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The development of technologies for the treatment of movement disorders, like stroke,

is still of particular interest in brain-computer interface (BCI) research. In this context,

source localization methods (SLMs), that reconstruct the cerebral origin of brain activity

measured outside the head, e.g., via electroencephalography (EEG), can add a valuable

insight into the current state and progress of the treatment. However, in BCIs SLMs

were often solely considered as advanced signal processing methods that are compared

against other methods based on the classification performance alone. Though, this

approach does not guarantee physiological meaningful results. We present an empirical

comparison of three established distributed SLMs with the aim to use one for single-

trial movement prediction. The SLMs wMNE, sLORETA, and dSPM were applied on

data acquired from eight subjects performing voluntary arm movements. Besides the

classification performance as quality measure, a distance metric was used to asses

the physiological plausibility of the methods. For the distance metric, which is usually

measured to the source position of maximum activity, we further propose a variant based

on clusters that is better suited for the single-trial case in which several sources are likely

and the actual maximum is unknown. The two metrics showed different results. The

classification performance revealed no significant differences across subjects, indicating

that all three methods are equally well-suited for single-trial movement prediction. On the

other hand, we obtained significant differences in the distance measure, favoring wMNE

even after correcting the distance with the number of reconstructed clusters. Further,

distance results were inconsistent with the traditional method using the maximum,

indicating that for wMNE the point of maximum source activity often did not coincide with

the nearest activation cluster. In summary, the presented comparison might help users

to select an appropriate SLM and to understand the implications of the selection. The

proposed methodology pays attention to the particular properties of distributed SLMs

and can serve as a framework for further comparisons.
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1. INTRODUCTION

Suffering a stroke nowadays often means lifelong impairments
in daily living. Especially the upper limb recovery rate is not
satisfactory, given that over 60% of the patients still have
dysfunctions 6 month post-stroke (Kwakkel et al., 2003). Further,
the number of yearly new cases of stroke will rise in Europe from
613, 184 in 2015 to 819, 771 in 2035 mostly due to demographic
changes (Stevens et al., 2017). The high importance for the

society to improve recovery is one of the driving forces for the
development of new technologies, like brain-computer interfaces
(BCIs), that allow by means of decoding brain activity to

reconstruct the functional loop between brain, motor and sensor
system (e.g., Muralidharan et al., 2011).

The majority of BCIs (for review see Nicolas-Alonso and
Gomez-Gil, 2012) or more implicit approaches like embedded
brain reading (eBR) (Kirchner and Drechsler, 2013; Kirchner
et al., 2013b, 2014), neuroergonomics (Mehta and Parasuraman,
2013) and passive BCIs (Zander and Kothe, 2011) rely on the
electroencephalogram (EEG) to measure brain activity due to its
non-invasiveness, high temporal resolution and low operational

costs. In the implicit approaches, detailed information must be
extracted from the natural EEG to infer on the intention of
the human (see Kirchner et al., forthcoming for discussion).
Usually, machine learning algorithms are applied to EEG single-

trials to detect, e.g., movement preparation in advance of the
intended movement onset. This knowledge can be integrated in
technically assisted neuro-motor rehabilitation (Kirchner et al.,
2013a). In this way, even in the early therapy after stroke, goal-
directed movements of the affected arm can be trained. Although
there might be too little muscular activity, just the detection
of the intented movement from brain activity can trigger a
robotic device, like an orthosis or exoskeleton, to perform the
movement (Monge-Pereira et al., 2017). To further significantly
induce cortical plasticity, the detection of an intent should occur
on average at least 50ms prior to the subsequent activation
of the external device (Mrachacz-Kersting et al., 2012). Hence,
EEG data needs to be processed within a millisecond range.
Additionally, spatial information about the brain activity in
this context can encode the moving body part. Penfield and
colleagues proposed the first somatotopic map of the human
primary motor cortex (Penfield and Boldrey, 1937; Penfield and
Rasmussen, 1950) obtained from electrical stimulation. Up to
now, this mapping has extensively been studied, also with non-
invasive high resolution neuro-imaging methods, and a lot of
evidence has accumulated that distinct brain regions for the
body parts exist despite an overlap (e.g., Meier et al., 2008; Plow
et al., 2010). Collectively, single-trial decoding to support neuro-
motor rehabilitation has time requirements, and can benefit in
particular from an increased spatial resolution.

From the therapist’s point of view it would be further
beneficial to know what the decoding is based on. For
example, there is evidence that in the early stage after stroke
the ipsilateral hemisphere shows increased activity, and a
“normal” contralateral activity pattern before movement onset
is absent (Yilmaz et al., 2015). During the recovery process the
contralateral pattern may return (Yilmaz et al., 2015). Hence,

monitoring the changes in the decoding strategy (favoring
ipsilateral or contralateral parts of the motor cortex) can
give valuable insights in the progress of recovery. As a more
advanced step the decoding algorithm may be further guided by
therapeutical knowledge to use only specifc regions of the brain.
This can be also an effective appoarch for neurofeedback therapy
(Micoulaud-Franchi et al., 2015). A prerequisite to exploit these
possibilities is a transformation from sensor space to brain space
inside the interface.

