
REVIEW

Blood Relatives: Splicing Mechanisms underlying 

Erythropoiesis in Health and Disease [version 1; peer review: 3 

approved]

Kirsten A. Reimer , Karla M. Neugebauer
Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA 

First published: 30 Aug 2018, 7(F1000 Faculty Rev):1364  
https://doi.org/10.12688/f1000research.15442.1
Latest published: 30 Aug 2018, 7(F1000 Faculty Rev):1364  
https://doi.org/10.12688/f1000research.15442.1

v1

Abstract 
During erythropoiesis, hematopoietic stem and progenitor cells 
transition to erythroblasts en route to terminal differentiation into 
enucleated red blood cells. Transcriptome-wide changes underlie 
distinct morphological and functional characteristics at each cell 
division during this process. Many studies of gene expression have 
historically been carried out in erythroblasts, and the biogenesis of β-
globin mRNA—the most highly expressed transcript in 
erythroblasts—was the focus of many seminal studies on the 
mechanisms of pre-mRNA splicing. We now understand that pre-
mRNA splicing plays an important role in shaping the transcriptome of 
developing erythroblasts. Recent advances have provided insight into 
the role of alternative splicing and intron retention as important 
regulatory mechanisms of erythropoiesis. However, dysregulation of 
splicing during erythropoiesis is also a cause of several hematological 
diseases, including β-thalassemia and myelodysplastic syndromes. 
With a growing understanding of the role that splicing plays in these 
diseases, we are well poised to develop gene-editing treatments. In 
this review, we focus on changes in the developing erythroblast 
transcriptome caused by alternative splicing, the molecular basis of 
splicing-related blood diseases, and therapeutic advances in disease 
treatment using CRISPR/Cas9 gene editing.
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Introduction
Erythropoiesis is the developmental pathway by which red 
blood cells (RBCs)—specialized hemoglobin-containing cells 
that deliver oxygen throughout the body—are produced from 
hematopoietic stem and progenitor cells (HSPCs). Morphologi-
cally, this includes the loss of the cell nucleus and acquisition 
of a characteristic disk-like shape (Figure 1). Early molecular  
biologists identified erythropoiesis-associated gene expres-
sion patterns such that the globin genes are among the best- 
understood eukaryotic genes. β-globin was among the first  
proteins to be sequenced and was the first protein to be charac-
terized structurally by using X-ray crystallography. The β-globin 
gene and mRNA were also among the first to be cloned. These 
advances facilitated early discoveries in gene regulation, such as 
the transcriptional control of globin genes by long-range enhancer 
and repressor elements present in the locus control region1. This 
system of transcriptional regulation is currently being exploited to  
discover how chromosomal regions interact and how chromatin 
looping might be a therapeutic target in diseases of RBCs2,3.

RNA biology is an area in which erythropoiesis, globin gene 
regulation, and disease mutations have led to fundamental dis-
coveries. The globin genes contain two non-coding interven-
ing sequences (introns), which are removed by the spliceosome 
in a process termed pre-mRNA splicing4. Globin pre-mRNA 
was an early model substrate for the investigation of splicing  
mechanisms5,6, and mutations in globin genes at the 5′ and  
3′ boundaries of the introns—termed splice sites (5′ and 3′ 
SSs)—proved to be the cause of various forms of thalassemia7. 
Thalassemias are hemoglobin deficiencies resulting from aberrant 

globin expression. Some thalassemia mutations cause intron reten-
tion (IR) and lead to nonsense-mediated decay (NMD), a major  
gene regulatory mechanism that degrades mRNA transcripts  
containing premature termination codons (PTCs) present in  
retained introns8,9. Finally, other thalassemia mutations disrupt 
the nucleotide sequence that signals 3′ end cleavage and polya-
denylation of β-globin mRNA, showing the importance of this  
RNA processing mechanism in health and disease.  
This review will focus on the common roles of splicing  
in diseases of erythropoiesis with an emphasis on recent 
insights into the transcriptomes of developing RBCs, the 
effects of splicing factor mutations that drive myelodysplastic  
syndromes (MDSs), and current efforts to restore normal 
globin expression in thalassemias using CRISPR/Cas-mediated  
genome editing.

