL MODEL 
 

In order to obtain the queue length distribution of  non-markovian retrial queueing system with general service time, 
we first develop the mathematical model by using the assumptions and notations discussed in previous section. 

 
 

3.1 Transient State and Limiting Probabilities 
 
To analyze the mathematical model of  queuing system, the transient probabilities are defined as: 

( , )
n

A x t  The probability of  n retrial units in the system (including the unit being served or in the orbit, 
if  any) with elapsed service time x at time .t   

( , )i

n
P x t  The probability of  n units in the system (including the unit being served, if  any) with  elapsed 

service time ' 'x at time ; 1,2.t i =  

( , )
n

V y t  The probability of  n units in the vacation state with elapsed service time ' 'y  at time .t  

( , , )i

n
D x y t  The probability of  n units in the system with elapsed service time x and elapsed delay timey

at time ; 1,2.t i =  

,
( , , )i

l n
R x y t  The probability of  n units in the system with elapsed service time x and elapsed repair timey

at time ; 1,2;1 .t i l m= ≤ ≤  

The steady state limiting probabilities for different server states are considered as 

ob0

0
lim Pr { ( ) 0, ( ) 0}
t

P N t X t
→∞

= = =

ob 0 0( ) lim Pr { ( ) , ( ) ( ), ( ) }; 0; 1,
n

t
A x N t n X t R t x R t x dx x n

→∞
= = = < ≤ + > ≥

ob 0 0( ) lim Pr { ( ) , ( ) ( ), ( ) }; 0, 1,2; 1,i

n i i
t

P x dx N t n X t B t x B t x dx x i n
→∞

= = = < ≤ + > = ≥

ob 0 0( ) lim Pr { ( ) , ( ) ( ), ( ) }; 0; 1,2; 1,
n

t
V y N t n X t V t y V t y dy y i n

→∞
= = = < ≤ + > = ≥

ob 0 0 0( , ) lim Pr { ( ) , ( ) ( ), ( ) | ( ) };( , ) 0, 1,2; 1,i

n i i i
t

D x y dx N t n X t D t y D t y dy B t x x y i n
→∞

= = = < ≤ + = > = ≥

ob ; 10 0 0

, , ,
( , ) lim Pr { ( ) , ( ) ( ), ( ) | ( ) };( , ) 0, 1,2 , 1i

l n i l i l i
t

R x y dx N t n X t G t y G t y dy B t x x y i l m n
→∞

= = = < ≤ + = > = ≤ ≤ ≥
 

 

 
3.2 Hazard Rate Functions 
 
The hazard rate functions for different server states are defined as follows: 
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,

,

,

( ) ( )( ) ( )
( ) ; ( ) ; ( ) ; ( ) ;

[1 ( )] [1 ( )] [1 ( )] [1 ( )]

( )
( ) ; 1,2;1 .

[1 ( )]

i i

i i

i i

i l

i l

i l

dB x dD ydM x dV y
x dx K x dx v y dy y dy

B x M x V y D y

dG y
y dy i l m

G y

µ η

ξ

= = = =
− − − −

= = ≤ ≤
−

                                                                                                     

For the analysis purpose, the following probability generating functions (PGF) are used: 

1 1 1 1

,
1 1 1 1

( , ) ( ), (0, ) (0), ( , ) ( ), ( , ) ( ),

(0, ) (0), ( , , ) ( , ), ( , 0, ) ( , 0), ( , , ) ( , ),

( , 0, )

i n i i n i n n

n n n n
n n n n

n i n i i n i i n i

n n n l l n
n n n n

i n

l l

P x z z P x P z z P A x z z A x V y z z V y

V z z V D x y z z D x y D x z z D x R x y z z R x y

R x z z R

∞ ∞ ∞ ∞

= = = =

∞ ∞ ∞ ∞

= = = =

= = = =

= = = =

=

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

,
1

( , 0).i

n
n

x
∞

=
∑

 

 
3.3 Governing Equations 

 
To analyze the system, the governing equations of  the system in different scenarios of  the server states by using the 
probability reasoning under steady state conditions (cf. Cox (1955)) are as follows: 

 
 

3.3.1 Idle State (Empty) 
 
The equation for the idle state of  the server when neither new unit nor retrial unit is present in the system, is 

0 2 1

0 2 1 0 1 1 1

0 0 0

( ) ( ) ( ) ( ) ( ) ( )P q x P x dx r x P x dx v yV y dyλ µ µ

∞ ∞ ∞ 
 = + + 
  
∫ ∫ ∫

 

(1) 

 
 
3.3.2 Idle State (Non-empty) 
 
This state corresponds to the idle state of  the server when no new unit is arrived but retrial unit is present in the 
system. The equation in this case is 

( ) [ ( )] ( ) 0; 0; 1
n n

d
A x b K x A x x n

dx
λ+ + = > ≥

 

(2) 

 
 
3.3.3 Busy State 
 
When the server is busy in providing essential/optional service, we have 

, ,
1 0

( ) [ ( )] ( ) ( ) ( ) ( , ) ; , 0, 1, 1,2
n

i i i i

n i i n j n j i m m n
j

d
P x b x P x b c P x y R x y dy x y n i

dx
λ α µ λ ξ

∞

−
=

+ + + = + > ≥ =∑ ∫
 

(3) 

 
 
3.3.4 Delayed Repair State 
 
The server is unreliable and may breakdown in Poisson fashion. Due to some unavoidable reasons, there may be 
some delay in repair of  failed unit occurs. In this case, the equation is framed as 

1 1
1

( , ) [ ( )] ( , ) ( , ); , 0, 1, 1,2
n

i i i

n i n j n j
j

d
D x y b y D x y b c D x y x y n i

dy
λ η λ

−
=

+ + = > ≥ =∑
 

(4) 
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3.3.5 Repair State 
 
The failed unit completes its repair in m compulsory phases so that, we have 

, 2 , , 2 ,
1

( , ) [ ( )] ( , ) ( , ); , 0, 1, 1,2;1
n

i i i

l n i l l n j l n j
j

d
R x y b y R x y b c R x y x y n i l m

dy
λ ξ λ

−
=

+ + = > ≥ = ≤ ≤∑  (5) 

 
 
3.3.6 Vacation State 

 
After completion of  the service of  any unit, the server may avail the optional vacation. The equation governs this 
state is described as 

3 3
1

( ) [ ( )] ( ) ( ); 1, 0
n

n n j n j
j

d
V y b v y V y b cV y n y

dy
λ λ

−
=

+ + = ≥ >∑
 

(6) 

 
 

3.4 Boundary Conditions 
 

To analyze the / / 1XM G  queue, which is operating under stated assumptions, the following boundary conditions 

are considered.  
 