Both, a transformation from sensor to brain space and an
increased spatial resolution of the EEG can be achived by
reconstructing its underlying sources. Methods following this
approach are source localization methods (SLMs). So far, SLMs
showed promising results in increasing the precision of single-
trial classification (e.g., Kamousi et al., 2007; Cincotti et al.,
2008; Yuan and He, 2009; Besserve et al., 2011; Edelman et al.,
2016; Wronkiewicz et al., 2016). SLMs model the sources of
the EEG in the cortex and the physical properties of the head
volume conductor. In this way, the relation between a source
pattern and the corresponding scalp potential distribution can
be established. However, this relation is not bijective: there are
infinitely many possible source patterns for a measured potential
distribution at the scalp. Hence, beside the aforementioned
modeling assumptions, additional constraints have to be set
to solve the so-called inverse problem uniquely. In the BCI-
literature, most of the studies favor the linear distributed
approach (e.g., Ilmoniemi, 1993; Wang et al., 1993; Hämäläinen
and Ilmoniemi, 1994; Pascual-Marqui et al., 1994; van Veen et al.,
1997; Dale et al., 2000) for the inverse problem due to its low
computational needs. Distributed SLMs assume a fixed number
of sources in the order of thousands that are usually distributed
uniformly with fixed orientations over the solution space (e.g.,
gray matter). In this way, only the source strengths have to be
estimated. Nevertheless the problem is highly underdetermined,
so additional constraints are introduced varying from purely
mathematical to physiologically motivated assumptions (Michel
et al., 2004). Due to the necessity of additional constraints
and the fact that the EEG and its underlying sources are not
fully understood yet, new SLMs are continuously developed
(Pizzagalli, 2007; Grech et al., 2008; Becker et al., 2015). For
BCIs, mainly the well-known, most established SLMs have
been applied, like minimum norm (Noirhomme et al., 2008;
Besserve et al., 2011; Edelman et al., 2014; Wronkiewicz
et al., 2015, 2016), weighted minimum norm (Qin et al.,
2004; Babiloni et al., 2007; Kamousi et al., 2007; Cincotti
et al., 2008; Yuan and He, 2009; Goel et al., 2011; Edelman
et al., 2015, 2016), standardized low resolution electromagnetic
tomography (Congedo et al., 2006; Lotte et al., 2009; Handiru
et al., 2017), local autoregressive average (Menendez et al.,
2005; Poolman et al., 2008) and beamformer methods (Grosse-
Wentrup et al., 2009; Ahn et al., 2012). However, a comparison
of different distributed SLMs has rarely been reported so far.
Often one SLM has been applied in one publication without
giving a reason for its selection. Therefore, we empirically
compare distributed SLMs in this paper. Our selection of
SLMs is in line with what has been used so far in BCIs:
We compared the well-established methods weighted minimum
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norm (wMNE), standardized low resolution electromagnetic
tomography (sLORETA), and dynamic statistical parameter
mapping (dSPM). All three methods are available as open-source,
e.g., via the software Brainstorm (Tadel et al., 2011).

Because the classification performance is of high importance
for the interface, most of the design choices between various
algorithms inside the signal processing chain are made based on
this metric. However, the optimal algorithm selected in this way
does not have to be physiological meaningful or interpretable,
at least not without further effort (e.g., Krell and Straube,
2017). Since the aim of SLMs is to reveal the current density
distribution underlying the EEG, SLMs cannot only be used to
increase classification performance but also to interpret results
physiologically. In the bio-imaging field of research, where most
of the SLMs have been developed, the most common metric to
measure the quality of SLMs is a distance metric. It describes
how far the reconstructed sources are away from the true source
distribution. For this metric, which is usually measured to the
source position of maximum activity, we propose a variant that
is better suited for the single-trial case in which several sources
are likely and the actual maximum is unknown. For example, the
neural process of interest might be superimposed during several
single-trials by other neural correlates. These additional sources
might be stronger in amplitude than the expected ones. Also
artifacts, like eye blinks, can result in much higher amplitudes
than the signal of interest. Further, considering real-world single-
trial data, it is almost impossible to define a complete ground
truth source distribution. If therefore the ground truth is reduced
to a small set of expected activity regions, it is tolerated that
further sources are reconstructed even if these sources have a
larger amplitude. Last but not least, it has been argued that due
to the underdetermined nature of distributed SLM, over- and
underestimation of source strengths can easily occur (Grave de
Peralta-Menendez and Gonzalez-Andino, 1998; Michel et al.,
2004;Wendel et al., 2009). Hence, our distancemetric has relaxed
requirements regarding accurate amplitudes.

In this paper, we compare three SLMs with the aim to
use one in a real-time single-trial detection task of movement
preparation. Hence, the classification performance was a
criterion for the comparison. In addition, we calculated a
distance measure to evaluate the physiological plausibility of
the reconstructed sources. For that, we expect the methods
to extract at least one source in a subarea of the primary
motor cortex (reference region). In this way, the localization
error was measured in each movement preparation trial. This
alternative distance metric is obtained by clustering the current
density distribution and measuring the distance from the
reference region to the nearest activation cluster. The metric
can also be normalized to account for different numbers of
clusters. Results differed depending on the metric. While no
significant differences between the SLMs were obtained in
terms of classification performance, our distance metric favored
wMNE. Thus, the presented comparison represents a case where
conclusions might not be drawn based on the classification
performance alone. The superiority of wMNE is based on the
distance metric calculation that uses clusters and an a priori
defined reference region. That means, our results indicate that

wMNE can be themethod of choice, i.e., has the smallest distance,
when compared to an expected source location.

The paper is organized as follows: section 2 describes the
empirical data and reviews the SLMs that were compared. In
section 3 the methodology for the comparison is presented.
Results of the comparison as well as a discussion can be found
in sections 4 and 5, respectively. Finally, section 6 concludes the
work and gives an outlook.

2. MATERIALS AND FOUNDATIONS

2.1. Data
We considered empirical data that has been acquired under
highly controlled conditions with only one type of movement. In
this way, the data is more realistic in comparison to simulations,
but it is still possible to make reliable expectations about a source
in the primary motor cortex (see section 3.2). The data was
previously recorded at our lab and has been described in detail
in Tabie and Kirchner (2013). Eight right-handed healthy male
volunteers (19–32 years old) gave written consent to participate
in the study, that was approved by the local ethics committee of
the University of Bremen and in accordance with the Declaration
of Helsinki.

2.1.1. Paradigm
Experiments took place in a dimly lit shielded cabin. Participants
sat in a comfortable chair behind a table, resting their right
arm on the table. The right hand was placed on a flat
switch representing the resting condition. The task comprised
performing arm movements as fast as possible from the flat
switch rightwards to a buzzer approximately 20 cm away and
then returning to the resting position. There was no command
nor cue to start a movement. Thus, movements were voluntarily
initiated by the subjects. Subjects were instructed to avoid eye-
movements by fixating a cross on a screen during the experiment.
In addition, negative feedback was given to the subjects whenever
the resting condition lasted less than 5 s. Such invalid trials were
not considered for analyses. A complete experiment consisted
of 120 valid movements split in three runs with short breaks in
between.

2.1.2. Recorded Data Streams
One hundred and twenty-eight electrodes arranged according to
the extended 10–20 system were used for EEG data acquisition
(acti-CAP; Brain Products GmbH, Munich, Germany) and
impedance was kept below 5 k�. The EEG with reference at
FCz was recorded at 5 kHz using four BrainAmp DC amplifiers
(Brain Products GmbH, Munich, Germany). Together with the
EEG data, the electromyogram (EMG) was recorded from four
muscles of the left and right arm using a bipolar setup and a
BrainExGMR amplifier. Before storing the data on disk an analog
band pass filter between 0.1 and 1 kHz was applied. In addition,
events from the flat switch and the buzzer, i.e., pressing and
releasing, were marked in the EEG/EMG data stream.

A second data stream comprised motion tracking data of a
passive infrared marker mounted on the right hand. As motion
tracking system three ProReflex 1000 cameras (Qualisys AB,
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Gothenburg, Sweden) were used. The data was acquired at 500Hz
and the start and end of the stream were marked in the EEG for
later synchronization.