Transcriptome-wide changes during erythropoiesis
During erythropoiesis, each cell division is coincident with 
major changes in gene expression, resulting in daughter cells 
that are morphologically and transcriptionally distinct from the 
mother cell10. Transcriptome-wide profiling using RNA sequenc-
ing (RNA-seq) has allowed unbiased dissection of changes that 
occur along this developmental pathway11. The greatest number 
of changes in gene expression in human erythroblasts—either  
upregulation or downregulation—occurred between the late 
basophilic to polychromatic and polychromatic to orthochro-
matic stages, where roughly equal numbers of genes are upregu-
lated as are downregulated. These transcripts were enriched for 
differently annotated functions reflecting cellular events in the 
differentiation process (Figure 1), emphasizing the changing  

Figure 1. Changes in gene expression and splicing occur during terminal erythroid differentiation. Erythropoiesis is characterized by 
changes in cell morphology, including nuclear size, color (due to hemoglobinization), and chromatin condensation, which are coordinated with 
changes in gene expression. During terminal erythroid differentiation, cells progress from proerythroblasts (PRO), to basophilic erythroblasts 
(EARLY and LATE BASO), to polychromatophilic erythroblasts (POLY), to orthrochromatic erythroblasts (ORTHO), before enucleation to 
become red blood cells (RBCs) (also called reticulocytes). In human erythroblasts, a subset of genes is downregulated—some top associated 
Gene Ontology terms are shown to the right (purple line)—while a subset of genes is concurrently upregulated (green line). Changes in 
splicing occur in the later stages of erythropoiesis (mostly from late baso to ortho), including increased alternative splice site usage and intron 
retention.
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transcriptional landscape that underlies massive globin gene 
expression in terminal stages of erythroid development. In  
contrast, when mouse erythroblasts were analyzed in the same  
manner, the overwhelming majority of genes, including key  
transcription factors, were downregulated. The cause of  
species-specific differences in transcriptome changes is not 
immediately clear but likely reflects distinct properties of human 
and mouse erythrocytes, including differences in size, life span,  
oxygen-carrying capacity, and metabolism10. An analysis of 
chromatin accessibility, histone modifications, and transcription  
factor binding in a mouse embryonic stem cell model of hemat-
opoiesis has revealed a complex regulatory network that drives 
changes in the transcriptome during differentiation12. It remains 
to be seen whether these mechanisms differ between human  
and mouse erythroblasts to explain the pronounced differences  
in transcriptomes.

Splicing regulation in normal erythropoiesis
Splicing can contribute to the regulation of transcript levels 
by activating cellular programs, such as NMD, to reduce  
transcript levels. Moreover, alternative splicing leads to the 
expression of different transcripts and protein products from 
the same gene4. How does splicing regulation contribute to  
transcriptome diversity in erythroid development? Early work 
using microarrays to detect changes in splicing during eryth-
ropoiesis found altered splicing in known trans-acting splicing  
factors (for example, SNRP70, HRNPLL, and MBNL2), which 
are RNA-binding proteins that regulate how the spliceosome  
assembles on pre-mRNA and how different 5′ and 3′ SSs are 
chosen13. This suggested a regulatory feedback loop, whereby 
changes in splicing factors could affect the splicing of many 
downstream genes necessary for development. Subsequent 
work has focused on identifying stage-specific changes in  
splicing transcriptome-wide using RNA-seq, a less biased 
approach that does not rely on known intron–exon boundaries10. 
In addition, mapping the gene expression networks governed 
by splicing in erythroid differentiation has aided in identifying  
the functional significance of splicing regulation14.