 

To solve the equations (1)-(3), the boundary conditions at 0x =  are imposed as follows: 
 

2 1

2 1 0 1 1 1

0 0 0

(0) ( ) ( ) ( ) ( ) ( ) ( ) , 1
n n n n

A q x P x dx r x P x dx v yV y dy nµ µ

∞ ∞ ∞

+ + +

 
 = + + ≥ 
  
∫ ∫ ∫

 

(7) 

1 0

0
1 0 0

(0) ( ) ( ) ( ) , 1
n

n n j n j n
j

P c P b c A x dx k x A x dx nλ λ

∞ ∞

−
=

= + + ≥∑ ∫ ∫  (8) 

2 1

0 1

0

(0) ( ) ( ) , 1
n n

P r x P x dx nµ

∞

= ≥∫
 

(9) 

 
 
For fixed value of  ,x the boundary conditions at 0; 1,2y i= =  are considered to solve equations (4)-(6) as 

follows: 
 

( ,0) ( ); 1i i

n i n
D x P x nα= ≥

 
(10) 

1,

0

( , 0) ( ) ( , ) , 1; 1i i

n i n
R x y D x y dy n lη

∞

= ≥ =∫
 

(11) 

, , 1 1,

0

( , 0) ( ) ( , ) , 1;2i i

l n i l l n
R x y R x y dy n l mξ

∞

− −
= ≥ ≤ ≤∫

 

(12) 

2 1

2 0 1

0 0

(0) ( ) ( ) ( ) ( ) , 1
n n n

V p x P x dx r x P x dx nµ µ

∞ ∞ 
 = + ≥ 
  
∫ ∫

 

(13) 

 
 
3.4.1 Normalizing Condition 

 
The normalizing condition can be stated as 
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2
0

0 ,
1 1 10 0 0 0 0

( ) ( , ) ( , )
m

i i i

n n l n
i n l

P P x dx D x y dxdy R x y dxdy

∞ ∞ ∞ ∞ ∞∞

= = =

 
 + + + 
  

∑∑ ∑∫ ∫ ∫ ∫ ∫  

1 10 0

( ) ( ) 1
n n

n n

A x dx V y dy

∞ ∞∞ ∞

= =

+ + =∑ ∑∫ ∫  (14) 

 
 

4. QUEUE LENGTH DISTRIBUTION 
 

To establish the queue length distribution, the mathematical analysis by using the probability generating function 
approach is presented as follows (cf. Singh et al. (2016)): 
 

( , ) (0, )[1 ( )]exp{ ( ) }; 1,2i i

i i
P x z P z B x z x iτ= − − =

 
(15) 

2 1

0 1 1
(0, ) (0, ) ( ( ))P z r P z B zτ= ɶ  (16) 

1

0 0 2 2 1 1
(0, ) [ ( ( ))] (0, ) ( ( ))V z p r r B z P z B zτ τ= + ɶ ɶ  (17) 

1 1 0

1 1 0 0 2 2 5 0
(0, ) ( ) (0, ) ( ( )){ ( ( ))}{ ( ( ))}A z z P z B z r r B z q pV z Pτ τ ϕ λ−= + + −ɶ ɶ ɶ  (18) 

1 0

0
(0, ) ( ) (0, )[ ( ) ( )(1 ( ))]P z P X z A z M b X z M bλ λ λ= + + −ɶ ɶ  (19) 

3
( , , ) (0, )[1 ( )]exp{ ( ) }[1 ( )]exp{ ( ) }; 1,2i i

i i i i
D x y z P z B x z x D y z y iα τ ϕ= − − − − =  (20) 

1 ,1 4 3
( , , ) (0, )[1 ( )]exp( ( ) )[1 ( )]exp( ( ) ) ( ( )); 1.2i i

i i i i i
R x y z P z B x z x G y z y D z iα τ ϕ ϕ= − − − − =ɶ  (21) 

, 4 3

1

, 4
1

( , , ) (0, )[1 ( )]exp( ( ) )[1 ( )]exp( ( ) ) ( ( ))

( ( ));2

i i

l i i i i l i

l

i j
j

R x y z P z B x z x G y z y D z

G z l m

α τ ϕ ϕ

ϕ
−

=

= − − − −

× ≤ ≤∏

ɶ

ɶ
 (22)

 
0 1

0 1 1 1 0 0 2 2 5
( , ) [ ( ) ( ) ( ( ))[ ( ( ))](1 ( ))exp{ ( ) ][ ( )]V y z zP p z M b B z r r B z V y z y S zϕ λ τ τ ϕ −= + − −ɶ ɶ ɶ

 

(23) 

0 1

0 1 1 0 0 2 2 5
( , ) [ (1 ( ))exp{ }[ ( ( )){ ( ( ))}{ ( ( ))} ( )]][ ( )]A x z P M x bx z B z r r B z q pV z X z S zλ λ τ τ ϕ −= − − − + +ɶ ɶ ɶ  (24) 

0 (1) 1

0 1 1 1 2
[1 (1 ( ))][ (1 ) ( ) ]P b r d M b b b r M b rλ χ λ −= − − − + + − +ɶ ɶ

 

(25) 

where 

,
1 2 3 1 4 2

5 3

( ) (1 ( )), ( ) (1 ( )), ( ) (1 ( )) ( ) (1 ( )),

( ) (1 ( )),

z X z z b X z z b X z z b X z

z b X z

ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ

= − = − = − = −

= −  

(1)

2 3 , 4 1
1

( ) ( ) (1 ( ( )) ( ( ))); 1,2; [1 ( )][(1 ) 1];
m

i i i i j
j

z z D z G z i M b b dτ ϕ α ϕ ϕ χ λ
=

= + − = = − − −∏ɶ ɶ ɶ

 

1 1 0 0 2 2 5
( ) ( ( )){ ( ( ))}{ ( ( ))}[ ( ) ( )(1 ( ))]S z B z r r B z q pV z M b X z M b zτ τ ϕ λ λ= + + + − −ɶ ɶ ɶ ɶ ɶ

 

(1) (1) (1) (1) (1) (1) (1)

1 1 1 1 1 2 1 0 2 2 2 1 2 2 3
1 1

[ ( ( )) ( ( )) ( ) ]
m m

j j
j j

r d b b b g r b b b g pE V bλ β α γ β α γ
= =

= + + + + + +∑ ∑  

(1) (1) (1) (1) (1) (1) (1)

2 1 1 1 1 2 1 0 2 2 2 1 2 2 3
1 1

[ ( ( ) ( ) ) ( ( ) ( ) ) ( ) ( )]
m m

j j
j j

r d b b b b g r b b b b g b b pE Vλ β α γ β α γ
= =

= − + − + − + − + −∑ ∑  

 
Lemma1: The necessary and sufficient stability condition for the system is given by inequality 

(1)

1
(1 ( )) 1r d M bλ+ − <ɶ  (26) 

Proof: By following the Foster’s criterion on the mean drift in irreducible and periodic Markov chain { , }
n

X n Z+∈  

(cf. Singh et al., (2016)), we can establish the required result of  stability condition as given in equation (26). 
 