2.2. Preprocessing
From the acquired data, only the EEG and the motion tracking
data were analyzed further. All EEG data were used, i.e., no
data segments were skipped because of artifacts, to mimic the
application case. In the following, the steps in preparing the
analyses are described.

2.2.1. Movement Onset
Themovement onset defines time point zero in the later analyses.
It also refers to the latest point in time when a prediction about
an upcoming movement can be made. The motion tracking data
was used to obtain the movement onset in each trial. After
synchronization with the EEG stream, the tracking data was
analyzed backwards in time starting at the release events of the
flat switch. For each trial, a movement onset marker was added
to the EEG stream, when the speed per sampling interval crossed
a threshold of 0.075mm/ms which corresponded to the precision
of the motion tracking system.

2.2.2. Reduction of Irrelevant Components
Movement preparation and execution are reflected in the EEG
for example by movement related cortical potentials (MRCPs)
(Deecke et al., 1976; Shibasaki and Hallett, 2006). MRCPs
describe slow changes in the amplitude starting about 2 s before
movement onset (Stančák et al., 2000; Shibasaki and Hallett,
2006). To capture this slow change, the frequency spectrum as
well as the dimension of the data can be reduced. Hence, the
high sampling frequency provided by the hardware (5 kHz) was
decimated to 20Hz in two steps using anti-alias finite impulse
response filters (Crochiere and Rabiner, 1975). After the first
step the intermediate sampling rate resulted in 100Hz. In the
second step, the filter was further parameterized to attenuate
all frequencies higher than 4Hz. In addition low frequency
components close to the direct current offset were removed by
an infinite impulse response filter.

2.3. Source Localization
In distributed SLMs a linear model of the data is considered (e.g.,
Wendel et al., 2009):

d = Ls+ n. (1)

Here, d refers to the measured data as a vector of Ne components
corresponding to Ne electrodes, L denotes the (Ne × 3Ns)-lead
field matrix that contains the relation of source activations in
the three Cartesian directions to the electrode measurements, s
corresponds to the 3Ns true source activations, and n models
some additive noise in the sensor space.

First, the forward model L has to be computed. The
computation of L incorporates the head geometry and
conductivity values (ranging from simple nested spheres to
complex boundary or finite element models), the electrode
positions as well as the chosen source model (positions,

orientation constraints). Then, solving the inverse problem can
be described by Grech et al. (2008)

min
ŝ

||d − Lŝ||2 + αR(ŝ) (2)

where ŝ denotes a vector of 3Ns estimated source activations,
α denotes the regularization parameter, and R(ŝ) represents a
regularization function that differs for the respective algorithm.
The first termminimizes the least squares error between data and
the transformation of the sources to the data space.

Brainstorm Version 17-Sep-2015 (Tadel et al., 2011) was
used to compute the solution for three SLMs: weighted
Minimum Norm Estimate (wMNE), dynamic Statistical
Parametric Mapping (dSPM) and standardized low resolution
electromagnetic tomography (sLORETA). Among the chosen
methods, it has been shown that sLORETA achieves zero dipole
localization error for a single active source (Pascual-Marqui,
2002). However, we assume that it is very likely that several
sources are active, especially when single-trials are considered.
Thus, also other methods which perform worse on single source
localization are investigated. The three SLMs are described
in more detail in the following. All used parameters for the
methods, parameter optimization settings as well as other
components for source localization (head model, etc.) were kept
fixed for comparison and can be found in Table 1.

2.3.1. wMNE
This algorithm is an improvement of the classical minimum
norm approach (Hämäläinen and Ilmoniemi, 1994), where the
solution with lowest overall intensity is selected, i.e., R(ŝ) = ||ŝ||2.
The classical approach prefers superficial sources since for the
same scalp potential distribution the strength of deeper sources
has to bemuch higher compared to sources close to the electrodes
(e.g., Fuchs et al., 1999; Lin et al., 2006). To account for the bias

TABLE 1 | Parameters for source localization components.

Source model

Geometry Brain surface of ICBM152 template (Fonov et al.,

2011), 15, 002 vertices

Orientation constraints No

Head model

Geometry 3-shell nested sphere model (Berg and Scherg,

1994; Zhang, 1995)

Radii Brain: 8.3 cm, skull 8.8 cm, skin 9.4 cm

Conductivity Brain: 0.33S/m, skull: 0.0042S/m, scalp: 0.33S/m

Electrode positions Standard positions of the extended 10-20 system,

mapped on the scalp

Inverse method

Noise covariance Based on concatenated data during resting

condition; Tikhonov regularized with ǫ = 0.1

Regularization parameter α Optimized with generalized cross validation

(Hansen, 1998, 2007); if optimized α < 0.01, α is

set to the default value of 1/3

Depth weighting Maximal amount of 10 with an order of γ = 0.5;

applied for wMNE and dSPM methods
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toward superficial sources, different weighting strategies have
been proposed (Grech et al., 2008), among others a weighting that
normalizes the columns of the lead field matrix(Jeffs et al., 1987;
Baillet et al., 2001; Lin et al., 2006). In this case the three diagonal
elements ofW for source point p can be computed by

wp =





∑

i∈Ip

l•i(l•i)
T





−γ

for 1 ≤ p ≤ Ns, (3)

where Ip contains all indices that belong to point p and l•i refers
to the ith column of L. The order of depth weighting can be
controlled with the parameter γ . Each column of L contains
the topography of a source, i.e., the signal that ends up at the
electrodes when this source would be active. Thus, the column
norm of a superficial source is greater than the column norm of a
source far away from the electrodes. This weighting is integrated
into R, i.e., R(ŝ) = ||Wŝ||2, and finally a solution for Equation (2)
is given by

ŝ = Gwmne d (4)

where Gwmne, the inverse operator of the weighted minimum
norm algorithm, is

Gwmne = (WTW)−1LT(L(WTW)−1LT + αCn)
−1. (5)

Here, spatial correlations of the different electrodes are modeled
by the noise covariance matrix Cn.

2.3.2. dSPM
dSPM (Dale et al., 2000) is computed based on the minimum
norm or weighted minimum norm inverse operator by
normalizing its rows. For normalization, the source estimates of
the noise are computed based on the noise covariance matrix Cn.
These estimates form a diagonal normalization matrix Sdspm with
elements

s
dspm
p =





∑

i∈Ip

gi•Cng
T
i•





−1/2

for 1 ≤ p ≤ Ns, (6)

for the three rows of G that belong to the source point p. The
inverse operator of the dSPM algorithm is then given by

Gdspm = SdspmG. (7)

In our empirical evaluation, we selected the wMNE inverse
operator as G.