One of the first and most well-characterized examples of alter-
native splicing in erythropoiesis is the stage-specific inclusion 
of exon 16 of the 4.1R gene, which encodes a protein that is  
crucial for erythrocyte membrane integrity13,15. Changes in 
expression levels and specific binding of the hnRNP A/B pro-
tein affect this developmental switch15. Since then, alternative 
splicing has emerged as a more widespread phenomenon16–18. 
The muscleblind-like protein 1 (MBNL1) is a sequence-specific  
splicing factor that undergoes extensive alternative splicing 
during differentiation17. Cheng et al. showed that a specific 
Mbnl1 isoform which includes the alternative exon 5 accumu-
lates in the nucleus in later stages of erythroid differentiation17. 
The inclusion Mbnl1 isoform is responsible for regulating the  
splicing of downstream genes important for erythroid dif-
ferentiation, as knockdown of the Mbnl1 inclusion isoform 
alone blocked differentiation and caused defects in prolifera-
tion. Mirroring the previous findings observed by microarrays,  
Pimentel et al. report a program of highly dynamic alterna-
tive isoform switching in late-stage human erythroblasts using 
RNA-seq19. An increase in steady-state levels of transcripts  
containing PTCs, which likely trigger NMD of these transcripts, 

was observed in the later stages of differentiation, suggesting  
that alternative splicing coupled to NMD may be a novel,  
stage-specific gene regulatory mechanism.

Intron retention is a regulatory mechanism during 
hematopoiesis
IR is a class of alternative splicing wherein an intron is not removed 
by the spliceosome, potentially introducing PTCs and targeting 
the transcript for NMD. Alternatively, it is possible that certain 
intron-retained transcripts remain in the nucleus and undergo 
splicing with delayed kinetics20–23. IR was only recently recog-
nized as a widespread occurrence24,25, and developing erythroid 
cells exhibit robust IR. Pimentel et al. showed that late human  
erythroblasts accumulate hundreds of transcripts containing 
retained introns and that these IR transcripts are enriched for 
splicing factors and iron-homeostasis factors26. These results  
were corroborated at the single-cell level in human immortalized 
myelogenous leukemia K562 cells27. The top three categories 
of nuclear IR transcripts by gene ontology analysis were RNA 
metabolism, RNA splicing, and the C complex spliceosome. 
The retained introns detected in late human erythroblasts were 
more likely to be found next to alternative exons that contained 
PTCs26, in line with previous studies suggesting that IR followed  
by NMD is an important mechanism that regulates levels of  
splicing factors28.

How is IR triggered during erythropoiesis? Key insights are 
emerging from studies of transcripts encoding the important 
core splicing factor SF3B1. SF3B1 expression is also subject 
to IR during erythroid differentiation suggesting that SF3B1 
regulation by IR may constitute a regulatory hub leading 
to the downregulation of transcripts encoding other splicing  
factors26. Indeed, a series of highly conserved cryptic SSs were  
identified for their activity in promoting IR in SF3B1  
transcripts29. The identified intronic sequences are sufficient 
to promote IR in SF3B1 and can also promote retention when 
inserted into other introns. The cryptic exons generated by 
these SSs are proposed to act as splicing decoys, sequestering  
components of the spliceosome and ultimately preventing  
productive splicing by blocking the appropriate cross-intron  
interactions needed to define the intron for splicing.  
Alternatively, reduced levels of SF3B1 might preferentially affect 
splicing efficiencies or the half-lives of (pre-)mRNAs encoding  
splicing factors  or both. Although we presume that most of  
these instances reflect the downregulation of IR transcripts, the  
possibility that certain splicing events are delayed remains.  
Interestingly, delaying gene expression through IR is physi-
ologically relevant in other cell types, including developing  
spermatocytes, neuronal cells, platelets, granulocytes, and  
stimulated  macrophages24,30–33. In the case of erythroid differen-
tiation, how introns are retained in a seemingly stage-specific  
and cell type-specific way remains to be fully understood.