Theorem 1: Under the stability condition, the partial PGF of  joint probability distributions of  the server state and 
orbit size are given by 



42 
Singh and Kaur: Unreliable Server Retrial Queue with Optional Service and Multi-phase Repair 

IJOR Vol. 14, No. 2, 35−51 (2017) 

 

 

 

1813-713X Copyright © 2017 ORSTW 

 

 

1

1 1 1 0 0 2 2 5 2
( , ) [ (1 ( )) exp{ } [ ( ( )) { ( ( ))} { ( ( ))} ( )]] [ ]A x z b M x bx z B z r r B z q pV z X zλ ε λ τ τ ϕ ε −= − − − + +ɶ ɶ ɶ

 

(27) 

1 1

1 1 1 1 2
( , ) [ ( ) ( )[1 ( )]exp{ ( ) }][ ]P x z zb z M b B x z xε ϕ λ τ ε −= − −ɶ                  (28) 

2 1

0 1 1 1 1 2 2 2
( , ) [ ( ) ( ) ( ( ))[1 ( )]exp{ ( ) }][ ]P x z r zb z M b B z B x z xε ϕ λ τ τ ε −= − −ɶ ɶ  (29) 

1

1 1 1 1 0 0 2 2 5 2
( , ) [ ( ) ( ) ( ( ))[ ( ( ))](1 ( ))exp{ ( ) }][ ]V y z zpb z M b B z r r B z V y z yε ϕ λ τ τ ϕ ε −= + − −ɶ ɶ ɶ      (30) 

1 1

1 1 1 1 1 1 3 2
( , , ) [ ( ) ( )[1 ( )]exp{ ( ) }[1 ( )]exp{ ( ) }][ ]D x y z zb z M b B x z x D y z yα ε ϕ λ τ ϕ ε −= − − − −ɶ       (31) 

2 1

2 0 1 1 1 1 2 2 2 3 2
( , , ) [ ( ) ( ) ( ( ))[1 ( )]exp{ ( ) }[1 ( )]exp{ ( ) }][ ]D x y z r zb z M b B z B x z x D y z yα ε ϕ λ τ τ ϕ ε −= − − − −ɶ ɶ   (32) 

1 1

1 1 1 1 1 1 1 3 1,1 4 2
( , , ) [ ( ) ( )[1 ( )]exp{ ( ) } ( ( ))[1 ( )]exp{ ( ) }][ ]R x y z zb z M b B x z x D z G y z yα ε ϕ λ τ ϕ ϕ ε −= − − − −ɶ ɶ  (33) 

2

1 2 0 1 1 1 1 2 2 2 3 2,1

1

4 2

( , , ) [ ( ) ( ) ( ( ))[1 ( )]exp{ ( ) } ( ( ))[1 ( )]

exp{ ( ) }][ ]

R x y z r zb z M b B z B x z x D z G y

z y

α ε ϕ λ τ τ ϕ

ϕ ε −

= − − −

× −

ɶ ɶ ɶ

 (34) 

1

1 1 1 1 1 1, 4 1 3

1
1

1, 4 2
1

( , , ) [ ( ) ( )[1 ( )]exp( ( ) )[1 ( )]exp( ( ) ) ( ( ))

( ( ))][ ] ; 2

l l

l

j
j

R x y z zb z M b B x z x G y z y D z

G z l m

α ε ϕ λ τ ϕ ϕ

ϕ ε
−

−

=

= − − − −

× ≤ ≤∏

ɶ ɶ

ɶ
 (35) 

 

2

2 0 1 1 1 1 2 2 2,

1
1

4 2 3 2, 4 2
1

( , , ) [ ( ) ( ) ( ( ))[1 ( )]exp( ( ) ) [1 ( )]

exp( ( ) ) ( ( )) ( ( ))] [ ] , 2

l l

l

j
j

R x y z r zb z M b B z B x z x G y

z y D z G z l m

α ε ϕ λ τ τ

ϕ ϕ ϕ ε
−

−

=

= − − −

× − ≤ ≤∏

ɶ ɶ

ɶ ɶ
 (36) 

where (1)

1 1 2 1 1 2
[1 (1 ( ))]; [ (1 ) ( ) ] ( )r d M b b b r M b r S zε λ ε χ λ= − − − = + + − +ɶ ɶ  

Proof: By using (25) in equation (24), we get the equation (27). For detailed proof  see (cf. Singh et al. (2016)).  
Theorem 2: Under the stability condition, the marginal PGF of  the system states are 

1

1 1 1 0 0 2 2 5 2
( ) [ (1 ( ))[ ( ( )){ ( ( ))}{ ( ( ))} ( )]][ ]A z M b z B z r r B z q pV z X zε λ τ τ ϕ ε −= − − + +ɶ ɶ ɶ ɶ

 

(37) 

1 1

1 1 1 1 2 1
( ) [ ( ) ( )[1 ( ( ))]][ ( )]P z zb z M b B z zε ϕ λ τ ε τ −= −ɶ ɶ

 

(38) 

2 1

0 1 1 1 1 2 2 2 2
( ) [ ( ) ( ) ( ( ))[1 ( ( ))]][ ( )]P z r zb z M b B z B z zε ϕ λ τ τ ε τ −= −ɶ ɶ ɶ

 

(39) 

1

1 1 1 1 0 0 2 2 5 2 5
( ) [ ( ) ( ) ( ( ))[ ( ( ))](1 ( ( )))][ ( )]V z zpb z M b B z r r B z V z zε ϕ λ τ τ ϕ ε ϕ −= + −ɶ ɶ ɶ ɶ

 

(40) 

1 1

1 1 1 1 1 1 3 2 1 3
( ) [ ( ) ( )[1 ( ( ))][1 ( ( ))]][ ( ) ( )]D z zb z M b B z D z z zα ε ϕ λ τ ϕ ε τ ϕ −= − −ɶ ɶ ɶ   (41) 

2 1

2 0 1 1 1 1 2 2 2 3 2 2 3
( ) [ ( ) ( ) ( ( ))[1 ( ( ))][1 ( ( ))]][ ( ) ( )]D z r zb z M b B z B z D z z zα ε ϕ λ τ τ ϕ ε τ ϕ −= − −ɶ ɶ ɶ ɶ

 

(42) 

1 1

1 1 1 1 1 1 1 3 1,1 4 2 1 4
( ) [ ( ) ( )[1 ( ( ))] ( ( ))[1 ( ( ))]][ ( ) ( )]R z zb z M b B z D z G z z zα ε ϕ λ τ ϕ ϕ ε τ ϕ −= − −ɶ ɶ ɶ ɶ

 

(43) 