2.3.3. sLORETA
A different normalization strategy is pursued within the
sLORETA algorithm (Pascual-Marqui, 2002). Here, a second
source of variance beside the measurement noise is considered:
the variance of the actual sources. It has been shown that this
normalization can be derived from the resolution matrix A =

GL (Pascual-Marqui, 2002). Thus, the blocks ssloretap of the block
diagonal normalization matrix Ssloreta are given by

ssloretap =
(

A[i∈Ip,j∈Ip]

)−1/2
for 1 ≤ p ≤ Ns, (8)

where A[i∈Ip,j∈Ip] denotes the (3 × 3)-diagonal block of the
resolution matrix corresponding to source point p. Again, the
inverse operator of the sLORETA algorithm is finally obtained
by

Gsloreta = SsloretaG, (9)

where G is usually the MNE inverse operator.

3. CRITERIA OF COMPARISON

This section presents our suggested methodology for comparing
SLMs for single-trial classification. To determine which SLM is
most effective for movement prediction, all were integrated in
our signal processing scheme and the classification performance
was calculated. A further rationale was to provide insights into
the impact of the different SLMs when interacting with other
components like a classification algorithm. Since the aim of SLMs
is to reveal the current density distribution underlying the EEG,
SLMs can be used to interpret results physiologically. Hence, the
general plausibility of the reconstructed source distribution is
assessed by computing the distance to a reference region obtained
from literature.

In the following, the twometrics are explained for the concrete
example of movement prediction, i.e., the classification between
resting and movement preparation. Nevertheless it is possible to
apply the underlyingmethodology to other data and classification
problems. Thus, section 3.3 describes possible generalizations.

3.1. Classification Performance
The classification performance evaluates the whole processing
chain for movement prediction that consisted of preprocessing
(see section 2.2), segmentation, feature extraction based
on source localization, and classification. Except the source
localization step, similar processing chains were already
successfully utilized in former studies (Folgheraiter et al., 2011;
Seeland et al., 2013, 2015; Kirchner et al., 2014; Wöhrle et al.,
2014; Straube et al., 2015). The framework pySPACE (Krell et al.,
2013) was used for processing and performance computation.
In the following, the processing starting from the segmentation
step is described and subsequently details about the performance
metric are given.

First, time series segments of 0.2 s length (four samples) were
extracted and labeled depending on the movement onset event:
Segments between 3 to 2 s before movement onset belonged
to the resting class and segments ending at −0.05 s belonged
to the movement preparation class. Next, data of each subject
were split into training and testing data following a 3-fold cross
validation scheme, where each fold corresponded to one of the
three experimental runs (section 2.1.1). The computation of the
inverse operators was performed on the training data: For noise
covariance estimation the resting class data were concatenated
and for optimization of α the measurement data at −0.05 s
were considered. As next step, a dimensionality reduction to the
most promising sources was required to avoid overfitting of the
classifier and to reduce computational load. Hence, the inverse
operators were reduced to the 750 source positions that showed
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highest activity on the training data. No other dimensionality
reduction method was applied for consistency reasons since the
selected positions were the same to those used in the distance
calculation (section 3.2). For each of the four time points the
strength of activation in each direction was chosen as a feature.
Hence, in total 9,000 features were used (750 × 3 × 4 = 9, 000).
Feature normalization coefficients were also computed on the
training data for each dimension in order to normalize features
to have zero mean and a standard deviation of one. Subsequently,
a linear support vector machine (SVM) was trained (Chang and
Lin, 2011). The unbalanced class ratio of 1 : 5 for movement
preparation and resting examples was mitigated by setting the
class weight parameter of the underrepresented class to 2. Finally,
the threshold of the SVM was optimized based on the training
data. In order to optimize the regularization parameter λ of the
SVM, training and threshold optimization were performed inside
a nested 2 × 5-fold cross validation. In each cross validation
iteration six values of λ were tested (λ ∈ {10−6, 10−5, . . . , 100})
and the one with the highest classification performance was
selected.

Performance of movement prediction was assessed on the
testing data. As metric the balanced accuracy (BA) was computed
(Straube and Krell, 2014), which refers to the arithmetic mean of
the true positive rate and true negative rate.

3.2. Distance to Reference Region
While the computation of the classification performance is
rather straightforward, the distance metric in conjunction
with empirical data brings along several challenges. Unlike in
simulation, the number of actual sources and their amount of
activation is not known. It is even unrealistic to assume only
active sources correlated to movement preparation, especially
at single-trial scale or in unrestricted application scenarios.
Further, the inherent disability of distributed SLMs to estimate
the amplitudes of the sources correctly under these conditions
makes it problematic to assess distributed SLMs solely based
on maximum amplitudes. To address these challenges, we made
the assumption that activity in the primary motor cortex close
before the movement onset is reliable. Instead of comparing this
reference to the point of maximum activity of the reconstructed
source distribution, which is typically done e.g., for computation
of the dipole localization error but also other metrics (Bai et al.,
2007; Molins et al., 2008; Hauk et al., 2011), we generated clusters
from 5% of the solution space, i.e., 750 vertices, with highest
activations. In this way, small errors or fluctuations in amplitude
estimation are considered and have much less influence on the
results. Then, the distances of all clusters and the reference region
were calculated and the smallest distance was reported. However,
this procedure introduced a bias into the metric: a source
distribution with a large number of clusters will have a higher
probability to return a small distance to the reference region than
a distribution with a small number of clusters, independent of
the correctness of these distributions. Hence, besides reporting
the number of computed clusters side by side to the distance,
the distance was normalized with the average smallest distance
a random source distribution with the corresponding number of

clusters would achieve. In the following, each step in the metric
calculation process is described in detail.

3.2.1. Reference Region
During our experiments (see section 2.1.1), subjects were
requested to perform movements which mainly involved an
external rotation of the right elbow. Hence, coordinates of
maximal activity during right elbow movements were extracted
from the literature (Grafton et al., 1993; Lotze et al., 2000;
Alkadhi et al., 2002). The extracted Talairach coordinates
were converted into MNI coordinates (Lancaster et al., 2007;
Radua and Mataix-Cols, 2015) and mapped to vertices in
the source space (see Table 2, reference coordinates). Next, a
reference region was constructed that included all reference
coordinates. For that, all vertices along the shortest path
between the reference coordinates were added. Subsequently,
the region was increased by all neighbors of the vertices on
the shortest path. Using a region also accounted to some
degree for inter-individual differences. The reference region, that
consisted in total of 21 vertices, is depicted in Table 2 on the
right.