Misregulation of splicing in diseases of 
erythropoiesis
Misregulation of splicing underlies a growing number of human 
diseases34–37. Generally, mutations in either cis or trans can 
affect splicing outcomes. Cis mutations may disrupt the intrinsic 
sequences that demarcate SSs in a transcript (5′ and 3′ SSs). 
In contrast, mutations in any number of the core spliceosome  
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machinery can produce splicing defects in trans, which causes 
deleterious effects for a large number of downstream splic-
ing substrates. Both types of splicing defects have been  
characterized in the erythroid lineage38.

β-thalassemia
β-thalassemias are a family of disorders defined by mutations 
in the β-globin gene, causing a reduction of β-globin mRNA, 
insufficient hemoglobinization of maturing RBCs, and anemia39.  
β-thalassemia is one of the most prevalent diseases caused by 
somatic mutations worldwide, yet currently the only available  
curative treatment is an allogenic transplant of HSPCs 
from a matched donor. This option is unavailable for many 
patients because of the cost of treatment and limited avail-
ability of matched donors.Although we possess a quite-thorough  
understanding of the molecular basis and pathophysiology of 

this disease, better treatments are still sorely needed. Many  
β-thalassemia patients are dependent on transfusions from blood 
donors to maintain proper levels of healthy, circulating RBCs.  
However, this therapy often leads to complications related to iron 
overload, including organ damage. The majority of β-globin alleles 
that cause thalassemia contain point mutations (Figure 2). These 
mutations can affect virtually any step in the correct expression of  
β-globin mRNA from transcription initiation (Figure 2A), to 
splicing (Figure 2B, C), to 3′ end cleavage and polyadenylation  
(Figure 2E). Because of this, β-thalassemia is an attractive  
target for applying genome-editing tools to correct β-globin 
mRNA processing and expression, providing a potential cure for  
β-thalassemia.

Several methods attempting to restore β-globin mRNA expres-
sion in β-thalassemia and sickle cell disease patients have been 

Figure 2. Single-nucleotide mutations in key regulatory regions of the β-globin gene disrupt expression in β-thalassemia. Point 
mutations in varying regions of the β-globin gene are shown schematically, and the frequencies of these mutations listed in the HbVar 
database (http://globin.bx.psu.edu/hbvar/menu.html) are shown in brackets at the left. RNA polymerase is shown in yellow. Gene regions are 
divided into a) promoter, b) splice sites, c) other intronic regions, d) exons, and e) polyadenylation site. These mutations (red X’s) have varying 
effects, illustrated below each example, but all lead to decreased or abolished expression of the β-globin transcript. AS, alternative splicing; 
NMD, nonsense-mediated decay; PTC, premature termination codon.
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reported40. One method that has provided some success in 
allowing patients to become transfusion independent is using a  
lentiviral vector to integrate a wild-type copy of the β-globin 
gene randomly into the genome. However, random integration 
of a viral vector comes with the risk of disrupting other parts of  
the genome. Using CRISPR/Cas9, researchers have been able 
to specifically edit a point mutation in the β-globin gene in 
human HSPCs to restore the wild-type sequence41. Impor-
tantly, they were also able to specifically enrich for edited  
cells. Enrichment is a hurdle for these types of genome-editing 
approaches, since edited HSPCs must be expanded ex vivo 
before being transfused back into the patient. Similar progress 
has been made using CRISPR/Cas9 to edit HSPCs to correct 
the single nucleotide that causes sickle cell disease42. Alter-
natively, some genome-editing approaches aim to edit distal 
regulatory regions to increase the expression of fetal hemo-
globin derived from the γ-globin gene, which is normally turned  
off just after birth; when expressed in adult cells, γ-globin can  
compensate for a lack of functional β-globin40,43,44. With 
advancements in editing efficacy and ex vivo expansion, gene  
editing promises to soon be a feasible treatment for β-thalassemia 
and other genetically encoded diseases of the blood.