2 1

1 2 0 1 1 1 1 2 2 2 3 2,1 4 2 2 4
( ) [ ( ) ( ) ( ( ))[1 ( ( ))] ( ( ))[1 ( ( ))]][ ( ) ( )]R z r zb z M b B z B z D z G z z zα ε ϕ λ τ τ ϕ ϕ ε τ ϕ −= − −ɶ ɶ ɶ ɶ ɶ

 

(44) 

1

1 1 1 1 1 1, 4 1 3

1
1

1, 4 2 1 4
1

( ) [ ( ) ( )[1 ( ( ))][1 ( ( ))] ( ( ))

( ( ))][ ( ) ( )] ; 2

l l

l

j
j

R z zb z M b B z G z D z

G z z z l m

α ε ϕ λ τ ϕ ϕ

ϕ ε τ ϕ
−

−

=

= − −

× ≤ ≤∏

ɶ ɶ ɶ ɶ

ɶ
  (45) 

2

2 0 1 1 1 1 2 2 2, 4 2 3

1
1

2, 4 2 2 4
1

( ) [ ( ) ( ) ( ( ))[1 ( ( ))][ 1 ( ( ))] ( ( ))

( ( ))][ ( ) ( )] ;2

l l

l

j
j

R z r zb z M b B z B z G z D z

G z z z l m

α ε ϕ λ τ τ ϕ ϕ

ϕ ε τ ϕ
−

−

=

= − −

× ≤ ≤∏

ɶ ɶ ɶ ɶ ɶ

ɶ
 (46) 

Proof: Taking integration of  equations (27)-(36) with respect to appropriate variable and using the result

1

0
(1 ( )) [1 ( )][ ]sue M u du M s s

∞
− −− = −∫ ɶ , we get the required results.

 
Further, the effective arrival rates ( )

e
λ of  the units in different server’s status, are obtained by putting 1z =  in 

equations (37)-(46) and using 

 
we get

2 2 2
0

0 1 2 3
1 1 1 1

(1) (1) (1) (1) (1),
m

i i i

e l
i i l i

P b P A b D b R bVλ λ λ λ λ λ
= = = =

           = + + + + +               
∑ ∑ ∑ ∑
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1

1 1 2
[ ( ))][ (1 ) ( ) ]

e
bM b b b r M b rλ λ λ χ λ −= + + − +ɶ ɶ  (47) 

Also (1) (1) (1) (1) (1) (1) (1)

1 1 1 1 0 2 2 2 2
1 1

, [ (1 ( )) (1 ( )) ( )].
m m

e j j
j j

d g r g pE Vρ λ β α γ β α γ
= =

= + + + + + +∑ ∑   (48) 

Theorem 3: Under the stability condition, at the departure epoch PGF of  the stationary queue size is 

 
(1) 1

1 1 1 0 0 2 2 5
( ) [ [1 ( )] ( ( )){ ( ( ))}{ ( ( ))}][ ( )]z X z B z r r B z q pV z d S zω ε τ τ ϕ −= − + +ɶ ɶ ɶ

  

(49)

 Proof: The probability ( )
j

w with j units in the queue at departure epoch with normalizing constant
0

( )K is 

considered and queue size distribution at the departure epoch is obtained as follows: (cf. Wolf  (1982)) 

1 2

0 0 1 1 2 1 1

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
j j j j

w K r x P x dx x P x dx v yV y dyµ µ

∞ ∞ ∞

+ + +

 
 = + + 
  
∫ ∫ ∫

 

(50) 

By using
0

( ) ,j
j

j

z w zω
∞

=

= ∑ equation (50) yields  

1

0 1 1 1 1 0 0 2 2 5 2
( ) [ ( ) ( )) ( ( )){ ( ( ))}{ ( ( ))}][ ]z K b z M b B z r r B z q pV zω ε ϕ λ τ τ ϕ ε −= + +ɶ ɶ ɶ ɶ

 

(51)

 The normalizing condition (1) 1ω =  gives  

(1) 1

0 1 1 2
[ (1 ) ( ) ][ ( )]K b b r M b r d bM bχ λ λ λ −= + + − + ɶ ɶ

 

(52) 

Using equations (51)-(52), we obtain the required result as given in equation (49).   
Theorem 4: The PGF of  stationary queue size in the system and orbit at arbitrary epoch are given as 

( )
( )

1 6 5 1 2 0 1 1 3

1 1

4 0 1 1 5 6 1 5 5 2

( ) [ ( ) (1 ( ))[ { ( ( ))} ( )] ( ) ( ) ( ( ))

( ) ( ( )) ( ) ( )(1 ( ( ))[ ( )] ][ ]

P z bS z M b z q pV z X z zb z M b r B z

S z r B z zbp z M b V z z

ε λ χ ϕ ϕ λ χ τ χ

χ τ χ χ ϕ λ ϕ ϕ ε− −

= + − − + + +

+ + + −

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
  (53) 

( )
( )

1 6 5 1 2 0 1 1 3

1 1

4 0 1 1 5 6 1 5 5 6 5 2

( ) [ ( ) (1 ( ))[ { ( ( ))} ( )] ( ) ( ) ( ( ))

( ) ( ( )) [ ( ) ( )(1 ( ( ))][ ( )] ][ { ( ( ))} ]

O z bS z M b z q pV z X z zb z M b r B z

S z r B z zbp z M b V z z q pV z

ε λ χ ϕ ϕ λ χ τ χ

χ τ χ χ ϕ λ ϕ ϕ χ ϕ ε− −

= + − − + + +

+ + + − +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
  (54) 

with

 

1 1 1 1

2 1 1 1 1 1 3 2 1 1 2 2 4 1 1 4
(1 ( ( )))[ ( )] {1 (1 ( ( )))( )( ) ; (1 ( ( )))( ( )) ;B z z D z b b b b bb B z zχ τ τ α ϕ χ τ ϕ− − − −= − + − − − = −ɶ ɶ ɶ

1 1 1 1

3 2 2 2 2 2 3 2 1 1 2 2 5 2 2 4
(1 ( ( )))( ( )) {1 (1 ( ( )))( )( ) }; (1 ( ( )))( ( )) ;B z z D z b b b b bb B z zχ τ τ α ϕ χ τ ϕ− − − −= − + − − − = −ɶ ɶ ɶ

6 1 1 0 0 2 2
( ( )){ ( ( ))B z r r B zχ τ τ= +ɶ ɶ .

 

Proof: Using the relations  
2 2 2

0

0
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( );
m

i i i

l
i i i l

P z P A z P z V z D z R z
= = = =

= + + + + +∑ ∑ ∑∑
 

1 1 0 0 2 2 5
( ) ( ) ( ( )){ ( ( ))}{ ( ( ))}P z O z B z r r B z q pV zτ τ ϕ= + +ɶ ɶ ɶ

 
We get the required results given in equations (53) - (54).