3.2.2. Clustering of Activations
For clustering 5% of the vertices in the source space were
considered. These vertices, whose corresponding sources showed
highest activations by taking the norm of the three directional
components, were clustered using the DBSCAN algorithm
(Ester et al., 1996) implemented in the Scikit-learn package
(Pedregosa et al., 2011). DBSCAN is an efficient density-based
clustering method that does not need the number of clusters
a priori and can handle noise in the data. The algorithm has
two relevant parameters: the maximum distance between two
points for them to be considered as in the same neighborhood
and the number of points in a neighborhood for a point to
be considered as a core point (minimum number of points).
For parameter setting we followed the idea that adjacent
vertices should belong to the same cluster. In this way, the
95%-quantile of the distance of adjacent vertices as well as
the 95%-quantile of the number of adjacent vertices were
determined from the complete source space and were assigned
to the maximum distance and minimum number of points,
respectively. DBSCAN returns the number of clusters and their
members. If points do not belong to any cluster they are collected
in a specific noise cluster. No cluster centers are returned by
DBSCAN. Hence, the center of mass (COM) of each cluster
was computed utilizing the sources’ activations as weights. An
example result of DBSCAN is depicted in Figure 1. Since each
hemisphere was considered separately, six distinct clusters were
found.

3.2.3. Normalization of the Distance Measure
The distance of the nearest COM to the reference region is
biased by the total number of computed clusters for a source
distribution. Figure 2 visualizes this by showing the average
distance of nearest COMs obtained from two million randomly
sampled source distributions in dependence of the number of
clusters. It can be seen that the average distance decreases with an
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TABLE 2 | Determination of the reference region.

Talairach coordinates MNI coordinates Reference coordinates

Study Method x y z x y z x y z

Grafton et al., 1993 PET −22 −22 60 −22 −17 65 −16.6 −17.8 65.8

Lotze et al., 2000 fMRI −28 −24 64 −28 −19 69 −28.0 −24.6 70.0

Alkadhi et al., 2002 fMRI
−29 −25 61 −29 −20 66 −28.3 −24.3 62.9

−29 −26 62 −29 −21 67 −28.0 −24.6 70.0

Left: Talairach coordinates of maximum activation during right elbow movements. An MNI-to-Talairach transformation (Lancaster et al., 2007) was applied to convert Talairach to MNI

coordinates (Radua and Mataix-Cols, 2015). Finally, the reference coordinates, i.e., the closest points in the source space to the MNI coordinates, were calculated.Right: Reference

region mapped onto the cortex surface of the ICBM152 template, i.e., the source space for source localization.

FIGURE 1 | Example of clustering: (Left) Source activity distribution of one subject; (Middle) The top 5% of active sources (i.e., 750 colored vertices); (Right) Six

computed clusters using DBSCAN (Ester et al., 1996) after hemispheres were separated. The black dots indicate the centers of mass.

FIGURE 2 | Average distance dr to the reference region of randomly sampled

source distributions shown dependent on the number of clusters Nc. Two

million source distributions were sampled and results are depicted as crosses.

The dashed line visualizes the fitted power function dr = 76.5mm ∗ N−0.308
c

to extrapolate to a larger number of clusters.

increasing number of clusters. To account for this bias, we used
the average distance of randomly chosen source distributions
as normalization factor. A power function was fit to be able to
extrapolate to a larger number of clusters. Finally, the normalized

distance dn for a clustering c with Nc clusters was obtained by

dn(c,Nc) =
d(c)

dr(Nc)
(10)

where d(c) refers to the smallest distance of all COMs of
c to the reference region and dr(Nc) represents the average
smallest distance of randomly chosen source distributions with
Nc clusters.

Obviously it holds that the smaller dn the better. Moreover,
dn = 1 corresponds to the same distance, a random source
distribution would achieve on average.

3.3. Generalizations
Our approach was presented along a specific application, i.e.,
movement prediction of right elbow rotations, and results for this
application are shown in section 4. Nevertheless, the approach
can be extended and/or varied to fulfill the requirements of other
applications.

For example, more than one reference region would be
required to evaluate classification tasks like left vs. right or hand
vs. arm movements. In these cases several reference coordinates
have to be extracted from the literature. Alternatively, individual
fMRI or PET recordings of the same subjects that perform the
EEG-task can lead to more precise reference coordinates, but are
costly. For validating the approach in this work such recordings
were not available. Thus, a task with only onemovement type was
chosen and the analysis was restricted to a reference region in the
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primarymotor cortex (section 3.2.1). However, especially in cases
where themovement types of interest are somatotopically close to
each other a more precise individual localization of the reference
coordinates is desirable.

In addition, there are applications where in one condition
several sources are relevant. For movement planning, this could
be inside, e.g., the premotor cortex or supplementary motor area.
If reliable reference regions for all sources could be obtained, an
integration in the metric calculation process can be performed
by summing up all nearest distances. Note that to fully assess
resolution of different SLMs in case of several nearby sources,
additional metrics like the spatial extent (Molins et al., 2008;
Hauk et al., 2011) have to be measured. However, to obtain a
reliable ground truth for the extent is even more challenging than
it is for localization. Assuming that a large spatial extent would
result in overlapping source activations, also the classification
performance can be affected. Then, a drop in performance may
correlate with a larger spatial extent of the method. This has to be
investigated in the future.

3.4. Evaluation Settings
The three SLMs were evaluated in terms of the classification
performance and nearest distance to the reference region.
Determining the former required a splitting into training and
testing data, which was accomplished by a 3-fold cross validation.
Following this setting, the distance was computed on the training
data of the corresponding cross validation iteration. In this way,
the suitability of the inverse operator, on which the subsequent
trainable components in the processing chain will rely on, is
measured. Further, the distance is evaluated on the averaged
ERP-data as well as on the single-trial level.

For each metric and scale, the Wilcoxon-Signed-Rank test
was performed in order to report significant differences between
the SLMs. For multiple comparisons, the Bonferroni-Holm
correction was applied.

4. RESULTS

4.1. Visual Comparison
For getting a visual impression of the difference between the
methods refer to Figure 3. In the first column, it shows the
averaged EEG data across the trials in the three training sets
(3 × 80 = 240 trials) 0.05 s before movement onset for each
single subject. The expected negative potential over central
electrodes, i.e., the MRCP, could be observed for all subjects,
although for subject S2 it was less prominent. The other three
columns visualize the reconstructed source activities of the SLMs.
All subjects showed at least medium activity in the left motor
area. However, distribution of the highest activity values differed
considerably for the three SLMs. In contrast to wMNE, dSPM
often reconstructed highest activity on the centro-medial surface
of the cortex. Further, in comparison to wMNE and dSPM,
sLORETA revealed larger coherent areas of high activity.