Myelodysplastic syndromes
MDSs are characterized by ineffective erythropoiesis and a  
predisposition to develop acute myeloid leukemia despite 
broad phenotypic heterogeneity45–47. Recently, recurrent muta-
tions associated with MDS have been reported in core spliceo-

somal proteins48–52. While these proteins share a role in normal  
pre-mRNA splicing, these MDS mutant alleles can produce varied  
outcomes in aberrant splicing. It is puzzling to imagine how 
mutations in core splicing factors, which carry out splicing in 
every tissue in the body, drive malignancy specifically in the 
blood lineage53,54. Additionally, it is unknown how these neomor-
phic alleles provide an advantage for the mutant cells in order 
to drive leukemogenesis. MDS alleles are in all cases mutually 
exclusive between splicing factors, and the affected tissue  
is always heterozygous35,48. The most frequently occurring splic-
ing factor mutations associated with MDS are found in the  
proteins SF3B1, U2AF, and SRSF2 (Figure 3), and mutations 
are found less commonly in other splicing factors (ZRSR2, 
U2ASF65, PRP40B, and SF1)48. The MDS alleles cause  
non-overlapping patterns of alternative splicing, suggesting that 
a complex mechanism of aberrant splicing promotes MDS or  
else that disease progression is promoted by alternative activities  
of these RNA-binding proteins unrelated to splicing55.

SF3B1
SF3B1 is an essential component of the U2 snRNP that binds 
the intron branch point sequence (BPS) during spliceosome 
assembly and helps to identify SSs that are used in catalysis. 
SF3B1 mutations are generally associated with disease, and the 
most common point mutant found in subtypes of MDS is SF3B1 
K700E49,56–59. Mutations found in MDS promote the recognition 
of non-consensus BPS and activate cryptic 3′ SSs60–62; how-
ever, the mechanism for how altered splice selection translates to  

Figure 3. Driver mutations in myelodysplastic syndromes introduce single amino acid changes to core splicing factors. Somatic 
mutations in general splicing factors U2AF1, SRSF2, and SF3B1 have been implicated in myelodysplastic syndromes. Although these proteins 
are involved in the recognition of splice site sequences in all pre-mRNAs, tissue-specific splicing defects are observed in blood cells. These 
mutations lead to aberrant splicing in erythroblasts in a wide range of transcripts. ESE, exonic splicing enhancer; SS, splice site.
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hematological malignancy is still under debate. In CD34+ cells 
from patients with SF3B1 mutations, genes involved in cell 
cycle regulation, iron homeostasis, DNA damage, and RNA 
processing are deregulated63. In order to explain the link between 
aberrant splicing and gene expression, two studies examined  
RNA-seq data from mutant SF3B1 patient samples64,65. The 
most common aberrant splicing event was use of a cryptic  
3′ SS, via recognition of an alternate BPS upstream of the 
canonical BPS, and about half of the affected transcripts were 
targets for NMD64. In Sf3b1 K700E knock-in mice, alternate  
3′ SS usage was observed, as was inefficient hematopoiesis66,67. 
However, these mice did not develop other MDS phenotypes 
such as ringed sideroblasts as seen in humans, and this was  
potentially due to differences in disease mechanisms between 
human and mouse. Additionally, aberrantly spliced transcripts 
in these mouse models showed little overlap with changes 
observed in human patients, perhaps owing to the decreased  
conservation of intron sequences between species. Several inves-
tigations have also looked into the role of SF3B1 outside of  
splicing. SF3B1 was found to associate with mononucleosomes 
in HeLa cells, preferentially over exons, and SF3B1 associa-
tion with chromatin influenced splicing68. However, recent work  
by Murthy et al. also found an association of SF3B1 with 
exons in chromatin, but this association did not predict  
splicing outcomes69. These results point to the role of SF3B1 as a  
chromatin modifier.