 

 
 

5. PERFORMANCE MEASURES 
 
The main objective of  studying the queueing system is to derive the performance measures which can be interpreted 
in terms of  its queue length distribution. 

 
 

5.1 Queueing Indices 
 

The server’s states in the system are considered on the basis of  different time periods; namely idle period I (N ) as 
the length of  time per cycle when the server is idle when no unit (only retrial unit) present in the system. The length 
of  time per cycle when the server is busy in rendering essential service (optional service) is defined as busy period 

(
i

B ). The time duration for which the server is waiting for the repair (under repair) when broken down during 

essential service (optional service) is considered as 
i

D (
i

R ), respectively. The duration for which the server is under 

vacation is defined as vacation period (V ). 
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The expected length of  cycle is given by ( ) ( ) ( )E C E I E H= +  (55)
 

where  
(1) 1( ) [ ]

e
E I dλ −=

 

(56) 

2

1

( ) [ ( ) ( ) ( )] ( )
i i i

i

E H E B E D E R E V
=

= + + +∑  
(57) 

 
 
5.1.1 Long Run Probabilities 
To evaluate the queue length and other metrics of  the system, the probabilities of  the system at different server 
states are important characteristics. The long run probabilities for different server states of  the system are obtained 
as    

(1) 1 1

1
( ) [ ( )(1 ) [ 1][1 ( )]][ ( )] ( )[ ( )]

e
P I bM b r d M b bM b E I E Cλ λ ρ λ λ λ λ − −= − − + − − =ɶ ɶ ɶ  (58) 

(1) (1) 1

1 1 1
( ) ( )[ ( )]

e
P B d E B E Cλ β −= =

 

(59) 

(1) (1) 1

2 0 2 2
( ) ( )[ ( )]

e
P B r d E B E Cλ β −= =  (60) 

(1) (1) (1) 1

1 1 1 1 1
( ) ( )[ ( )]

e
P D d E D E Cα λ γ β −= =  (61) 

(1) (1) (1) 1

2 2 0 2 2 2
( ) ( )[ ( )]

e
P D r d E D E Cα λ γ β −= =  (62) 

1 (1) (1) (1) 1

1 1 1 1
( ) ( )[ ( )]

l e l
P R d g E R E Cα λ β −= =  (63) 

2 (1) (1) (1) 1

2 0 2 2 2
( ) ( )[ ( )]

l e l
P R r d g E R E Cα λ β −= =

 

(64) 

(1)( ) ( )
e

P V p d E Vλ=  (65) 

(1) 1

1
( ) [ [ 1][1 ( )]][ ( )]

e
P N r d M b bM bλ λ λ λ −= + − − ɶ ɶ  (66) 

where 

1 2

1 2
1 1

( ) ( ); ( ) ( );
m m

l l
l l

P R P R P R P R
= =

= =∑ ∑  

1 (1) (1) 1

1
[ ( )] [ { ( )(1 ) [ 1][1 ( )]}][ ( )]

e e
E C d bM b r d M b bM bλ λ λ ρ λ λ λ λ− −= − − + − −ɶ ɶ ɶ  (67) 

Proof: The long run probabilities can be obtained using
1

( ) lim ( )i

i
z

P B P z
→

= ,
1

( ) lim ( )i

i
z

P D D z
→

= , 

1
( ) lim ( )

l l

i i

z
P R R z

→
= ; 1,2, 1i l m= ≤ ≤  

On putting 1z = in equations (37)-(46) and using the equation (47) we get the equations (59)-(66) and 
2

1 1

( ) 1 [ ( ) ( ) ( )] ( ) ( ) .
l

m
i

i i
i l

P I P B P D P R P V P N
= =

 
 = − + + + + 
 
∑ ∑  (68)

 
 
 
5.1.2 Mean Queue Length at Departure Epoch 

The mean queue length at departure epoch (
D

L ) is determined by using  

 
(2)

1 (1) (1)

1 1

( ) (1)

2 2(1 (1 ( )))
D

z

d z Sd
L r

dz d r d M b

ω

λ=

  ′′ = = + +   − − −  ɶ
 (69)

 

where  

(2) (1) (1) (1) 2 (1) (1) (1) 2

0 1 2 1 2 0 2 2 0 2 2

(1) (1) 2 (1) (1) (1) 2 (2)

0 3 2 2 1 1 1 1 3

(1) (1) 2

3 1 1

(1) [ (1 ( )) 2 ( ) (1) 2 ( ) (1 ( ))

2 ( ) ( ) (1) 2 ( ) (1 ( )) ( ) {

2 ( ) ( ) 2(

S d M b r d r r d M b

r pE V b d d M b pE V b d

pE V b d d

λ β β λ ψ ψ β τ β λ ψ λ

β λ ψ β τ β λ ψ λ λ

β λ ψ

′′ ′′= − + − + −

′′+ − + − +

+ +

ɶ ɶ

ɶ

(1) 2 2 (1) 2

3

(2) (1) 2 (2) (1) 2

0 2 2 1 1

) (1 ( ))} ( )( )

{ } { } ]

M b pE V b d

r d d

λ λ

β ψ λ β ψ λ

− +

+ × +

ɶ

(1) (1) (1) (1)

1 1 1 1 2 1 2 2 1 2 2 2
1 1

( ( )); ( ( ))
m m

j j
j j

b b b g b b b gψ α γ ψ α γ
= =

= + + = + +∑ ∑
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1
(2) (1) 2 (1) (1) (1) 2 (1) (1)

1 2 2
1 2 1

(2) (1) (1) 2 (2) (2) (1) (1) 2 (2)

1 1 2 2
1

(1) { (2 ( ) ( ) 2( ) ( )

[ ) ( ) ] [ ) ( ) ])}; 1,2.

m m l

i i i ij ij il
j l j

m

i i ij ij
j

bd b b d g b d g g

b d b d b d g b d g i

τ λ α λ γ λ

λ γ λ γ λ λ

−

= = =

=

′′ = − + +

+ + + + =

∑ ∑∑

∑  

 
 
5.1.3 Mean Queue Length at Arbitrary Epoch 

The mean queue length at arbitrary epoch (
q

L ) is determined as

 

1

( )
q

z

dP z
L

dz
=

  =   
 

1 (1) (1) 2 1

1 1 1 2 1 3 1 1

(1) 1 (1) (1) 1 1 (1) (1)

4 1 1 0 2 2 2 1 1 0 2 2

(1) (2) (1)

1

[ (1 ) ( ) ] [(1 ( ))( (1 ( )) 1) (1 ) (1)[2 ] ]

( ){ [ ] (( )(1 ) ( ))