4.2. Classification Performance
In Table 3, a comparison of the three SLMs is given after
integration into a movement prediction system and calculation

FIGURE 3 | Averaged ERPs and averaged source distributions across the

three training data sets for each subject. For visualization a common average

reference was applied to the preprocessed EEG data, and the data is scaled

to the local maxima. Source activations are depicted as the norm of the three

directional components and mapped to the inflated cortex of the ICBM152

template. All plots visualize time point −0.05 s with respect to the movement

onset.
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TABLE 3 | Classification performance (movement preparation vs. resting) in terms

of balanced accuracy.

wMNE dSPM sLORETA

S1 0.95± 0.01 0.95± 0.02 0.95± 0.01

S2 0.84± 0.01 0.82± 0.02 0.76± 0.08

S3 0.89± 0.01 0.88± 0.02 0.86± 0.02

S4 0.90± 0.03 0.91± 0.02 0.91± 0.02

S5 0.92± 0.01 0.92± 0.01 0.91± 0.02

S6 0.91± 0.02 0.91± 0.02 0.91± 0.03

S7 0.70± 0.05 0.81± 0.01 0.77± 0.01

S8 0.97± 0.01 0.96± 0.02 0.97± 0.01

∅ 0.88± 0.02 0.89± 0.01 0.88± 0.02

Given are averages over the three test sets together with the standard error of the mean

(SEM). The row ∅ contains mean and SEM across all individual values of the subjects.

Bold values highlight best performance across SLMs.

of its performance. Here, the inverse operator was computed on
the training set data and then it was applied to all single-trials
of the testing data. Results show similar performance values for
the majority of the subjects. But for S2, S3, and S7 differences
between the SLMs could be observed. However, on average
all methods obtained a similar balanced accuracy of around
88%. Accordingly, no significant differences were found in the
statistical analysis (wMNE vs. sLORETA: p = n.s, wMNE vs.
dSPM: p = n.s., sLORETA vs. dSPM: p = n.s).

In comparison to our previous processing chain (e.g., Seeland
et al., 2013), that did not utilize SL but the spatial filter xDAWN
(Rivet et al., 2009) with 4 retained channels, performance
increased on average about 2% (mean performance and SEM
without SL: 0.86± 0.01 BA).

4.3. Distance to Reference Region
The distance to the reference region was measured based on
the COM of the nearest cluster obtained from the top 5% of
active sources. Figure 4 depicts all COMs together with the
reference region colored in white. The reference region was hit
in total seven times, once by sLORETA and six times by wMNE.
Although the distribution of the COMs was rather large and
suggested differces between the methods in terms of distance,
the classification performance was hardly affected by the different
COM positions. The dark red shaded area in Figure 4 marks
a region where the classification performance is quite similar
(within 2% BA). It was computed for sets of ∼25 adjoint vertices
that were selected for feature extraction. Table 4 lists the actual
distances together with the number of found clusters averaged
across the three training sets for each subject. For six of the eight
subjects wMNE showed the smallest distance compared to dSPM
and sLORETA. Using wMNE, on average the nearest COM was
11.05mm away from the reference region. Approximately twice
the distance, i.e., 22.30mm, could be achieved on average with
dSPM, and results using sLORETA lay in between (14.56mm).
Further, reconstructions by wMNE consisted on average in more
clusters than reconstructions by the other two methods.

FIGURE 4 | Centers of mass (points) of the nearest clusters to the reference

region (white) for all subjects and training sets. Red: wMNE; Green: dSPM;

Blue: sLORETA. The dark red shaded area depicts the region of highest

classification performance (BA) when ∼25 adjoint vertices were selected for

feature extraction.

TABLE 4 | Minimal distance to the reference region of the nearest cluster given in

millimeters together with the number of computed clusters in brackets.

wMNE dSPM sLORETA

S1 5.04 (2.7) 17.98 (3.0) 12.74 (2.0)

S2 2.20 (3.0) 17.46 (3.3) 21.26 (3.0)

S3 9.30 (3.3) 25.12 (2.0) 13.05 (2.0)

S4 37.27 (2.3) 21.97 (3.3) 11.74 (2.7)

S5 13.49 (1.7) 25.51 (2.0) 17.03 (1.7)

S6 14.91 (2.7) 21.95 (2.0) 13.41 (2.0)

S7 6.19 (5.3) 25.41 (2.3) 10.31 (2.3)

S8 0.00 (3.3) 22.98 (2.0) 16.97 (2.0)

Avg 11.05 (3.0) 22.30 (2.5) 14.56 (2.2)

SD 11.02 (1.0) 2.97 (0.6) 3.35 (0.4)

Values are averages over the three training sets. Avg, average; SD, standard deviation.

The influence of the number of clusters on the distance was
considered by normalizing the distance with the average distance
of randomly sampled source distributions with the same number
of clusters. Table 5 shows the normalized minimal distances to
the reference region for each subject. Results corresponding to
Table 4 can be found in the upper half of Table 5. Although
the number of clusters was higher for wMNE compared to
the other two methods, qualitatively, results were persistent.
This means, the smallest normalized distance was obtained
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TABLE 5 | Normalized minimal distance dn to the reference region of the nearest

cluster.

wMNE dSPM sLORETA

Avg S1 0.09± 0.04 0.32± 0.01 0.20± 0.00

S2 0.04± 0.02 0.32± 0.05 0.38± 0.03

S3 0.17± 0.02 0.40± 0.00 0.21± 0.04

S4 0.55± 0.22 0.40± 0.03 0.21± 0.11

S5 0.20± 0.01 0.41± 0.00 0.26± 0.01

S6 0.26± 0.01 0.35± 0.03 0.21± 0.01

S7 0.14± 0.09 0.42± 0.02 0.17± 0.03

S8 0.00± 0.00 0.37± 0.01 0.27± 0.00

∅ 0.18± 0.04 0.37± 0.01 0.24± 0.02

SiT S1 0.35± 0.03 0.58± 0.02 0.50± 0.03

S2 0.79± 0.03 0.82± 0.03 0.82± 0.03

S3 0.93± 0.04 0.75± 0.02 1.06± 0.03

S4 0.64± 0.03 0.67± 0.02 0.79± 0.03

S5 0.49± 0.02 0.54± 0.02 0.46± 0.02

S6 0.52± 0.03 0.64± 0.03 0.63± 0.03

S7 0.76± 0.02 0.73± 0.02 0.73± 0.02

S8 0.23± 0.02 0.47± 0.02 0.42± 0.03

∅ 0.59± 0.01 0.65± 0.01 0.68± 0.01

Given are averages over the three training sets together with the standard error of the

mean (SEM). Source localization was performed on the averaged potential (Avg) as well

as on the single-trials (SiT). The row∅ contains mean and SEM across all individual values

of the subjects. Bold values highlight smallest distance across SLMs.

using wMNE, followed by sLORETA and dSPM. The statistical
analysis confirmed significant differences between the methods
(wMNE < sLORETA: p < 0.0397, wMNE < dSPM: p <

0.0025, sLORETA < dSPM: p < 0.0008). Although the bias in
reconstructing a source cluster in the primary motor cortex was
smallest for wMNE, it should be noted that the variance was
largest compared with the other two methods. The worse result
of subject S4 is the reason.