SRSF2
SRSF2 is a member of the serine/arginine (SR)-rich family 
of proteins, which are involved in regulating SS selection for 
both constitutive and alternative splicing by binding exonic 
sequence enhancer. Multiple lines of evidence support a role 
for mutant SRSF2 in driving myelodysplasias by promoting 
changes in alternative splicing. In a K562 cell line expressing 
the most common P95H mutation, alternative splicing events 
were correlated directly with the altered ability of the P95H  
mutant to bind a specific RNA motif70. SRSF2 is essential for 
hematopoiesis, and Srsf2 gene knockout in mice is embry-
onic lethal71. In one study, the P95H mutant was found to dis-
rupt the recognition of exonic splicing enhancer regions, and in 
the case of the oncogene Ezh2, this resulted in the inclusion of a 
toxic exon and a decrease in Ezh2 transcript levels72. Similarly, 
the P95H mutant expressed in an MDS cell line was shown to  
specifically affect alternative splicing of genes that are impor-
tant for cancer development and apoptosis71. These results were  
generally corroborated with a conditional knock-in mouse model 
to look at steady-state effects rather than in the regenerative  
context of lethally irradiated mice as in previous mouse models73. 
Kon et al. found increased occurrences of alternative splicing 
in about 20% of transcripts73. However, in these mice, there 
were only a few differentially spliced genes that were targets 
for NMD, and no change in the expression of Ezh2, suggesting  
that the context of regenerative stress may have an impact on the 
role of SRSF2 in promoting aberrant alternative splicing. Using 
a technique that measure protein–RNA interactions genome-
wide, SRSF2 P95H was found to differentially bind alternative 
exons, but interestingly this does not predict the outcome of 
alternative splicing74. The genes most affected were RNA 
processing factors, suggesting a cascade effect, where mutant  

SRSF2 promotes misregulation of splicing factors and thereby 
causes aberrant splicing and downregulation of a host of  
downstream targets.

U2AF1
U2AF1 (also known as U2AF35) binds to most 3′SSs, 
assisting the assembling spliceosome in identification of 
the 3′SS to be used during splicing catalysis. Unbiased 
whole-genome sequencing found the S34F mutation in around 
9% of 150 patients with de novo MDS, and this mutation  
promoted exon skipping in a minigene reporter75. RNA-seq data 
from patients with this same mutation showed again a small 
increase in exon skipping, and the nucleotide just upstream of the  
3′ SS was a predictor of exon usage for mutant but not wild-
type splicing76. These results were verified by using RNA-seq 
data from 167 patients with acute myeloid leukemia, confirming 
that U2AF1 S34F/Y mutants show a preference for CAG over 
UAG 3′ SSs, causing downstream aberrant splicing events77. 
However, in both of these cases, the downstream targets  
with altered splicing were variable and did not contain much  
overlap.

To investigate the effects of expressing the S34F mutant of 
U2AF1 in an animal model, Shirai et al. developed a doxycycline- 
inducible transgenic mouse carrying the allele in the myeloid, 
lymphoid, stem, and progenitor cell lineages78. After transplant 
of the transgenic bone marrow to lethally irradiated mice, periph-
eral blood total white blood cell counts were decreased, as was 
the case for B cells and monocytes78. However, there was no  
change in RBC or platelet counts, and the mice showed no  
evidence of bone marrow dysplasia and did not develop MDS 
or acute myeloid leukemia after one year of transgenic U2af1 
S34F expression. By analyzing transcriptome sequences of  
myeloid progenitors from the induced transgenic mice, they 
identified 742 cases of alternate splicing junctions, and these 
were mostly alternate 3′ SS usage with an enrichment for 
CAG 3′ SS sequence over UAG in wild-type controls. Finally, 
in an attempt to link altered splicing patterns to the cause of  
myeloid disease, Park et al. derived cell lines with the S34F 
mutation and showed that, in addition to aberrant alternative  
splicing, many transcripts are alternately processed at the 3′ end, 
specifically through use of a distal cleavage and polyadenylation 
site79. They show that one such alternatively processed tran-
script, Atg7, causes an autophagy defect that may explain how 
changes in splicing and RNA processing can drive oncogenic 
transformation. MDS patients harboring the S34F mutation had 
increased levels of Atg7 mRNA with the distal cleavage and 
polyadenylation site. Importantly, the authors show that use of the  
distal site results in translation repression and that the correspond-
ing decrease in ATG7 protein levels is sufficient to transform cells.