([1 (1 ( ))][ 2 ]

b b r M b r M b r d M b r d S

bM b d r bb b r

r d M b d d

ε χ λ λ λ ψ ε

λ λ ψ ε β β β ψ β ψ

λ λ λ

− −

− − −

′′= + + − + − + − − − − −

+ + + − + + ×

− − − + +

ɶ ɶ ɶ

ɶ

ɶ (1) 2 1

1

1 (1) (1) 2 1

3 1 5 3 1

(1)[2 ] )}

( ) {[1 (1 ( ))] ( ) (1)}[2 ] } (70)

d S

b pM b b r d M b b E V d S

λ ε

λ λ ψ λ ε

−

− −

′′

′′+ − − − +ɶ ɶ

where 

{ }( )(2) (1) (1) 2 (1) (1) 2 (1) 2

3 0 2 2 1 1 3
(1) ( ) ) 2 ( ) 2 ( ) 2 ( ) ( )S M b d r d d pE V b dψ λ β λ ψ β λ ψ λ′′= − + + + +ɶ

(1) (1) (1) 1 1 (2) (1)

4 1 1 1 1 2 1 1 2 2 2 1 1

(1) (1) (1) 1 1 (2) (1) (1) (1) (1)

0 2 2 1 2 2 1 1 2 2 2 2 2 1 2 1

(1) (2) (1) 2 (1) 2

2 1 1 1 1

( )[ ] ( )(2 )

2 [ ( )][ ] ( )(2 ) { 2 }

[ { ( ) (1)}

b d b b b b b b b d

r b d b b b b b b b d d

b d d

ψ β α λ γ β λ ψ

β α λ γ β λ ψ β β λ ψ

λ β λ ψ β τ λ

− −

− −

= − − + −

 + − − + − +  
′′+ − − (1) (1) (2) (1) 2 1

2 1 1 2

(1) (2) (1) 2 (1) 2 (1) (1) (2) (1) 2 1

0 2 2 2 2 2 2 2 2 2

(1) (1) (1) 2 (1) 1

1 2 1 2 2

( ) ][2( ) ]

[[ { ( ) (1)} ][2( ) ]

[ ( ) ][ ] ]

b d E X b d

r b d d b d d b d

d b d

β ψ λ

λ β λ ψ β τ λ β ψ λ

β β λ ψ ψ λ

−

−

−

′′+ − −

+

(1) (1) 2 (1) (1) 2 (1) 2 (2)

5 3 3 1 1 0 2 2 3 3
[2 ( ) 2 ( )( ) ( ) ( )( ) ( ) ]b d E V b E V d r E V b d E V b dψ λ λ β ψ β ψ λ λ= − + + + +

 
 
 
5.1.4 Mean Waiting Time at Departure Epoch 

The mean waiting time of  the units in the queue ( )
q

W at departure epoch is obtained using Little’s formula and 

given by 
(1) 1[ ]

q q e
W L dλ −=

 

(71)

   
 
5.1.5 Mean Queue Length of  Orbit at Arbitrary Epoch 

The mean queue length of  orbit at arbitrary epoch (
0

L ) is  

(1) 1

0 1 1 1 2

1

( )
[ [ 1][1 ( )]] ( )[ ] )

q

z

dO z
L L r b r d M b S z

dz
ε λ ε ρ−

=

  = = − + + − − +   
ɶ

 

(72)

 
 
 
5.2 Reliability Indices 
 
The efficiency of  the unreliable server system can be predicted in terms of  the reliability indices. During the design 
and development stage of  the system, these indices can play important role. Under the steady state conditions, we 
get the following reliability indices: 
 
The availability of  the server which gives the probability of  the server being available in the system is  
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2 2
0 0

0 0 10
1 1

(1) (1) (1) (1) (1) (1) (1) (1)

1 1 1 1 1 0 2 2 2 2
1 1

1

2

( ,1) lim[ ( )]

1 [[1 ( )][ 1] ( ) [ ( ) ( )

( )]] ( )[ ]

i i

v z
i i

m m

j j
j j

A P P x dx P P z

M b r d bM b d g r g

pE V S z

λ λ λ β α γ β α γ

ε

∞

→
= =

= =

−

= + = +

= − − + − + + + +

+

∑ ∑∫

∑ ∑ɶ ɶ

 (73)

 

The steady state failure frequency which measure the rate of  failure of  the server is  

1 2 1 2 (1) (1) (1)

1 2 1 2 1 1 0 2 21
0 0

( ,1) ( ,1) lim[ ( ) ( )] [ ].
f ez

F P x P x P z P z d rα α α α λ α β α β

∞ ∞

→
= + = + = +∫ ∫  

 
 

5.3 Cost Analysis 
 

To find the decision variables corresponding to optimum cost of  the system, we construct the cost function in terms 

of  cost elements associated with different activities such as holding cost (
h

C ) per unit time for each unit present in 

the system, start up cost (
S

C ) per unit time, (
i

B
C ) cost per unit time when the server is busy with essential/optional 

service, delayed repair cost (
i

D
C ) per unit time when the server is broken down during essential/optional service, 

repair cost (
i

R
C ) per unit time incurred on the server failed during essential/optional service, (

v
C ) cost per unit time 

incurred on the vacationing server. 

The total expected cost function per unit time ( )TC is 

1 1

2
1

1

[ ( )] { ( ) ( ) ( )} ( )
i

h q S B i D i R i v
i

TC C L E C C C E B C E D C E R C E V−

=

 
 = + + + + + 
 

∑
 

(74) 

 
 

6. SPECIAL CASES 
 

In this section, we discuss some special cases of  our model which are deduced by setting the appropriate parameters 

and results match with the existing models.  

Case (i): / / 1XM G  unreliable retrial queue with uniform arrival, no delayed repair, single phase repair, 

optional service, vacation.  

By setting
1 2 3

1b b b b= = = = , 1m =  and 
3
( ( )) 1

i
D zϕ =ɶ in equations (49) and (53), we have 

(1) (1) 1

1 1 0 0 2 2
( ) [[1 (1 ( ))][1 ( )] ( ( )){ ( ( ))}{ ( ( ))}][ ( )]z d M X z B z r r B z q pV z d S zω ρ λ τ τ ϕ −= − − − − + +ɶ ɶ ɶ ɶ  (75) 

(1) 1

1 1 0 0 2 2
( ) [[1 (1 ( ))](1 ) ( ( )){ ( ( ))}{ ( ( ))}][ ( )] ;P z d M z B z r r B z q pV z S zρ λ τ τ ϕ −= − − − − + +ɶ ɶ ɶ ɶ  (76) 

( ) (1 ( ))z X zϕ λ= − ,
,1 4

( ) ( ) (1 ( ( ))); 1,2
i i i
z z G z iτ ϕ α ϕ= + − =ɶ  

The results obtained above are same as formulated recently in Singh et al. (2016). 

Case (ii): / / 1M G  unreliable retrial queue with uniform arrival, delayed repair, single phase repair,   

vacation, no optional service. 