In the single-trial case, i.e., when the SLM is applied to
each single-trial separately, the reconstruction performed worse
(lower half of Table 5). Still, wMNE was the method with least
normalized distance to the reference region, but this distance
almost tripled in comparison to the result on averaged data.
Statistically the differences between wMNE and the other two
methods were significant (wMNE < sLORETA: p < 3.6 · 10−7,
wMNE < dSPM: p < 3.6 · 10−11, sLORETA vs. dSPM: p = n.s).

5. DISCUSSION

In the presented work we empirically compared three different
SLMs. Starting with a visual comparison, results showed that
there are remarkable differences between the analyzed SLMs. We
suggested to consider not only the classification performance, but
also a distance metric to compare SLMs, knowing well that both
may lead to different results. Indeed, the outstanding advantage
of SLMs, that is to convert the electrode data to the brain space

enabling a common frame with neuroscience research, in fact
demands also an assessment of the physiological plausibility of
the methods. Further, even when the classification performance
is of great importance for most BCI applications, there are
cases where additional criteria can be relevant. Especially in
the context of robotic rehabilitation, not only the movement
prediction performance might be important to trigger or control
the robotic device, but also the activated brain regions during
movement preparation might be used for neurofeedback or as a
measure of increased cortical plasticity. In addition, in case one
wants to analyze and interpret what the classifier relies on (e.g.,
via backtransformation Krell and Straube, 2017), it is beneficial
to be able to analyze results in the brain space, i.e., to have
physiologically meaningful sources of features.

In what follows we discuss our two main results, the
equivalence of wMNE, sLORETA and dSPM in terms of
classification performance and the significant differences in
cluster distance between the three methods.

5.1. Comparable Classification
Performance
As our results show, no significant differences in balanced
accuracy were found between wMNE, sLORETA and dSPM for
movement prediction. On the one hand several authors explained
this by the similarity of the algorithms. On the other hand, we
believe that the interaction with other trainable components has
a substantial impact.

Hauk et al. (2011) compared MNE, dSPM and sLORETA,
whereby the latter two were based on MNE and not wMNE
(see also section 2.3). They showed in theory and in simulation
that noise normalization has no effect on the shape of the rows
of the resolution matrix A, if the normalization is achieved by
multiplication of a diagonal matrix (like Sdspm, see section 2.3.2).
They further concluded that spatial filters, i.e., the rows of G,
also only differ between those SLMs by a scalar factor. For
the application in single-trial detection this means, when the
same spatial filters were selected for classification, no significant
differences between those SLMs can be expected. However, for
practical reasons, the number of spatial filters that are passed to
the feature extraction and classification has to be reduced. If the
reduction process chooses different spatial filters for the different
SLMs, like it was the case in our comparison, differences in
performance can occur (see individual performances in Table 3).
In addition, performance differences probably increase when
the number of spatial filters is further reduced. In the extreme
case, i.e., when only one spatial filter is selected based on the
maximum source activation on the training data, we observed
0.75 (±0.03), 0.80 (±0.03) and 0.85 (±0.02) BA (± SEM)
for wMNE, sLORETA, and dSPM respectively. Here, dSPM
outperforms the other two methods indicating that the activation
at the source with maximum activity on the training data is a
better feature for classification in case dSPM is applied compared
to the other two methods. This confirms that a theoretical
comparison of the approaches alone might not be sufficient when
it comes to application.
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Although Wronkiewicz et al. (2016) asked for quantitative
comparisons of distributed SLMs, they did not expect a
significant influence of the specific method on the classification
performance. They argue that Mosher et al. (2003) showed in
a theoretical work the equivalence in the regularization strategy
of several traditional SLMs, including (w)MNE and dSPM, and
that the difference between the SLMs is caused by differences
in the data covariance matrix. For all three methods that we
compared, the noise covariance matrix was estimated in the same
way (see Table 1). Given the relationship of (WTW)−1 being
equal to the source covariance matrix Cs and the assumption
that the data covariance matrix Cd = LCsL

T + Cn, a difference
in the analyzed methods exists between sLORETA (Cs = I)
and wMNE/dSPM (Cs = (WTW)−1). Very recently Goel et al.
(2017) also compared wMNE and sLORETA, among others, and
found a significant performance decrease when normalization
was applied on the inverse operator (i.e., sLORETA < wMNE).
They tried to explain their results by the increased variance in
the features due to normalization. Besides the fact, that they
investigated different experimental paradigms (P300, ErrP &
RSVP) they used a rather simple classifier of combining class
conditional Gaussian probabilities across features and time. This
naive Bayes approach ignores dependencies between features.
On the contrary, we used a powerful SVM for classification.
This algorithmmight compensate for the differences between the
SLMs, at least if a reasonable amount of features is used.

To summarize, all three SLM under investigation are equally
suited for movement prediction. However the dependence of
the results on the concrete data processing approach, including
the number of features and the classifier can not be neglected.
Especially in the extreme cases (i.e., low number of features
or simple classifier), which are not the cases with optimal
performance, differences in the SLMs that exist (e.g., Cs, feature
selection) can come to light.