The recent discovery of splicing factors as commonly mutated 
proteins in MDS was unexpected. Although these mutations 
affect proteins in a common pathway, the outcome in each 
case is a distinct pattern of altered splicing. Additionally, these 
mutations are associated with variable prognoses and sub-
classes of MDS. SF3B1 is strongly associated with a ringed 
sideroblast phenotype and a relatively positive prognosis, 
whereas U2AF1 and SRSF2 are associated with more advanced  
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myelomonocytic leukemia and with worse outcomes52. One uni-
fying mechanism proposed by Chen et al. is that while muta-
tions in splicing factors cause distinct splicing defects, they 
cause a common replication stress by triggering elevated R-loop  
formation80. The authors show that increased R-loops com-
promise hematopoiesis and that resolution of R-loops by  
overexpression of RNase H partially rescues proliferation. This 
is an intriguing mechanism by which splicing factors may play 
auxiliary roles in transcriptional regulation. They propose that 
this insult to genomic stability may be a common mechanism 
which makes progression to more severe disease phenotypes 
more likely when other mutations are coexisting. Retained introns  
have been proposed to act as substrates for R-loop formation, 
contributing to genomic instability and DNA damage in the case 
of severe spinal muscular atrophy81. More work will need to  
be done to understand the contribution of both the splicing  
and the genomic stability defects of mutant splicing factor  
alleles on MDS.

Mutations in several other RNA-binding proteins have been  
proposed to contribute to misregulation of splicing during eryth-
ropoiesis. For example, RBM38 has been shown to regulate 
alternative splicing in terminal erythropoiesis, specifically acti-
vating inclusion of exon 16 of the 4.1R transcript82, a signature 
alternative splicing event in RBC development (see above). Nat-
urally occurring human variants in RBM38 expression were  
discovered through a high-throughput genome-wide association 
study screen and validated to show changes in a subset of genes 
that are alternatively spliced during terminal erythropoiesis83. 
Interestingly, RBM38 was additionally shown to interact with 
eIF4G in the cytoplasm to enhance the translation of a subset of 
mRNAs in terminal differentiation84. Moreover, an alternatively 
spliced isoform of the transcriptional repressor GFI1B produced 
by a natural variant causes defects in megakaryopoiesis but 
not erythropoiesis, suggesting that variation among individuals 
can play a role in developmental dynamics85. Future investiga-
tions should illuminate further connections among alternative  
splicing, transcription, and translation during hematopoiesis.

Conclusions
Erythropoiesis provides an excellent model in which to study 
RNA splicing in both healthy and diseased states. Recent work 

identifying alternative splicing19 and IR26,29 as major regula-
tory mechanisms associated with differentiation will no doubt 
yield insight into the complexity of how tissue-specific changes 
in splicing are relayed to affect gene expression. Mutations  
affecting core spliceosomal proteins (SF3B1, U2AF1, and SRSF2)  
as well as genes important for mature RBC function (for  
example, β-globin) have revealed aberrant splicing which leads 
to hindered erythropoiesis, often in unexpected ways. Promising 
treatments for MDS, in particular, rely on modulating splicing 
as a mechanism to specifically target defective splicing in the 
myeloid lineage86–88. Many questions remain as to how mutations 
in ubiquitous splicing factors specifically cause defects in the 
myeloid lineage and what the molecular mechanism is for how 
downstream targets of these alternatively spliced transcripts  
contribute to disease progression.
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