By setting ( 1) 1P X = = ,
1 2 3

1,b b b b= = = =
0
0,r = 1=m , the equation (49) yields 

1 1 1 1

1

1 1

( ) (1 )(1 ) ( ( )){ ( (1 ))}[ ( )(1 ) ( ( ){ ( (1 ))}

[1 { ( (1 ))} ( ( )]] ;

z z B z q pV z M z B z q pV z

z q pV z B z

ω ρ τ λ λ τ λ

λ τ −

= − − + − − + −

− − + −

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ

 

(77) 

1 1 1 1,1
( ) (1 ) (1 ( (1 )) ( (1 )))z z D z G zτ λ α λ λ= − + − − −ɶ ɶ  

This result coincides with the model of  Choudhury and Ke (2014). 

Case (iii): / / 1M G  unreliable queue uniform arrival, delayed repair, single phase repair, optional service, 

no retrial unit, no vacation. 
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By setting ( 1) 1P X = = ,
1 2 3

1,b b b b= = = = 1, 0m p= = , ( ) 1M bλ =ɶ  equation (49), coverts to 

1

1 1 0 0 2 2 1 1 0 0 2 2
( ) [(1 )(1 ) ( ( )){ ( ( ))}][( ( ( )){ ( ( ))} )] ;z z B z r r B z B z r r B z zω ρ τ τ τ τ −= − − + + −ɶ ɶ ɶ ɶ

 

(78) 

,1
( ) (1 ) (1 ( (1 )) ( (1 ))); 1,2.

i i i i
z z D z G z iτ λ α λ λ= − + − − − =ɶ ɶ  

The result obtained tallies with the result of  Choudhury and Tadj (2009). 

Case (iv): / / 1M G  model with reliable server, uniform arrival, optional service, no retrial, no vacation. 

By setting ( 1) 1P X = = ,
1 2

0α α= = ,
1 2 3 3

1, ( ( )) 1, 0,
i

b b b b D z pϕ= = = = = =ɶ ( ) 1M bλ =ɶ  in equation (49), 

we get 
1

1 1
( ) [(1 )(1 ) ( (1 )){ ( (1 ))}][( ( (1 )){ ( (1 ))} )]z z B z q pV z B z q pV z zω ρ λ λ λ λ −= − − − + − − + − −ɶ ɶ ɶ ɶ

 

(79) 

In this case, the result coincides with Medhi (2002). 

Case (v): / / 1XM G  model with reliable server, uniform arrival, no optional service, no retrial, single 

vacation 

By setting
1 2

0α α= = ,
1 2 3

1,b b b b= = = =
3
( ( )) 1

i
D zϕ =ɶ , ( ) 1M bλ =ɶ  equation (49) gives 

1

1 0 0 2 1 0 0 2
( ) [(1 )(1 ) ( (1 )){ ( (1 ))}][( ( (1 )){ ( (1 ))} )]z z B z r r B z B z r r B z zω ρ λ λ λ λ −= − − − + − − + − −ɶ ɶ ɶ ɶ

 

(80) 

The same result was obtained in Choudhury and Madan (2006). 
 
 

7. NUMERICAL ILLUSTRATION 
 

For computation of  numerical results in the congestion situation of  industrial scenario encountered in 
manufacturing of  electric appliances, an illustration which also validates the analytical results of  the system is 
considered with different statistical distributions as follows:  
(i) The flow of  input as demand for specific product is in the batches and the batch size follows the geometrical 

distribution with first two moments d e e −= −(1) 1(1 ) and d d d e e e −= + = + −(1) (2) 2

(2)
(1 )(1 ) ,  respectively.

 

 

(ii) The both stages (essential/optional) of  the service to fulfill the demand of  the product with basic and luxury 
needs are considered to be k − Erlangian, so that the first two moments are 

i i i i
k k iβ µ β µ− −= = + =(1) 1 (2) 2[ ] , ( 1)[ ]; 1,2.

 (iii) On breakdown of  the server, the delayed time to start the repair of  failed server is assumed to follow the 

exponential distribution with parameters 
i
iγ =( 1,2).

 
The first two moments of  delayed time distribution are 

i i i i
γ γ γ γ− −= =(1) 1 (2) 2[ ] , 2[ ].  For the computation purpose, we set the parameter 

i ij
gγ =(1) (1) / 2 , i = 1,2 ; 

j m= 1,2,..., .
 

(iv) During repair period, the repair time of  failed server follows the gamma distribution with parameter
ij

g and first 

two moments are considered as
ij ij ij ij

g g g g i j m−= = = =(1) (2) 22[ ], 6[ ]; 1,2; 1,2,..., . We set the parameter 
ij

g  

as
ij i

g β=(1) (1) / 3 , i j m= =1,2; 1,2,..., .
 

(v) It is also proposed that, to perform some useful internal modification and other essential changes for efficient 
service, the vacation time of the server assumed to follow the exponential distribution with parameterv . The first 

and second moments of the vacation time distribution are taken as E V v E V v− −= =1 2 2( ) [ ] , ( ) 2[ ].  

(vi) Due to retrial process of the service system, the customers may retry to get the service after some random time 
period. The distribution of retrial time is considered as exponential  distribution with parameter θ , so 

M b bλ θ θ λ −= + 1( ) [ ] .ɶ  

The interpretation of  the numerical results carried out for different performance measures are shown in the form of  
tables 1-5 and graphs 1-4. To compute the numerical results, the default parameters are considered as follows: 

E X m k r v

b b b b

µ µ µ µ λ α α α α= = = = = = = = = = = =

= = = =
1 2 1 2 0

1 2 3

( ) 2, , 5, 2 , 3, 2, 1.55, 0.1, 2 , 0.6, 20,

0.6, 0.3, 0.4, 0.5.
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7.1 Effects on Mean Queue Length 
 
The queue length of  the products demanded is affected by various parameters of  the system namely service rate of  
the server, input flow of  the demands, failure rate of  the server and retrial rate of  the customers, etc. The server 
provides the service only one unit at a time and other arrivals decides to either join the system after random period 
of  time to get the service or not join the system. The effects of  different parameters are presented in the tables 1-2. 

These tables exhibit the effects of  arrival rate ( )λ  and service rates ( )µ  respectively, for the fixed values of  other 

parameters on the queue length ( ).
q

L
 

It is observed that 
q

L
 

increases with the growth of  λ  and α , but it in 

reverse trend with increase in µ  for the fixed values of  vacation probabilities or retrial time of  the units. It is also 

seen that 
q

L  increases (decreases) with increasing trend of  ( ).p θ  

 
 
7.2 Effects on Reliability Indices 
 

The analytical results of  availability measure ( )
v

A  and failure frequency ( )
f

F
 

are computed in order to study the 

effects of  parameters and validate the results obtained for the queueing system with unreliable server in table 3. The 

effect of  probability ( 0r ) to opt optional service on availability measure ( )
v

A  and failure frequency ( )
f

F  is 

presented in the table. It also displays that 
v

A
 

decreases and 
f

F  increases with the growth of  α  and θ .  