5.2. Differences Between SLMs in the
Distance Measure
While the compared methods showed similar classification
performances, the visual comparison as well as the cluster
distance results revealed considerable differences between
wMNE, sLORETA, and dSPM. For understanding the preference
of wMNE, we have to look at the distance measure calculation
again. In literature, most of the time distances were measured
based on the source position with maximum activation (e.g.,
Bai et al., 2007; Molins et al., 2008; Hauk et al., 2011). In this
way, the accurate reconstruction of the amplitudes is crucial.
However, due to unavoidable approximations in the calculation
of the inverse operator, which involves an inversion of a non-
squared matrix, distributed SLMs can fail to accurately estimate
the strengths of multiple active sources. In other words, there
will always be discrepancies of the resolution matrix A from
the ideal identity matrix that lead to amplitude estimation
errors at the sources. The clustering approach introduced in this
work refrained from calculating the maximum. Instead, a set
of source positions with high activation values is considered.
Yet, to see the impact of this decision, we also calculated
the normalized distance to the source position with maximum
activity (Figure 5). Results changed qualitatively when the

distance is measured to the maximum, i.e., wMNE performed
worse in comparison to dSPM and sLORETA. It can also
be seen that in general the distances to the maximum were
larger compared to the nearest cluster. This illustrates that on
average the maximum was not part of the nearest cluster to
the reference region. Instead, it was observed further away.
The difference between the two distances (distance to cluster
and distance to maximum) was highest for wMNE. Assuming
the true maximum is located in the motor cortex (reference
region), this indicates that wMNE had the greatest problems
in accurately reconstructing the maximum. Further, it must
be stated that we analyzed data where no artifact correction
or rejection was performed. Therefore, it might happened
that sources representing artifacts had higher amplitudes than
sources representing the signal of interest. But a true maximum
amplitude at a different location than the motor cortex might
also be possible without artifacts, just because of the single-trial
application case. When comparing average and single-trial scale
in Figure 5, it is worth to mention that the normalized distance
increased less for dSPM. The same effect can be observed in
Table 4. Thus, dSPM appeared to be more stable than the other
two SLMs under noisy conditions (single-trial, application case).

For measuring the distance in this paper, reference
coordinates were extracted from the literature since individual
fMRI/PET recordings were not available. To give an impression
how valid our reference region is, we analyzed whether a small
change in the reference region within the primary motor cortex
would lead to different qualitative distance results. We obtained
for the averaged as well as the single-trial case that it is possible to
shift the right border of the reference region about 7.57mm and
the left border of the reference region about 28.13mm without
a different qualitative result. This supports the robustness of the
obtained distance results.

If wMNE is chosen for reconstructing the sources due to our
distance metric results, one has to be aware that the maximum
activation is not reliable whenever interpreting amplitudes or
visualizations. On average more clusters can be expected with
wMNE, whichmay alsomeanmore ghost sources. In addition the
number of outliers and thus the variance in distance can be higher
for wMNE as our results for average potentials indicate (Tables 4,
5). Therefore we suggest to use wMNE in hypothesis-driven data
analyses, like for example in sensorimotor rehabilitation, where
prior to analysis target regions of interest could be defined. Then
the low bias in activity reconstruction in this region (e.g., a
reference region in the primary motor cortex) is the advantage
of wMNE.

The clustering approach required to choose additional
parameters, e.g., the number of vertices to consider. This
number might be motivated by an assumption about the total
area that is activated during the experimental conditions. The
selected 750 vertices here correspond in total to approximately
126 cm2 cortical surface and can cover a broad range of
central and precentral areas (see also Figure 1 center for an
example). If the number of vertices considered for clustering
is decreased drastically the situation converges to the case
where only the source position with maximum activity is
considered. Conversely, if the number is drastically increased,
it is more likely that all vertices will be assigned to the
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FIGURE 5 | Normalized distance from the reference region to the position of maximal activity (white bars) or to the COM of the nearest cluster (gray bars). The left

graph corresponds to source reconstruction on averaged data (Avg), the right to source reconstruction on single-trials (SiT). To normalize the distance to the maximum

it was divided by 74.9mm which corresponded to the average distance of randomly sampled source distributions with one cluster.

same cluster. The number of clusters can be additionally
controlled by the maximum distance parameter of DBSCAN.
For example, it can be seen that in several reconstructions
high activity was observed not only in the motor cortex
but also in the somatosensory cortex (see Figure 3). Since
vertices of these two neighboring areas were assigned to
the same cluster, its COM might be placed in the central
sulcus. Thus, COMs in sulci (see Figure 4) were mainly not a
result of high activity in these deeper brain areas, but more
a result of broad high activity in neighboring areas of the
sulci. In particular when comparing distributed SLM, these
broad activations covering neighboring areas can be expected.
Therefore, when areas should not belong to the same cluster,
an alternative approach would be to artificially separate these
regions.

In summary, we proposed a different distance calculation
metric according to which wMNE outperformed sLORETA and
dSPM. Due to several aforementioned reasons we believe that the
cluster distance is the more appropriate distance measure for our
evaluation since it is more robust against artifacts and amplitude
misestimation.

6. CONCLUSION AND FUTURE WORK

Since the primary motor cortex provides spatially relevant
information, e.g., about the moving body part, SLMs are
predestined for the analysis of brain activity correlated with
motor functions, and for the use in movement-based BCIs.
For example, in the context of stroke rehabilitation single-
trial monitoring of active brain regions during therapy might
increase our understanding of the recovering process. However,
the explorative nature of SLM development increases, among
others, the need for comparative analyses. Especially for the
ease of use of those methods, application-oriented comparisons
can provide useful guidance. In this paper, we suggested two
criteria for comparing SLMs empirically with the aim of applying
SLMs in single-trial classification. Thereby the plausibility of

the reconstructed sources, and the detection performance were
measured. Both metrics should be considered, e.g., when human
machine interaction has to be supported in a rehabilitation
scenario. The presented framework accounts for multiple active
sources as well as inaccuracies in the estimation of the
location of the maximum. Thus, it is specifically designed to
compare distributed SLMs, but is not necessarily limited to
them.

We applied our concept to the task of single-trial movement
prediction. It could be shown that wMNE is superior to dSPM
and sLORETA in terms of the distance between a reference region
in the primary motor cortex and the next activation cluster (after
a normalization procedure). Hence, if physiological plausibility
is of importance wMNE should be preferred in comparison to
dSPM and sLORETA. This observation only holds when working
with activation clusters and not relying on single maximum
activations which on average resulted in larger distances. The
obtained findings could be verified by visualizations of the SLMs.
This supports the feasibility of ourmetrics. Looking exclusively at
the classification performance, all analyzed SLMs showed similar
performance. Due to our choice of the processing chain this
cannot be explained by the already known equality of underlying
spatial filters. Instead it highlights the importance that SLMs
should not only be assessed separately but also embedded in the
concrete application at hand.

In the future, the interaction between SLMs and other
trainable components in the processing chain will be further
analyzed. For example, the generation of optimal features based
on SLMs that are insensitive to inaccuracies in amplitude
estimation might be promising. Further, other SLMs can be
evaluated. Here, other open source software packages permitting
fast usage may be most interesting for users, like FieldTrip
(Oostenveld et al., 2011) or Nutmeg (Dalal et al., 2011). Last
but not least, it remains to be seen how SLMs perform in
other applications and classification tasks, like the differentiation
between right and left movements or between different body
parts.
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