 
 
7.3 Optimal Cost 
 
To obtain optimal values of  discrete parameters and corresponding cost parameters, the heuristic search method 
based on discrete allocation scheme is applied to find the optimal values of  discrete system parameters and 
corresponding cost parameters. The MATLAB software is used to find the optimal values numerically. The total cost 
of  the system depends on the cost incurred on different activities of  the system. In order to explore the effects of  

different parameters on optimal cost, the default values of  different costs elements are taken as 
h

C = $10/day, 

s
C = $500/day, 

i
b

C = $50/unit, 
i

d
C = $20/day,

i
r

C = $30/unit, 
V

C = $40/day and total cost are displayed in 

tables 4-5.
 

 
The effect of  µ  on total cost (TC) with the variation in p

 
and θ  are shown in table 4. From table, we 

observe that the total cost initially decreases with the growth in µ  which shows the convexity of  the cost function. 

It is also noticed that the total cost decreases with the increase in θ  for different values of  p . Further for fixed 

values of  µ , total cost decreases (increases) with the increase in retrial rate θ p( )  but after certain values of  µ,

this trend reveals a reverse pattern. Further from the table, it is also observed that for fixed values of  p,  total cost 

decreases with the increase values of  θ.  Table 5 shows the change in the cost for the varying the values of  failure 
rates α of  the server for different values of  p  and θ.  

The effects of  θ  and r
0

 on 
q

L  for different service phases (k ) are seen in figures 1-2. From these figures, 

it is clear that 
q

L  decreases (increases) with the growth of  the values of  θ ( 0r ) for fixed values of  some 

parameters. The effects of  different parameters on total cost are presented in figures 3-4. From these figures, the 

optimal values for λ θ( *, *) and pµ( *, *) are obtained as (1.2, 3.0) and (5.0, 0.9), respectively with their optimal total 

costs $260.93 and $268.07 for fixed values of  other parameters. 
 

Table 1: 
q

L for different values of  parameters ( pλ θ, , ) 

λ  

p = 0.3  p = 0.7  

θ = 3.5  θ = 3.6  θ = 3.7  θ = 3.5  θ = 3.6  θ = 3.7  

1.40 15.23 14.33 13.55 19.14 17.78 16.64 

1.45 19.04 17.67 16.51 25.53 23.19 21.30 

1.50 25.05 22.74 20.89 37.58 32.76 29.15 
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1.55 35.97 31.43 28.02 69.01 54.39 45.18 

1.60 62.07 49.76 41.78 359.39 150.27 96.31 
 

Table 2: 
q

L for different values of  parameters ( pµ θ, , ) 

µ  

p = 0.3  p = 0.7  

θ = 3.5  θ = 3.6  θ = 3.7  θ = 3.5  θ = 3.6  θ = 3.7  

4.75 60.68 49.05 41.41 279.09 135.48 90.61 

5.00 35.97 31.43 28.02 69.01 54.39 45.18 

5.25 26.06 23.53 21.52 40.57 34.92 30.79 

5.50 20.71 19.04 17.67 29.28 26.16 23.71 

5.75 17.36 16.14 15.12 23.22 21.17 19.51 
 

Table 3: Effects of  parameters α θ, and r
0

 on 
v

A and 
f

F  

  r =
0
0.5  r =

0
0.9  

α  

θ = 3.5  θ = 3.7  θ = 3.5  θ = 3.7  

v
A  f

F  
v

A  f
F  

v
A  f

F  
v

A  f
F  

0.1 0.6810 0.0433 0.6940 0.0436 0.6786 0.0534 0.6917 0.0537 

0.2 0.6735 0.0862 0.6864 0.0867 0.6701 0.1062 0.6831 0.1068 

0.3 0.6660 0.1286 0.6789 0.1294 0.6617 0.1583 0.6747 0.1592 

0.4 0.6586 0.1706 0.6714 0.1716 0.6534 0.2097 0.6663 0.2110 

0.5 0.6513 0.2120 0.6640 0.2133 0.6452 0.2605 0.658 0.2621 
                                

Table 4: Effect of  parameters pµ, and θ on TC 

µ  

p = 0.5  p = 0.7  

θ = 3.5  θ = 3.6  θ = 3.7  θ = 3.5  θ = 3.6  θ = 3.7  

4.25 299.16 290.93 284.69 316.69 304.81 295.71 

4.50 277.42 274.05 271.73 284.89 279.55 275.61 

4.75 270.02 269.26 269.11 272.18 270.15 268.93 

5.00 269.63 270.49 271.72 268.51 268.44 268.88 

5.25 273.02 274.98 277.17 269.62 270.86 272.42 

5.50 278.55 281.32 284.22 273.45 275.62 277.99 

5.75 285.31 288.69 292.14 278.86 281.73 284.71 

6.00 292.75 296.63 300.52 285.20 288.62 292.09 
                                

Table 5: Effect of  parameters pα, and θ on TC 

α  

p = 0.5  p = 0.7  

θ = 3.5  θ = 3.6  θ = 3.5  θ = 3.6  θ = 3.5  θ = 3.6  

0.1 269.63 270.49 271.72 268.51 268.44 268.88 

0.2 268.30 268.71 269.56 268.07 267.48 267.47 

0.3 267.40 267.33 267.77 268.13 266.98 266.49 

0.4 266.97 266.38 266.38 268.74 266.96 265.94 

0.5 267.03 265.88 265.40 269.92 267.46 265.87 

0.6 267.62 265.86 264.86 271.74 268.53 266.31 
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0.7 268.78 266.36 264.79 274.25 270.20 267.29 

0.8 270.57 267.41 265.21 277.53 272.55 268.86 

0.9 273.05 269.06 266.18 281.68 275.64 271.09 
 

     Fig. 1: Effect of  θ on 
q

L                                Fig. 2: Effect of  r
0

on 
q

L                                             
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     Fig. 3: Effects of  λ and θ  on TC                      Fig. 4: Effects of  µ and p  on TC                                 
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8. CONCLUSION 
 

The stochastic modelling of  unreliable retrial queueing system investigated in present study has the provision for the 
waiting of  the units in retrial orbit in order to try again after a random period of  time if  server is busy. The 
incorporation of  the additional optional service with essential service makes the system more versatile and can 
experienced in many congestion situations of  real life activities. The congestion situations encountered at flexible 
manufacturing systems/production system, health care clinics, and many other places and may also attract the units 
to get the service at one place as per their requirements. The present study can be further extended and 
discouragement behaviours are also studied for the multi-server queue, queue with delayed repair under N − policy, 
etc. 
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